《概率论与随机过程》概率论部分习题答案
(完整word版)随机过程试题及答案

1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。
2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。
4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。
6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ijP (p )=,二者之间的关系为 。
7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。
8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。
10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。
二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。
2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。
3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。
随机过程第四版参考答案

随机过程第四版参考答案随机过程第四版参考答案随机过程是概率论中的一个重要概念,研究的是随机事件在时间上的演化过程。
它在现代科学和工程领域中有着广泛的应用,例如通信系统、金融市场和生物学等。
随机过程第四版是一本经典的教材,为学习者提供了理论和实践的结合,帮助读者更好地理解和应用随机过程。
在随机过程第四版中,作者首先介绍了随机过程的基本概念和性质。
随机过程可以分为离散时间和连续时间两种类型,而在每个时间点上的随机变量可以是离散型或连续型的。
通过对这些基本概念的介绍,读者可以建立起对随机过程的初步认识,并为后续的学习打下坚实的基础。
接下来,随机过程第四版详细讨论了不同类型的随机过程。
其中,最常见的两种类型是马尔可夫过程和泊松过程。
马尔可夫过程是一种具有马尔可夫性质的随机过程,即未来状态的概率只依赖于当前状态,而与过去的状态无关。
泊松过程则是一种连续时间的随机过程,其具有独立增量和平稳增量的特点。
通过对这些经典模型的介绍,读者可以更深入地了解随机过程的特性和应用。
随机过程第四版还涉及了随机过程的数学建模和分析方法。
在实际问题中,我们常常需要通过建立数学模型来描述随机过程的行为。
这些模型可以是基于统计数据的参数估计,也可以是基于物理规律的微分方程。
通过对这些数学方法的学习,读者可以了解如何将实际问题转化为数学模型,并通过数学分析来解决问题。
除了理论部分,随机过程第四版还包含了大量的例题和习题。
这些例题和习题涵盖了不同类型的随机过程和应用场景,帮助读者巩固所学知识,并提供了实践的机会。
通过解答这些例题和习题,读者可以更深入地理解随机过程的概念和性质,并培养解决实际问题的能力。
总的来说,随机过程第四版是一本权威且实用的教材,为学习者提供了理论和实践相结合的学习方式。
通过对随机过程的介绍、不同类型的讨论、数学建模和分析方法的学习,以及大量的例题和习题的解答,读者可以全面地了解和掌握随机过程的基本概念、性质和应用。
《概率论与随机过程》第3章习题答案

《概率论与随机过程》第三章习题答案3.2 随机过程()t X 为()()ΦωX +=t cos A t 0式中,A 具有瑞利分布,其概率密度为()02222>=-a eaa P a A ,σσ,()πΦ20,在上均匀分布,A Φ与是两个相互独立的随机变量,0ω为常数,试问X(t)是否为平稳过程。
解:由题意可得:()[]()()002121020022222002222=⇒+=*+=⎰⎰⎰⎰∞--∞φφωπσφπσφωX E πσσπd t cos da e a a dad eat cos a t a a ()()()[]()()()()()()[]()()()()()12021202120202120202221202022021012022022202010022222200201021212122112210212212121221212222222222222t t cos t t cos t t cos det t cos da e e a t t cos dea d t t cos t t cos a d ea d t cos t cos da eaadad e at cos a t cos a t t t t R a a a a a a a -=-⨯=-⨯-=-⨯⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫-∞+-=-⨯-=⎩⎨⎧⎭⎬⎫+++---=++=++==-∞∞---∞∞-∞--∞⎰⎰⎰⎰⎰⎰⎰⎰⎰ωσωσωσωωφφωωπσφπφωφωσφσπφωφωX X E σσσσπσπσσπXX )(,可见()[]t X E 与t 无关,()21t t R ,XX 与t 无关,只与()12t t -有关。
