方差与标准差测试题及答案
极差、方差及标准差典型例题及习题(2)

典型例题例1计算下列一组数据的极差、方差及标准差(精确到0.01);50,55,96,98,65,100,70,90,85,100.解极差为100-50=50.平均数为.方差为:标准差为.于是,这组数据的极差、方差和标准差分别为50,334.69,18.29.例2若样本,,…,的平均数为10,方差为2,则对于样本,,…,,下列结论正确的是()(A)平均数为10,方差为2 (B)平均数为11,方差为3(C)平均数为11,方差为2 (D)平均数为12,方差为4解由已知条件,得故应选(C)说明此题充分应用了已知条件来进行整体计算,使运算十分简捷.例3 如图,公园里有两条石级路,哪条石级走起来更舒适?(图中数字表示每一级的高度,单位:厘米)解由于15+14+14+16+16+15=90,19+10+17+18+15+11=90,所以两条石级路总高度一样,都是90厘米;由于都是6个台阶,所以台阶的平均高度也一样,都15厘米.上台阶是否舒适,就看台阶的高低起伏情况如何,因此,需要计算两条石级路台阶高度的极差、方差和标准差.左边石级路台阶高度的极差为16-14=2,方差为:,标准差为;右边石级路台阶高度的极差为19-10=9,方差为:,标准差为.由以上计算可见,左边石级路的极差、方差和标准差都比右边小,所以左边石级路起伏小,走起来舒服些.例4要从甲、乙、丙三位射击运动员中选拔一名参加比赛,在预选赛中,他们每人各打10发子弹,命中的环数如下:甲:10 10 9 10 9 9 9 9 9 9 ;乙:10 10 10 9 10 8 8 10 10 8;丙:10 9 8 10 8 9 10 9 9 9 .根据这次成绩,应该选拔谁去参加比赛?分析本题着重考查对方差的意义及实际运用.解经计算,甲、乙、丙三人命中的总环数分别为93,93,91.所以丙应先遭淘汰.设甲、乙的命中环数分别为和,方差分别是和,则:.∵∴在总成绩相同的条件下,应选择水平发挥较稳定的运动员甲参加比赛.说明丙的总成绩显著,应先遭淘汰,然后利用方差的含义,来考查甲、乙二人成绩的稳定性.例5 小明和小华假期到工厂体验生活,加工直径为100毫米的零件,为了检验他们的产品的质量.从中各随机抽出6件进行测量,测得数据如下:(单位:毫米)小明:99 10 98 100 100 103小华:99 100 102 99 100 100(1)分别计算小明和小华这6件产品的极差、平均数与方差.(2)根据你的计算结果,说明他们两人谁加工的零件更符合要求.解(1)小明:极差=5,平均数=100,方差,小华:极差=3,平均数=100,方差=1.(2)计算结果说明,小明加工的零件极差大,方差也大,小华加工的零件极差小,方差小,所以小华加工的零件更符合要求。
北师大版高中数学必修3第1章《平均数、中位数、众数、极差、方差、标准差》练习

学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.下列说法正确的是( )A .在两组数据中,平均值较大的一组方差较大B .平均数反映数据的集中趋势,方差则反映数据离平均值的波动大小C .方差的求法是求出各个数据与平均值的差的平方后再求和D .在记录两个人射击环数的两组数据中,方差大的表示射击水平高 【解析】 平均值的大小与方差的大小无任何联系,故A 错,由方差的公式s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]知C 错.对于D ,方差大的表示其射击环数比较分散,而非射击水平高,故D 错.【答案】 B2.一个样本数据按从小到大的顺序排列为13,14,19,x,23,27,28,31,其中位数为22,则x 为 ( )A .21B .22C .20D .23【解析】 由中位数的概念知x +232=22,所以x =21. 【答案】 A3.(2016·长沙四校联考)为了了解某同学的数学学习情况,对他的6次数学测试成绩(满分100分)进行统计,作出的茎叶图如图1-4-3所示,则下列关于该同学数学成绩的说法正确的是( )图1-4-3A .