第三讲 平均数标准差和变异系数
变异系数 平均值 标准差

变异系数平均值标准差变异系数、平均值和标准差是统计学中常用的三个描述性统计量,它们可以帮助我们更好地理解数据的分布和变异程度。
在本文中,我们将分别介绍这三个统计量的概念、计算方法以及它们在实际应用中的意义。
首先,让我们来了解一下变异系数。
变异系数是用来衡量数据变异程度的一个指标,它的计算公式是标准差除以平均值,通常以百分比的形式表示。
变异系数的数值越大,表示数据的变异程度越高;反之,数值越小,表示数据的变异程度越低。
在实际应用中,变异系数可以帮助我们比较不同数据集的变异程度,从而更好地进行数据分析和决策。
接下来,让我们来介绍平均值。
平均值是一组数据的总和除以数据的个数,它是描述数据集中心位置的一个重要指标。
平均值可以帮助我们了解数据的集中趋势,通常用来代表整个数据集的中心位置。
在实际应用中,平均值经常被用来进行数据的比较和分析,是统计学中最基本的描述性统计量之一。
最后,让我们来讨论标准差。
标准差是衡量数据离散程度的一个指标,它表示一组数据的离散程度或者波动程度。
标准差的计算方法是先计算每个数据与平均值的差值,然后求这些差值的平方和的平均值,最后再取平方根。
标准差的数值越大,表示数据的离散程度越高;反之,数值越小,表示数据的离散程度越低。
在实际应用中,标准差经常被用来衡量数据的风险和波动性,是金融领域和科学研究中常用的一个重要指标。
在实际应用中,变异系数、平均值和标准差经常是一起使用的。
它们可以帮助我们更全面地了解数据的特征和分布,从而更好地进行数据分析和决策。
通过对这三个统计量的合理运用,我们可以更准确地把握数据的特点,为实际工作和研究提供有力的支持。
综上所述,变异系数、平均值和标准差是统计学中常用的三个描述性统计量,它们分别衡量了数据的变异程度、中心位置和离散程度。
在实际应用中,它们可以帮助我们更好地理解数据的特征和分布,为数据分析和决策提供重要的参考依据。
希望本文对读者对这三个统计量有更深入的理解和运用有所帮助。
第三讲平均数、标准差和变异系数

为了使所得的统计量是相应总体参数的无 偏 估计量,统计学证明,在求离均差平方和的平均 数时,分母不用样本含量n,而用自由度 n-1,
2 ( x x ) /( n 1) 于是,我们 采 用统计量
表示资料的
变异程度。 统计量 S2=
2 ( x x ) /( n 1) 称为均方(mean square,
S CV 100 % x
变异系数是无量纲的量,可以用于不同单位、 不同尺度下各样本变异程度的比较。
【例7】 已知某甲品种猪平均体重为 190kg,
标准差为10.5kg,而乙品种猪平均体重为196kg,
第二节 变异数
平均数作为样本的代表,其代表性的强弱受样 本资料中各观测值变异程度的影响。每个样本有 一批观察值,除以平均数作为样本的集中性表现 外,还应该考虑样本内各个观察值的变异情况, 才能通过样本的观察数据更好地描述样本,乃至 描述样本所代表的总体,为此必须有度量变异的 统计数。常用的描述变异程度指标有: 1、极差(range) 2、方差(variance) 3、标准差(standard deviation) 4、变异系数(variation coefficient)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
众数 = 9
Hale Waihona Puke 没有众数4、几何平均数几何平均数: 如有n个观察值,其相乘积开n次方 ,即为几何平均数(geometric mean),用G代表。 其计算公式如下:
G n x1 x2 x3 xn ( x1 x2 x3 xn )
【例2】 从A、B两小区分别抽取4个和5个小麦麦穗, 测得其样本如下,用两种方法计算其平均值,并比较计 算结果。
第3章 平均数、标准差与变异系数

C V S 100 % x
(3—15)
变异系数的大小,同时受平均数和标准差两个统计 量的影响,因而在利用变异系数表示资料的变异程 度时,最好将平均数和标准差也列出。