∴()t X 是平稳过程另解:()[][]0022000000[cos()][cos()][];(,)cos()cos(())cos()cos(())t E A t E A E t E A R t t E A t t E A E t t E X ωΦωΦτωΦωτΦωΦωτΦ⎡⎤=+=+=⨯=⎣⎦⎡⎤⎡⎤+=+++=+++⎣⎦⎣⎦[][][])cos()cos())cos((τωτωτωω0200022222A E t E A E =+Φ++= ∴()t X 是平稳过程3.3 设S(t) 是一个周期为T 的函数,随机变量Φ在(0,T )上均匀分布,称X(t)=S (t+Φ),为随相周期过程,试讨论其平稳性及各态遍历性。
概率论与随机过程习题答案

概率论与随机过程习题答案标准化工作室编码[XX968T-XX89628-XJ668-XT689N]《概率论与随机过程》第一章习题答案1. 写出下列随机试验的样本空间。
(1) 记录一个小班一次数学考试的平均分数(设以百分制记分)。
解: ⎭⎬⎫⎩⎨⎧⨯=n n nn S 100,,1,0 ,其中n 为小班人数。
(2) 同时掷三颗骰子,记录三颗骰子点数之和。
解:{}18,,4,3 =S 。
(3) 10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只次品都取出,记录抽取的次数。
解: {}10,,4,3 =S 。
(4) 生产产品直到得到10件正品,记录生产产品的总件数。
解: {} ,11,10=S 。
(5) 一个小组有A ,B ,C ,D ,E5个人,要选正副小组长各一人(一个人不能兼二个职务),观察选举的结果。
解: {}ED EC EB EA DE DC DB DA CE CD CB CA BE BD BC BA AE AD AC AB S ,,,,,,,,,,,,,,,,,,,=其中,AB 表示A 为正组长,B 为副组长,余类推。
(6) 甲乙二人下棋一局,观察棋赛的结果。
解: {}210,,e e e S =其中,0e 为和棋,1e 为甲胜,2e 为乙胜。
(7) 一口袋中有许多红色、白色、蓝色乒乓球,在其中任意取4只,观察它们具有哪几种颜色。
解: {}rwb wb rb rw b w r S ,,,,,,=其中,,,,b w r 分别表示红色、白色、蓝色。
(8) 对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
解: {}1111,1110,1101,0111,1011,1010,1100,0110,0101,0100,100,00=S 其中,0为次品,1为正品。
(9) 有A ,B ,C 三只盒子,a ,b ,c 三只球,将三只球装入三只盒子中,使每只盒子装一只球,观察装球的情况。
北邮研究生概率论与随机过程-试题及标准答案

北邮研究生概率论与随机过程-试题及答案————————————————————————————————作者:————————————————————————————————日期:23北京邮电大学2012——2013学年第1学期《概率论与随机过程》期末考试试题答案考试注意事项:学生必须将答题内容(包括填空题)做在试题答题纸上,做在试卷纸上一律无效。