中位数为83B .众数为85C .平均数为85D .方差为19【解析】易知该同学的6次数学测试成绩的中位数为84,众数为83,平均数为85.【答案】 C4.为了了解我国13岁男孩的平均身高,从北方抽取了300个男孩,平均身高为1.60 m;从南方抽取了200个男孩,平均身高为1.50 m.由此可推断我国13岁男孩的平均身高为()A.1.54 m B.1.55 mC.1.56 m D.1.57 m【解析】x=300×1.60+200×1.50300+200=1.56(m).【答案】 C5.为了普及环保知识,增强环境意识,某大学随机抽取30名学生参加环保知识测试,得分(10分制)如图1-4-4所示,假设得分值的中位数为m e,众数为m0,平均值为x,则()图1-4-4A.m e=m0=xB.m e=m0<xC.m e<m0<xD.m0<m e<x【解析】由图知30名学生的得分情况依次为2个人得3分,3个人得4分、10个人得5分、6个人得6分、3个人得7分,2个人得8分、2个人得9分、2个人得10分,中位数为第15、16个数的平均数,即m e=5+62=5.5,5出现次数最多,故m0=5.x=130(2×3+3×4+10×5+6×6+3×7+2×8+2×9+2×10)≈5.97.于是m 0<m e <x . 【答案】 D 二、填空题6.某年级举行校园歌曲演唱比赛,七位评委为学生甲打出的演唱分数的茎叶图如右图1-4-5所示,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为________.图1-4-5【解析】 由茎叶图可知,学生甲的演唱分数分别为79,83,84,86,84,88,93,去掉一个最高分和一个最低分后,得分如下:83,84,84,86,88,则平均数为85,方差为s 2=15×[(-2)2+(-1)2+(-1)2+12+32]=3.2.【答案】 85,3.27.一组数据的方差为s 2,将这一组数据中的每个数都乘2,所得到的一组新数据的方差为________.【解析】 每个数都乘以2,则x =2x , S =1n [(2x 1-2x )2+…+(2x n -2x )2] =4n [(x 1-x )2+…+(x n -x )2]=4s 2. 【答案】 4s 28.由正整数组成的一组数据x 1,x 2,x 3,x 4其平均数和中位数都是2,且标准差等于1,则这组数据为________(从小到大排列).【解析】 不妨设x 1≤x 2≤x 3≤x 4且x 1,x 2,x 3,x 4为正整数. 由条件知⎩⎪⎨⎪⎧x 1+x 2+x 3+x 44=2,x 2+x 32=2,即⎩⎨⎧x 1+x 2+x 3+x 4=8,x 2+x 3=4,又x1、x2、x3、x4为正整数,∴x1=x2=x3=x4=2或x1=1,x2=x3=2,x4=3或x1=x2=1,x3=x4=3. ∵s=1 4[](x1-2)2+(x2-2)2+(x3-2)2+(x4-2)2=1,∴x1=x2=1,x3=x4=3.由此可得4个数分别为1,1,3,3.【答案】1,1,3,3三、解答题9.为了了解市民的环保意识,某校高一(1)班50名学生在6月5日(世界环境日)这一天调查了各自家庭丢弃旧塑料袋的情况,有关数据如下表:(1)求这50(2)求这50户居民每天丢弃旧塑料袋的标准差.【解】(1)平均数x=150×(2×6+3×16+4×15+5×13)=18550=3.7.众数是3,中位数是4.(2)这50户居民每天丢弃旧塑料袋的方差为s2=150×[6×(2-3.7)2+16×(3-3.7)2+15×(4-3.7)2+13×(5-3.7)2]=150×48.5=0.97.所以标准差s≈0.985.10.(2014·广东高考)某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差.【解】 (1)这20名工人年龄的众数为:30;这20名工人年龄的极差为:40-19=21.