用 途
统计学:比较不同样本资料的相对变异程度
食品科学:在空白试验时,可作为基础试验条件差
( xi x ) 0
i 1
n
或简写成
(x
x) 0
2、样本各观测值与平均数之差的平方和为最小,
即离均差平方和为最小。
(x - x )2
i
i 1
n
(xi- a)2 (常数a≠ x ) 或简写为: ( x x ) < ( x )
<
i 1
2
n
2
对于总体而言,通常用μ表示总体平均数,有限 总体的平均数为:
先将各个离均差平方,即(x x )2 ,再求 离均差平方和 ,
2 即 ( x x ),简称平方和,记为 SS; 由于离差平方和常随样 本
大小而改变 ,为了消除样本大小的影响,用平方和除以样本 大 小,即
( x x ) 2 / n,求出离均差平方和的平均数。
用观测值的个数除离均差平方和得到的平均平方和, 简称为均方(mean square, MS)或方差。 相应的总体参数叫 总体方差 ,记为σ2。对于有限总 体而言,σ2的计算公式为:
337.3
343.2 346.0 344.0
345.3
347.0 345.6 350.0
358.2
340.2 346.2 335.1
341.0
343.3 342.3 339.5
346.8
第3章-平均数、标准差与变异系数

50只小鸡出壳天数的频数分布表
出壳天数 频数(f) fx
19
2
38
20
3
60
21
10
210
22
24
528
23
9
207
24
2
48
合计
50
1091
x
fx f
1091 50
21.82
fmax=24, Mo=22
Md=22
表3-2 某纯系蛋鸡200枚蛋重的频数分布表
组别
44.25— 45.75— 47.25— 48.75— 50.25— 51.75— 53.25— 54.75— 56.25— 57.75— 59.25— 60.75—
• 极差(全距)
•
极差 = 最大值 - 最小值
• 只利用了资料中最大值和最小值, 不
能准确表达资料中各个观察值的变异程
度。
• 平均离差
xx
d
n 1
离均差
(x x)
它不能表示整个资
(x x) 0 料中所有观察值的 总偏离程度
标准差S
x x 使用不方便, 在统 S (x x)2 /(n 1) 计学中未被采用
n
(xi x)2
s 2 i1 n 1
样本标准差 s
n
(xi x)2
i 1
n 1
• 为了方便计算,将离均差平方和转化为另 一种形式,同时略去下标,上式可表示为:
s
x2
( x)2
n
n 1
• 在计算离散型频数资料的标准差时,
s
fx 2
( fx)2
N
N 1
• 式中x为组值, f为频数, N为总频数(∑f), k为组数。
平均数、标准差与变异系数

第三章 平均数、标准差与变异系数本章重点介绍平均数(mean )、标准差(standard deviation )与变异系数(variation coefficient )三个常用统计量,前者用于反映资料的集中性,即观测值以某一数值为中心而分布的性质;后两者用于反映资料的离散性,即观测值离中分散变异的性质。
第一节 平均数平均数是统计学中最常用的统计量,用来表明资料中各观测值相对集中较多的中心位置。
在畜牧业、水产业生产实践和科学研究中,平均数被广泛用来描述或比较各种技术措施的效果、畜禽某些数量性状的指标等等。
平均数主要包括有算术平均数(arithmetic mean )、中位数(median )、众数(mode )、几何平均数(geometric mean )及调和平均数(harmonic mean ),现分别介绍如下。
一、算术平均数算术平均数是指资料中各观测值的总和除以观测值个数所得的商,简称平均数或均数,记为x 。
算术平均数可根据样本大小及分组情况而采用直接法或加权法计算。
(一)直接法 主要用于样本含量n ≤30以下、未经分组资料平均数的计算。
设某一资料包含n 个观测值:x 1、x 2、…、x n ,则样本平均数x 可通过下式计算:nxnx x x x ni in∑==+++=121 (3-1)其中,Σ为总和符号;∑=ni i x 1表示从第一个观测值x 1累加到第n 个观测值x n。