在答题纸上写上你的班号和选课单上的学号,班内序号!一. 单项选择题和填空题:(每空3分,共30分)1.设A 是定义在非空集合Ω上的集代数,则下面正确的是 .A (A )若A B ∈∈A,A ,则A B -∈A ; (B )若A A B ∈⊂A,,则B ∈A ; (C )若12n A n =∈⋯A,,,,则1n n A ∞=∈U A ;(D )若12n A n =∈⋯A,,,,且123A A A ⊃⊃⊃L ,则1n n A ∞=∈I A .2. 设(),ΩF 为一可测空间,P 为定义在其上的有限可加测度,则下面正确的是 .c(A )若A B ∈∈F,F ,则()()()P A B P A P B -=-;(B )若12n A n =∈⋯F,,,,,且123A A A ⊃⊃⊃L ,则1li ()()m n n n n P A A P ∞→∞==I ;(C )若A B C ∈∈∈F,F,F,,则()()()()P A B C P A P AB P A BC =++U U ; (D )若12n A n =∈⋯F,,,,,且,i j A i j A =∅∀=/,11()()n n n n P P A A ∞∞===∑U .3.设f 为从概率空间(),P ΩF,到Borel 可测空间(),R B 上的实可测函数,表达式为1000()k A k f kI ω==∑,其中100,,i j n n i j A A A ==∅∀=Ω/=U ,则fdP Ω=⎰ ;4若已知100100!1!(100)()!2k k k P A -=,则2f dP Ω=⎰ . 0210(),25502525kk kP A =+=∑4. 设二维随机变量(,)X Y 的概率密度2,01,0,(,)0,x y x f x y <<<<⎧=⎨⎩其他, 则[[|]]E E X Y = .2/35. 设随机过程,}{()cos X t X t t ω-∞<<+∞=,其中随机变量X 服从参数为1的指数分布,(0,/2)ωπ∈为常数,则(1)(1)X 的概率密度(;1)f x = ;(2)20(())E X t dt π=⎰ .,0,(;1)01,xcos x e cos f x ωω-⎧>⎪=⎨⎪⎩其他,20(1())E X t dt πω=⎰ 6. 设{(),0}W t t ≥是参数为2()0σσ>的维纳过程,令1()()X t W t=,则相关函数2(1,2)2X R σ=.7. 设齐次马氏链的状态空间为{1,2,3}E =,一步转移概率为0.50.500.50.500.20.30.5P ⎛⎫ ⎪= ⎪ ⎪⎝⎭则(1)()11lim n n p→∞= ;(2)()33n n p ∞==∑ . 1/2,2 二. 概率题(共30分)51.(10分) 设(,)X Y 的概率密度为22122221(,)2x x f x y e σπσ+-=,令22,U X Y V Y =+=, (1)求(,)U V 的概率密度(,)g u v ;(2)求U 的边缘概率密度()U g u .解解.(1) 解方程22,,u x y v y ⎧=+⎨=⎩得22,||,,v u x u v y v ⎧⎪=±⎨⎪⎩≤=- 所以雅可比行列式22222222201u uJ u v u v u vv±==±---m, 故222221,||,(,)(,)||20,u u e v u g u v f x y J u v σπσ-⎧≤⎪==⎨-⎪⎩其他. ……5分(2)对0u >,222221(,))2(u u U uu g u e g u v d d u vv v σπσ-∞-∞-=-=⎰⎰22222222212u uu ue dv e u v u u σσπσσ---==-⎰,故222,0,()20,.uU eu u g u σσ-⎧>⎪=⎨⎪⎩其他……10分2.(10分)设(,)U V 的概率密度6,0,0,(,)0,u e u v v g u v -⎧->>=⎨⎩其他,(1)求{1}|1()0V U E I >=,其中{1}{1,(}),10V V I ωω>∈>⎧=⎨⎩,其他,(2)(|)D V U .解 U 的边缘概率密度为00,0,,0,()(,)0,,0,,uu u uU e dv u e u u u v d u g v g --⎧⎧>>⎪===⎨⎨⎩⎪⎩⎰⎰其他其他 所以条件概率密度|1,0,(,)(|)()0,V U U v u g u v v u ug g u ⎧<<⎪==⎨⎪⎩其他. ……4分(1)101{1}|1111()(1|10).102|10(|10)V V U E I P V U U v u g dv dv >===>====⎰⎰……7分(2)因为21(|)2D V U u u ==,所以2(|)12D U U V =。
(完整版)随机过程习题和答案

一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。
解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。
解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。