(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图如下:(3)这20名工人年龄的平均数为:(19+28×3+29×3+30×5+31×4+32×3+40)÷20=30;所以这20名工人年龄的方差为:120(30-19)2+320(30-28)2+320(30-29)2+520(30-30)2+420(30-31)2+320(30-32)2+120(30-40)2=12.6.[能力提升]1.(2015·山东高考)为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图1-4-5所示的茎叶图.考虑以下结论:图1-4-5①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的平均气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的平均气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的序号为()A.①③B.①④C.②③D.②④【解析】甲地该月14时的气温数据分布在26和31之间,且数据波动较大,而乙地该月14时的气温数据分布在28和32之间,且数据波动较小,可以判断结论①④正确,故选B.【答案】 B2.对“小康县”的经济评价标准:①年人均收入不小于7 000元;②年人均食品支出不大于收入的35%.某县有40万人口,年人均收入如下表所示,年人均食品支出如图1-4-6所示.则该县()图1-4-6A.是小康县B.达到标准①,未达到标准②,不是小康县C.达到标准②,未达到标准①,不是小康县D.两个标准都未达到,不是小康县【解析】 由图表可知年人均收入为(2 000×3+4 000×5+6 000×5+8 000×6+10 000×7+12 000×5+16 000×3)÷40=7 050(元)>7 000元,达到了标准①;年人均食品支出为(1 400×3+2 000×5+2 400×13+3 000×10+3 600×9)÷40=2 695(元),则年人均食品支出占收入的2 6957 050×100%≈38.2%>35%,未达到标准②.所以不是小康县.【答案】 B3.已知样本9,10,11,x ,y 的平均数为10,方差为4,则xy =________. 【解析】 由题意得⎩⎪⎨⎪⎧9+10+11+x +y5=10,15[(9-10)2+(10-10)2+(11-10)2+(x -10)2+(y -10)2]=4.化简得x +y =20, ① (x -10)2+(y -10)2=18, ② 由①得x 2+y 2+2xy =400, ③ 代入②化简得xy =91. 【答案】 914.某校甲班、乙班各有49名学生,两班在一次数学测验中的成绩(满分100分)统计如下表:(1)甲班的小刚回家对妈妈说:“昨天的数学测验,全班平均79分,得70分的人最多,我得了85分,在班里算是上游了!”(2)请你根据表中数据,对这两个班的测验情况进行简要分析,并提出教学建议.【解】 (1)由中位数可知,85分排在第25名之后,从名次上讲,85分不算是上游.但也不能单以名次来判断学习成绩的好坏,小刚得了85分,说明他对本阶段的学习内容掌握较好.(2)甲班学生成绩的中位数为87分,说明高于或等于87分的学生占一半以上,而平均分为79分,标准差很大,说明低分也多,两极分化严重,建议对学习有困难的同学多给一些帮助;乙班学生成绩的中位数和平均分均为79分,标准差小,说明学生成绩之间差别较小,成绩很差的学生少,但成绩优异的学生也很少,建议采取措施提高优秀率.。
方差测试题及答案详解