当∑=ni ix1在意义上已明确时,可简写为Σx ,(3-1)式即可改写为:nx x ∑=【例3.1】 某种公牛站测得10头成年公牛的体重分别为500、520、535、560、585、600、480、510、505、490(kg ),求其平均体重。
由于Σx =500+520+535+560+585+600+480+510+505+490=5285,n =10代入(3—1)式得:.5(kg)528105285∑===nx x即10头种公牛平均体重为528.5 kg 。
平均数、标准差与变异系数

第三章 平均数、标准差与变异系数本章重点介绍平均数(mean )、标准差(standard deviation )与变异系数(variation coefficient )三个常用统计量,前者用于反映资料的集中性,即观测值以某一数值为中心而分布的性质;后两者用于反映资料的离散性,即观测值离中分散变异的性质。
第一节 平均数平均数是统计学中最常用的统计量,用来表明资料中各观测值相对集中较多的中心位置。
在畜牧业、水产业生产实践和科学研究中,平均数被广泛用来描述或比较各种技术措施的效果、畜禽某些数量性状的指标等等。
平均数主要包括有算术平均数(arithmetic mean )、中位数(median )、众数(mode )、几何平均数(geometric mean )及调和平均数(harmonic mean ),现分别介绍如下。
一、算术平均数算术平均数是指资料中各观测值的总和除以观测值个数所得的商,简称平均数或均数,记为x 。
算术平均数可根据样本大小及分组情况而采用直接法或加权法计算。
(一)直接法 主要用于样本含量n ≤30以下、未经分组资料平均数的计算。
设某一资料包含n 个观测值:x 1、x 2、…、x n ,则样本平均数x 可通过下式计算:nxnx x x x ni in∑==+++=121 (3-1)其中,Σ为总和符号;∑=ni i x 1表示从第一个观测值x 1累加到第n 个观测值x n。
当∑=ni ix1在意义上已明确时,可简写为Σx ,(3-1)式即可改写为:nx x ∑=【例3.1】 某种公牛站测得10头成年公牛的体重分别为500、520、535、560、585、600、480、510、505、490(kg ),求其平均体重。
由于Σx =500+520+535+560+585+600+480+510+505+490=5285,n =10代入(3—1)式得:.5(kg)528105285∑===nx x即10头种公牛平均体重为528.5 kg 。
变异系数 标准差 平均值

变异系数标准差平均值变异系数、标准差和平均值是统计学中常用的三个概念,它们分别用来描述数据的离散程度、分布情况和集中趋势。
在实际应用中,这三个指标经常被用来分析和比较不同数据集的特征,从而帮助我们更好地理解数据的特性和规律。
本文将对变异系数、标准差和平均值进行详细介绍,并举例说明它们在实际中的应用。
首先,我们来介绍一下变异系数。
变异系数是用来衡量数据离散程度的指标,它的计算公式是标准差除以平均值,通常以百分比的形式表示。
变异系数的数值越大,说明数据的离散程度越高;反之,数值越小,说明数据的离散程度越低。
通过变异系数,我们可以比较不同数据集的离散程度,从而找出哪个数据集更加稳定或者更加波动。
其次,标准差是描述数据分布情况的重要指标。
标准差的计算方法是先求出每个数据与平均值的差值,然后将这些差值平方后求和,最后除以数据个数并取平方根。
标准差的数值越大,说明数据的分布越分散;数值越小,说明数据的分布越集中。
在实际应用中,标准差经常被用来衡量数据的波动程度,例如股票的波动率、生产线的稳定性等。
最后,平均值是描述数据集中趋势的一种统计指标。
平均值就是将所有数据相加后除以数据个数得到的结果,它代表了数据的集中趋势。
通过平均值,我们可以大致了解数据的中心位置,从而对数据集的整体特征有一个直观的认识。