解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。
2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。
试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。
设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。
以小时为单位。
则((1))30E N =。
40300(30)((1)40)!k k P N e k -=≤=∑。
3.2在某公共汽车起点站有两路公共汽车。
乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。
概率论与随机过程习题集(北邮研一专硕)

+
2ωτ
+
2θ
)
1 2π
dθ
=
0
则:
RY
(t,t
+τ
)
=
A4 E
⎡⎣⎢1 −
cos
( 2ωt
+
2Θ)
−
cos
( 2ωt
+
2ωτ
+
2Θ)
+
1 2
cos
( 4ωt
+
2ωτ
+
4Θ )
+
1 2
cos
( 2ωτ
)⎤⎥⎦
=
1 4
A4 E
⎡⎢⎣1 +
1 2
cos
( 2ωτ
)⎤⎥⎦
=
1 4
A4
⎡⎢⎣1 +
1 2
cos
则: mX (t ) = E ⎡⎣ X (t )⎤⎦ = E ⎡⎣ Acos (ωt ) + B sin (ωt )⎤⎦ = cos (ωt ) E ( A) + sin (ωt ) E ( B) = 0 X (t ) 的相关函数为:
RX (t1,t2 ) = E ⎡⎣ X (t1 ) X (t2 )⎤⎦ = E ⎡⎣ A cos (ωt1 ) + B sin (ωt1 )⎤⎦ ⎡⎣ A cos (ωt2 ) + B sin (ωt2 )⎤⎦
i1 2
⎞ ⎟⎠
+
2i1⎤⎥⎦
=
1 2
方差σ
2 X
(t
)
=
E
⎣⎡ X
2
(t
)⎦⎤
−
⎡⎣mX
随机过程习题及部分解答(共享).docx

随机过程习题及部分解答习题一1.若随机过程X(/)为X(0 = A?,-oo<r<+oo,式中4为(0, 1)上均匀分布的随机变量,求X(/)的一维概率密度Px(x;t)。
2.设随机过程X(/) = 4cos(初+ 其中振幅A及角频率①均为常数,相位&是在[-兀,刃上服从均匀分布的随机变量,求X(/)的一维分布。
习题二1.若随机过程X(/)为X(t)=At -00 < r < +00 ,式中4为(0,1)上均匀分布的随机变量,求E[xa)],7?xa』2)2.给定一随机过程X(/)和常数Q,试以X(/)的相关函数表示随机过程y(0 = X(/ + a) —X(/)的自相关函数。
3.已知随机过程X(/)的均值阪⑴和协方差函数Cx (爪© , 0(/)是普通函数,试求随机过程丫⑴=X(/) + 0(/)是普通函数,试求随机过程丫⑴=X(/) + 0(/)的均值和协方差函数。
4.设X(t) = A cos at + B sin at,其中A, B是相互独立且服从同一高斯(正态)分布N(0Q2)的随机变量,a为常数,试求X(/)的值与相关函数。
习题三1.试证3.1节均方收敛的性质。
2.证明:若X(t),twT;Y(t),twT均方可微,a0为任意常数,则aX(t) + bY(t) 也是均方可微,且有[aX (?) + b Y(/)]' = aX'(/) + b Y'(/)3.证明:若X⑴,twT均方可微,/X/)是普通的可微函数,则f(Z)X(Z)均方可微且[f(ox(or-/w(o+/(ox,(o4.证明:设X⑴在[a,b]上均方可微,且X0)在[a,切上均方连续,则有X'⑴ dt = X(b) — X(a)J a5•证明,设X(t\t eT =[a,b];Y{t\t eT = [a,b]为两个随机过程,且在T上均方可积,a和0为常数,则有(*b (*b (*bf [aX(/) + 0Y(/)M = a [ Xit)dt + /3\ Y⑴ dtJ a J a J aeb rc rbaX (t)dt = X (t)dt + XQ) dt,aWcWbJ a J a Jc6.求随机微分方程X'(/) + aX ⑴二丫⑴ze[0,+oo]'X(0) = 0的X(t)数学期望E [X(0]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率论与随机过程》概率论部分习题解答参考一、ABC BC A C B A C AB C B A C B A .3;.2;.1C B A C B A C B A C B A .4 二、填空1.