方差测试题及答案详解一、选择题1. 方差是用来衡量什么的概念?A. 集中趋势B. 离散程度C. 相关性D. 正态分布答案:B2. 下列哪个数据集的方差最大?A. {1, 2, 3}B. {10, 12, 14}C. {1, 2, 4}D. {10, 20, 30}答案:D3. 标准差是方差的什么?A. 平均值B. 总和C. 倒数D. 正平方根答案:D二、填空题4. 方差的公式是 \( \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i- \mu)^2 \),其中 \( \mu \) 代表______,\( \sigma^2 \) 代表______。
答案:平均数;方差5. 如果一组数据的标准差是0,那么这组数据的方差是______。
答案:0三、简答题6. 请简述方差和标准差的区别。
答案:方差是衡量数据离散程度的统计量,它表示每个数据点与平均值的差的平方的平均值。
而标准差是方差的正平方根,它与原始数据具有相同的单位,更容易直观地理解数据的离散程度。
四、计算题7. 给定一组数据:3, 6, 9, 12, 15,求这组数据的方差。
答案:首先计算平均值 \( \mu = \frac{3 + 6 + 9 + 12 + 15}{5} = 9 \)。
然后计算方差 \( \sigma^2 = \frac{1}{5}[(3-9)^2 + (6-9)^2 + (9-9)^2 + (12-9)^2 + (15-9)^2] = \frac{1}{5}[16 + 9 + 0 + 9 + 36] = 22.8 \)。
8. 如果将上题中的数据每个数都减去10,新的数据集的方差是多少?答案:方差不变,仍然是22.8。
因为方差是衡量数据离散程度的,与数据的中心位置无关。
五、分析题9. 为什么方差和标准差都是非负的?答案:方差和标准差都是基于数据点与平均值的差的平方计算的,平方的结果总是非负的。
因此,方差和标准差作为平方和的平均或平方根,自然也是非负的。
关于方差和标准差的例题

一、选择题1、下列哪一项是方差的数学定义?A. 所有数据与平均数的差的平方和的平均数。
(正确答案)B. 所有数据与平均数的差的绝对值之和的平均数。
C. 所有数据与中位数的差的平方和的平均数。
D. 所有数据与平均数的和的平方的平均数。
2、如果一组数据的每个数都增加5,那么这组数据的方差将:A. 增加5。
B. 减少5。
C. 不变。
(正确答案)D. 变为原来的5倍。
3、下列哪一项不是标准差的特点?A. 标准差越大,数据越分散。
B. 标准差可以为负数。
C. 标准差是方差的平方根。
(正确答案)D. 标准差常用于衡量数据的离散程度。
4、下列哪一项描述的是标准差与方差的关系?A. 标准差是方差的平方。
B. 方差是标准差的平方。
(正确答案)C. 标准差与方差没有直接关系。
D. 标准差是方差的两倍。
5、如果一组数据的方差为0,那么这组数据的特点是:A. 所有数据都相等。
(正确答案)B. 所有数据都不相等。
C. 数据个数为0。
D. 数据中至少有一个负数。
6、下列哪一项不是计算方差时需要注意的?A. 先计算数据的平均数。
B. 计算每个数据与平均数的差。
C. 计算差的平方和的平均数。
D. 忽略数据中的异常值。
(正确答案)7、在比较两组数据的离散程度时,如果它们的方差相等,那么可以推断出:A. 这两组数据的平均数也一定相等。
B. 这两组数据的标准差也一定相等。
(正确答案)C. 这两组数据的中位数也一定相等。
D. 这两组数据的最大值和最小值也一定相等。
(完整版)方差与标准差测试题及答案

1.数据8,10,9,11,12的方差是 ( )A B .2 C. 10 D .502.如果一组数据1x , 2x ,… n x 的方差是2,那么另一组数据13x , 23x ,… 3n x 的方差是 ( )A. 2 B. 18 C. 12 D. 63.(2003•四川)某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为甲=82分,乙=82分,S 甲2=245,S 乙2=190,那么成绩较为整齐的是( ) A .甲班 B .乙班 C .两班一样整齐 D .无法确定4.若一组数据a 1,a 2,…,a n 的方差是5,则一组新数据2a 1,2a 2,…,2a n 的方差是( )A .5B .10C .20D .505.