在实际应用中,平均值经常被用来比较不同数据集的大小、分析数据的趋势等。
综上所述,变异系数、标准差和平均值是统计学中常用的三个指标,它们分别用来描述数据的离散程度、分布情况和集中趋势。
通过对这三个指标的分析,我们可以更好地理解数据的特性和规律,从而为实际问题的解决提供有力的支持。
希望本文对大家对变异系数、标准差和平均值有更深入的理解,并在实际应用中发挥更大的作用。
生物统计平均数标准差和变异系数

(二)加权法
对于样本含量 n≥30 以上且已分组的
资料,可以在次数分布表的基础上采用加权 法计算平均数。
生物统计平均数标准差和变异系数
上一张 下一张 主 页 退 出
计算公式为:
k
x
f1x1 f2x2 fk xk f1 f2 fk
fi xi
i 1 k
生物统计平均数标准差和变异系数
上一张 下一张 主 页 退 出
(三)算术平均数的基本性质 1、样本各观测值与平均数之差的和为零, 即离均差之和等于零。
n
(xi x) 0
i 1
或简写成 (x x) 0
生物统计平均数标准差和变异系数
2、样本各观测值与平均数之差的平方和为 最小,即离均差平方和为最小。
求其中位数。
表3-3 粪链球菌食物中毒者的潜伏期
潜伏期 0~ 6~ 12~ 18~ 24~ 30~ 36~
42~48 合计
频数 17 46 38 32 6 0 4 2
145 生物统计平均数标准差和变异系数
累计频数 17 63 101 133 139 139 143 145 -
算术平均数易受极大值、极小值 的影响,而中位数不易受极端值影响, 医学中常用的半数效量和半数致死量 是中位数,不是算术平均数.。
此例 n=9,为奇数,则:
Md x(n1)/2 x(91)/2 x5 15( 0 天)
即西农莎能奶山羊妊娠天数的中位数为 150天。
生物统计平均数标准差和变异系数
上一张 下一张 主 页 退 出
【例3.5】 某犬场发生犬瘟热,观察得 10只仔犬发现症状到死亡分别为7、8、8、 9、11、12、12、13、14、14天,求其中 位数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 n
为了计算方便,可将各观测值取对数后相加
除以n,得lgG,再求lgG的反对数,即得G值,
即:
1 G lg [ (lg x1 lg x2 lg xn )] n
1
5、调和平均数
调和平均数:(harmonic mean)各观测 值倒数的 算术平均数 的倒数,称为调和平均 数,记为H。即
由于 Σx = 500 + 520 + 535 + 560 + 585
= 5285, n =10 得:
+ 600 + 480 + 510 + 505 + 490
x 5285 ∑ x 528.5(mg) n 10
即 10只害虫的平均体重为528.5 mg。
(二)加权法
对于样本含量 n≥30 以上且已分组的资料,可以 在次数分布表的基础上采用加权法计算平均数,计算 公式为: k
f1x1 f 2 x2 f k xk x f1 f 2 f k
fi xi fx i 1 k f fi
i 1
(4.2)
式中: xi -第i 组的组中值; fi -第i组的次数;k -分组数
第i组的次数 fi 是权衡第i组组中值 xi 在资料中所占 比重大小的数量,因此将 fi 称为是 xi 的“权”,加权 法也由此而得名。
第三章 平均数、标准 差和变异系数
平均数(mean)用于反映资料的集中性,即观 测值以某一数值为中心而分布的性质。 标准差(standard deviation)与变异系数 (variation coefficient)反映资料的离散性,即 观测值分散变异的性质。
第一节 平均数
一、平均数的意义和种类 二、算术平均数的计算方法 三、算术平均数的重要特性 四、算术平均数的作用 五、总体平均数
设某一资料包含n个观测值: x1、x2、…、xn,
则样本平均数可通过下式计算:
x1 x2 xn x n
简写:
x x n
x
i 1
n
i
n
(4.1)