(1)0.2, (2)52; 2.1 0.4 3.P (A )+P (B )-P (AB ) , 1-P (A );4.3213211,)1)(1)(1(1p p p p p p ----- ;5.)002.0028.0()3.0()7.0()3.0(,)135.0()7.0()3.0(55514452335++或或C C C ; 6.3125864)6.0()4.0(,6,,2,1,0,)6.0()4.0(333666或C k C k k k =- ; 7.1 , 4,+∞<<∞---∞-⎰x dt et x,2218)1(2π ;8.0.7612 ; 9.1 ; 10.3 ; 11.3ln 21; 12.1 ;13.σπ2; 14.91,92 ; 15. 2, 0。
三、单项选择题1.C 2.B 3.B 4.C 5.D 6.D 四、计算题1. 解:设A 1、A 2表示第一、二次取出的为合格品{}{}{}{}{}72960495119532321)()(1)(1132121=⎪⎭⎫ ⎝⎛-=-==⨯-=-=-=-==三批全拒收收三批中至少有一批被接接收接收拒收P P A P A P A A P P P P2. 解:(1)22535523,51288883=⨯⨯⎪⎪⎭⎫⎝⎛===⨯⨯=ΩA N N44.0512225)(===ΩN N A P A(2)1802334523,336678131538=⎪⎪⎭⎫ ⎝⎛=⨯⨯⎪⎪⎭⎫ ⎝⎛===⨯⨯=ΩA A N A N A 54.05630381325)(54.0336180)(==⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛====ΩA P N N A P A 或3. 解:令{}个盒子各有一球恰有n A =,!!()nA nnN N N N N N N n n N n n P A N Ω⎛⎫=⋅== ⎪⎝⎭⎛⎫ ⎪⎝⎭=因此4. 解:令{}{}有效系统有效系统b B a A ==829.093.01862.092.0)(1)()()(1)()()()()2(988.0862.093.092.0)(862.085.0)92.01(93.0)()()()()()()()()()()()1(85.0)(93.0)(92.0)(=--=--=--===-+==--=-=-=-=-+====B P AB P A P B P AB A P B P B A P B A P B A P A B P A P B P A B P B P A B B P AB P AB P B P A P B A P A B P B P A P 所以其中5. 解:设A 1、A 2、A 3分别为甲、乙、丙的产品,B 表示产品是次品,显然12312311(),()()24()()2%()4%P A P A P A P B A P B A P B A ====== 1111(1)()()()2%1%2P A B P B A P A ==⨯=由乘法公式 025.041%441%221%2)()()()2(31=⨯+⨯+⨯==∑=i i i A P A B P B P 由全概率公式(3)由Bayes 公式 4.0025.021%2)()()()()(31111=⨯==∑=i ii A P A B P A P A B P B A P 6. 解:设A 表示原为正品 )(A P =96% )(A P =4% 设B 表示简易验收法认为是正品 )(A B P =98% )(A B P =5% 所求概率为998.004.005.096.098.098.096.0)()()()()()()()()(≈⨯+⨯⨯=+==A P AB P A P A B P A B P A P B P AB P B A P7. 解:设A ={机器调整良好} B ={合格品})(A P =75% )(A P =25% )(A B P =90% )(A B P =30% 因此 )(B A P =)()()()()()()()(A B P A P A B P A P A B P A P B P AB P +=%90%30%25%90%75%90%75=⨯+⨯⨯=8. 解:设A 1、A 2分别表示第一次取到有次品产品的事件和无次品产品的事件,B 为第一次取出的合格品,显然有1)(,43)(,21)()(2121====A B P A B P A P A P由Bayes 公式111112213()()324()131()()()()71242P A P B A P A B P A P B A P A P B A ⨯===+⨯+⨯ 设C 表示第二次取出次品的事件2834173)(=⨯=C P9. 