小明与小华本学期都参加了5次数学考试(总分均为100分),数学老师想判断这两位同学的数学成绩谁更稳定,在作统计分析时,老师需比较这两人5次数学成绩的( ).A.平均数;B.方差;C.众数;D.中位数.二、填空题1.(2006•浙江)甲、乙两台机器分别罐装每瓶质量为500克的矿泉水.从甲、乙罐装的矿泉水中分别随机抽取了30瓶,测算得它们实际质量的方差是:S 甲2=4.8,S 乙2=3.6.那么_________ 罐装的矿泉水质量比较稳定.2.(2002•宁夏)已知一个样本1,4,2,5,3,那么这个样本的标准差是 _________ .3.已知一个样本1,2,3,x ,5,它的平均数是3,则这个样本的极差是 _________ ;方差是 ________ .4.(2007•贵阳)如图所示是甲、乙两地某十天的日平均气温统计图,则甲、乙两地这10天的日平均气温的方差大小关系为:S 甲2 _________ S 乙2(用>,=,<填空).5. 如果一组数据1x , 2x ,… n x 的平均数是x ,方差为2S ,那么 (1)新数据1ax , 2ax ,… n ax 的平均数是 ,方差为 ; (2)新数据1x b +, 2x b +,… n x b +的平均数是 ,方差为 ; (3)新数据1ax b +, 2ax b +,… n ax b+的平均数是 ,方差为 .1.甲、乙两人在相同条件下各射靶的成绩情况如图所示。
数据的方差和标准差练习题

数据的方差和标准差练习题一、选择题1. 下列哪个是表示数据离散程度的指标?A)方差B)平均值C)中位数D)众数2. 方差的计算公式是什么?A)方差 = 标准差 / 平均值B)方差 = 平均值 / 标准差C)方差= ∑(数据值 - 平均值)^2 / 样本大小D)方差= ∑(数据值 - 平均值)^2 / (样本大小 - 1)3. 标准差为0的数据集表示什么?A)数据集中没有任何差异B)标准差计算错误C)数据集中只有一个数值D)标准差无法为04. 数据集A的方差为10,方差为B的数据集的离散程度相对于A 会更大还是更小?A)更大B)更小C)相同D)无法确定5. 在正态分布中,大约有多少数据在平均值的1个标准差之内?A)34%B)68%C)95%D)99.7%二、填空题1. 已知数据集为{1, 3, 5, 7, 9},则平均值为____,方差为____,标准差为____。
2. 对于正态分布的数据集,标准差越大,数据的分布越____。
3. 方差的单位是____的平方。
4. 若数据集的标准差为5,则方差为____。
5. 若数据集的方差为36,则标准差为____。
三、计算题1. 已知数据集为{2, 4, 6, 8, 10},请计算其平均值、方差和标准差。
2. 已知数据集为{3, 5, 7, 7, 9},请计算其平均值、方差和标准差。
3. 若数据集的平均值为12,标准差为4,方差为多少?4. 若已知数据集的方差为25,计算其标准差。
5. 数据集A的平均值为30,标准差为6;数据集B的平均值为40,标准差为8。
请计算数据集A与数据集B的方差比较结果。
四、应用题1. 某公司某月份的销售额数据如下:200,000; 220,000; 250,000; 230,000; 240,000请计算该月销售额的平均值、方差和标准差,并分析销售额的波动情况。
2. 一所学校学生在数学测验中的得分数据如下:80, 90, 92, 85, 88, 76, 80, 82, 95, 92, 89, 78请计算学生的平均得分、方差和标准差,并评估学生的成绩差异性。
2023年浙教版数学八年级下册3