【例1】 某植保站测得10只某类害虫的体重分别为500、 520、535、560、585、600、480、510、505、490 (mg),求其平均数。
H 1
1 n 1 (x 1 1 x2
x1n )
1 n
Байду номын сангаас
1
1 x
(4.6)
对于同一资料: 算术平均数>几何平均数>调和平均数 上述五种平均数,最常用的是算术平均数。
二、算术平均数的计算方法
算术平均数可根据样本大小及分组情况而
采用直接法或加权法计算。 (一)直接法 主要用于未经分组资料平均数的计算。
1、算术平均数
算术平均数: 一个数量资料中各个观察值的总和
除以观察值个数所得的商数,称为算术平均数
(arithmetic mean),记作 察值。
1 2 3 4 5 6 7 14
。因其应用广泛,常简称
平均数或均数(mean)。均数的大小决定于样本的各观
0 1 2 3 4 5 6 7 8 9 10
平均数 = 5
0 1 2 3 4 5 6 7 8 9 10
0 1 2 3 4 5 6 7 8 9 10 12 14
中位数= 5
中位数= 5
3、众数
众数: 资料中最常见的一数,或次数最多一组的中点值,称
为众数(mode),记为M0。如棉花纤维检验时所用的主体长度即
为众数。
众数可能不存在 可能有多个众数 多用于属性数据
一、平均数的意义和种类
平均数(average)是数据的代表值,表示资料中 观察值的中心位置,并且可作为资料的代表而与 另一组资料相比较,借以明确二者之间相差的情 况。 平均数是统计学中最常用的统计量,用来表明 资料中各观测值相对集中较多的中心位置。平均 数主要包括有: 1. 算术平均数(arithmetic mean) 2. 中位数(median) 3. 众数(mode) 4. 几何平均数(geometric mean) 5. 调和平均数(harmonic mean)
平均数 = 6
2、中位数
中位数: 将资料内所有观察值从大到小排序,居中间位置的观察 值称为中数(median),计作Md。当观测值的个数是偶数时,则以中间 两个观测值的平均数作为中位数。当所获得的数据资料呈偏态分布时, 中位数的代表性优于算术平均数。 中位数的计算方法因资料是否分组而有所不同。对于未分组资料, 先将各观测值由小到大依次排列,找到中间的1个数(n为奇数)或2个 数( n为偶数),之后求平均即可。
的平均数,那么全部n1+n2个值的算术平均数是
(加权平均数)
3、样本各观测值与平均数之差的和为零, 即离均差之和等于零。
( xi x ) 0
i 1
n
或简写成
(x
x) 0
4、样本各观测值与平均数之差的平方和为最小, 即离均差平方和为最小。 (常数 )
或简写为:
5、若A为任意常数,
山地 丘陵 平地
Σ
100 500 400 1000
x
410000/1000=410
744000/2000=372
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
众数 = 9
没有众数
4、几何平均数
几何平均数: 如有n个观察值,其相乘积开n次方 ,即为几何平均数(geometric mean),用G代表。 其计算公式如下:
G n x1 x2 x3 xn ( x1 x2 x3 xn )
6、平均数是有单位的数值,与原资料单位相同。
注意:必须性状同质时,
x
才有代表性。
S
AY 100 400 500
S·AY 10000 200000 200000 410000
S 900 600 500 2000
AY 160 500 600
S·AY 144000 300000 300000 744000
【例2】 从A、B两小区分别抽取4个和5个小麦麦穗, 测得其样本如下,用两种方法计算其平均值,并比较计 算结果。
【例3】 140行水稻产量(P38),用两种方法求其 平均数,并比较计算结果。
(1)直接法:
(2)加权法:
三、算术平均数的重要特性
1、算术平均数的计算与每一个数(值)都有 关。 2、如果 是n1个值的平均数, 是n2个值