解:设A ={甲出现雨天},B ={乙出现雨天}由题意可知 )(A P =0.2, )(B P =0.18, )(A B P =0.6所求概率为P (A ∪B )=P (A )+P (B )-P (AB )=P (A )+(B )-P (A )P (B ︱A ) =0.2+0.18-0.2×0.6=0.26 10. 解:令{},3,2,1==i i A i 次取出为正品第所求概率为0084.0989099910010)()()()()()(21312121321321=⨯⨯===A A A P A A P A P A A A P A A P A A A P11. 解:设{}3,2,1==i i A i 人能译出第 A ={密码被译出},则123A A A A =123123()()1()P A P A A A P A A A ==- 1234231()()()10.6534P A P A P A =-=-⨯⨯= 12. 解:设X 表示卖出的一包产品中的次品数(1)X ~B (10,0.01)于是 P {卖出的一包被退回} =P {X >1}=1-P {X ≤1}=1-P {X =0}-P {X =1}=004.0)99.0()01.0(99.0()01.0(191110100010≈--C C )(2)X ~B (20,0.01)P {卖出的一包被退回} =P {X >2}=1-P {X ≤2} =1-P {X =0}-P {X =1}-P {X =2}=001.0)99.0()01.0()99.0()01.0(99.0()01.0(1182220191120200020≈---C C C )13. 解:先研究一人负责维修20台设备的情况。
在某一时刻设备发生故障的情况可视为在此时刻对20台设备逐个进行检查,每次检查只有两个可能结果;设备发生故障或设备正常工作,因此可视为一个)20(=n n 重贝努利试验。
若令X 表示某时刻设备发生故障的台数,则X ~B (20,0.01).由题意知,当发生故障的台数超过维修工作人数,即超过1时,将发生不能及时维修的现象,因此,所求事件概率为P {X >1}=1-P {X ≤1}=1-P {X =0}-P {X =1}=1-1920)99.0(01.0120)99.0(⨯⨯⎪⎪⎭⎫ ⎝⎛-=0.017对于3人共同维修80台设备的情况,可类似于上面的讨论,此时X ~B (80,0.01),并且发生故障不能及时维修的概率为P {X >3}={}∑==-301k k X P =k k k k -=∑⎪⎪⎭⎫ ⎝⎛-8030)99.0()01.0(801=0.00814. 解:一人维修20台的情况:2.0,001.0,20====np p n λP {X ≥2}∑∞=-≈02.0!2.0k k e k查附表2得 P {X ≥2}≈0.01753人维修80台的情况:8.0,01.0,80====np p n λP {X ≥4}∑∞=-≈08.0!8.0k k e k=0.0090515. 解:令X 表示20个索赔中被盗索赔的个数 X ~B (20,15%) 所求概率为P {X ≥5}=1-P {X <5}=1-{}∑==40k k X P )315.020(!31403=⨯=-≈∑=-λk k ek(查表)=1-[0.049787+0.149361+0.224042+0.224042+0.168031] =1-0.815263=0.184737 16. 解:(1)1=⎰∞+∞-)(x f d ⎰-=22cos ππx A x d ⎰=20cos 2πx A x d x=2A 20sin πx =2A , A =21故 ⎪⎩⎪⎨⎧≤≤-=其他,022,cos 21)(ππx x x f(2)x X P cos 212020⎰=⎭⎬⎫⎩⎨⎧<<ππd x =424sin 21sin 2140==ππx (3)当x <0)(,2=-x F 时π当2π-≤x <2π时,⎰∞-=x u f x F )()(d u u xcos 212⎰-=πd )1(sin 21sin 212+==-x u u xπ当x >2π时,1)(=x F总之 ⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤-+-<=2,122,)1(sin 212,0)(ππππx x x x x F17. 解:令p 表示一个电子管使用寿命不超过150小时(即150小时内损坏)的概率,于是p =P {X ≤150}=⎰1501002100x d 311501001100150100=-=-=x x 若Y 表示150小时内损坏电子管的数目,则Y ~B ⎪⎭⎫⎝⎛31,3于是(1)P {Y =0}=;27832313003=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛C (2)P {Y =1}=94271232312113==⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛C 18. 解:当x <0时 ⎰∞-=x u f x F )()(d 0=u当x ≥0时 ⎰∞-=x u f x F )()(d ⎰-=x kxe x k u 0232d x kxkx kx kx ekx x k k k e k xe e k x k ----++-=⎥⎦⎤⎢⎣⎡+---=222122222233223 因此 ⎪⎩⎪⎨⎧<≥++-=-0,00,2221)(22x x e kx x k x F kx19. 解: (1)由1=1),(lim =+∞→a x F x 得⎪⎩⎪⎨⎧≤>-=-===-=+=+=-01)(,1,10)0()0(,0)(22x x ex F b a F b a F x x F x 于是得以及处连续在由(2)P {-1≤X ≤1}=F (1)-F (-1)=1-3935.021≈-e(3)⎪⎩⎪⎨⎧≤>='=-00)()(22x x xex F x f x20. 解:有实根是 当0)2(44)4(0422≥+⨯⨯-≥-k k ac b 即即 020********≥+-≥+-k k k k 即⎪⎩⎪⎨⎧≤≤=-≤≥⎩⎨⎧≤+≤-⎩⎨⎧≥+≥-其它或即或,050,51)(1201020102x x f k k k k k k k 于是 {}{}{}{}1212-≤+≥=-≤≥=k P k P k k P P 或有实根⎰=5251d ⎰-∞-+10x d 53=x 21. 解:依题意 X 的密度函数为⎩⎨⎧<>=-0,00,015.0)(015.0x x e x f x (1)P {X >0}⎰∞+=100)(x f d ⎰∞+-=100015.0015.0x e x d x[]223.05.1100015.0≈=-=-+∞-e e x(2)如果要使P {X >x }<0.1 即⎰∞+xx f )(d ⎰∞+-=xu e x 015.0015.0d []1.0015.0015.0<=-=-+∞x xue e u即 -0.015x <ln0.1即 x >015.01.0ln -22. 解:(1)P {︱X ︱≤30}=P {-30≤x ≤30}=⎪⎭⎫⎝⎛--Φ-⎪⎭⎫ ⎝⎛-Φ4020304020304931.018744.05987.0)25.1()25.0(=-+=-Φ-Φ= (2)令Y 表示三次测量绝对值误差不超过30的次数 则Y ~B (3,0.4931)因此P {Y ≥1}=1-P {Y <1}=1-P {Y =0}=3)4931.0(1-≈0.88 23. 解: (1)由于因此 Y =-2X 的分布列为(2)由于因此 Y =X 2的分布列为24. 解:由于 ),(,21)(22∞+-∞=-x e x f π当{}{}0)()(02==≤=≤=<φP y X P y Y P y F y 时当{}{}{}y X y P y X P y Y P y F y ≤≤-=≤=≤=≥2)(0时2221x yye --⎰=πd x 2221x ye-⎰=πd x所以'⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎩⎪⎨⎧<≥='=⎰-0,00,22)()(022y y e y F y f yx π所以 ⎪⎩⎪⎨⎧<≥=-0,00,21)(2y y e y y f x π25. 解:Y =︱X ︱的取值为x y =≥0因此 当{}0)(0=≤=<y Y P y F y 时当{}{}{}y X y P y x P y Y P y F y ≤≤-=≤=≤=≥)(0时xyye --⎰=21d x x y e ⎰-=021d x +x y e -⎰021d x=1-y e -所以⎩⎨⎧≥<='=⎩⎨⎧≥-<=--0,0,0)()(,0,10,0)(y e y y F y f y e y y F y y则26. 解:(1)关于X 、Y 的边缘分布列分别为(2)经验证:对一切j i ij p p p j i ⋅⋅=有,因此X 与Y 相互独立。