2023年浙教版数学八年级下册3.3 方差和标准差同步测试一、单选题(每题3分,共30分)1.(2022八上·淄川期中)在一次射击练习中,甲、乙两人前后5次射击的成绩如下表(单位:环):则这次练习中,甲、乙两人成绩的方差大小()A.S甲2>S乙2B.S甲2=S乙2C.S甲2<S乙2D.无法确定2.(2022八下·上虞期末)如图是甲、乙两名运动员正式比赛前的5次训练成绩的折线统计图,你认为成绩较稳定的是()A.甲B.乙C.甲、乙的成绩一样稳定D.无法确定3.(2020八上·砀山期末)下列命题中是真命题的是()A.中位数就是一组数据中最中间的一个数B.这组数据0,2,3,3,4,6的方差是2.1C.一组数据的标准差越大,这组数据就越稳定D.如果x1,x2,x3…x n的平均数是x,那么(x1- x̅) + (x2- x̅)…+ (x n- x̅) =04.(2022八上·莱州期中)在5轮“中国汉字听写大赛”选拔赛中,甲乙两位同学的平均分都是90分,甲的成绩方差是16,乙的成绩方差是8,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定5.(2021八上·沂源期中)一城市准备选购一千株高度大约为2m的某种风景树来进行街道绿化,•有四个苗圃生产基地投标(单株树的价格都一样).•采购小组从四个苗圃中都任意抽查了20株树苗的高度,得到的数据如下:请你帮采购小组出谋划策,应选购()A.甲苗圃的树苗B.乙苗圃的树苗;C.丙苗圃的树苗D.丁苗圃的树苗6.甲、乙两台包装机同时包装质量为500克的物品,从中各抽出10袋,测得其实际质量分别如下(单位:克)借助计算器判断,包装机包装的10袋物品的质量比较稳定的是().A.甲B.乙C.一样稳定D.无法判断7.求一组数据的方差时,如果有重复出现的数据,比如有10个数据是11,那么输入时可按().A.10 MODE : 11 DA TA B.11 MODE : 10 DA TAC.10 SHIFT : 11 DA TA D.11 SHIFT : 10 DA TA8.(2022九上·苍南开学考)在绣山中学某次“数学讲坛”比赛中,有9名学生参加决赛,他们的决赛成绩各不相同,其中一名学生想要知道自己是否能进入前5名,他不仅要知道自己的成绩,还要知道这9名学生成绩的()A.平均数B.众数C.方差D.中位数9.(2022九上·拱墅开学考)某校六一活动中,10位评委给某个节目的评分各不相同,去掉1个最高分和1个最低分,剩下的8个评分与原始的10个评分相比一定不发生变化的是()A.平均数B.中位数C.方差D.众数10.(2022·大连模拟)甲、乙两班学生举行1分钟跳绳比赛,参赛学生每分钟跳绳个数的统计结果如下表:某同学分析上表后得出如下结论:①甲、乙两班学生的平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分钟跳绳的个数≥190为优秀);③甲班成绩的波动比乙班大.上述结论中,正确的是()A.①②B.②③C.①③D.①②③二、填空题(每题4分,共24分)11.(2022八下·长兴期中)下列五个数:11,12,13,14,15的标准差为12.(2021八上·桓台期中)已知一组数据5,2,x,6,4,它们的平均数是4,则这组数据的标准差为.13.(2022九上·长沙期中)农科院计划为某地选择合适的水果玉米种子,通过实验,甲、乙、丙、丁四种水果玉米种子每亩平均产量都是1500kg,方差分别为S甲2=0.02,S乙2=0.02,S丙2=0.03,S丁2= 0.01,则这四种水果玉米种子产量最稳定的是.(填“甲”“乙”“丙”“丁”)14.(2022九上·信阳开学考)有甲、乙两组数据,如下表所示:甲、乙两组数据的方差分别为S甲2,S乙2,则S甲2S乙2(填“>”,“<”或“=”).15.(2020·邵阳)据统计:2019年,邵阳市在教育扶贫方面,共资助学生91.3万人次,全市没有一名学生因贫失学,其中,某校老师承担了对甲,乙两名学生每周“送教上门”的任务,以下是甲、乙两名学生某十周每周接受“送教上门”的时间(单位:小时):甲:7,8,8,9,7,8,8,9,7,9;乙:6,8,7,7,8,9,10,7,9,9.从接受“送教上门”的时间波动大小来看,学生每周接受送教的时间更稳定.(填“甲”或“乙”)16.(2022八下·青羊开学考)商店销售同一品牌的型号分别为35,36,37,38,39的女式凉鞋,调查销售情况,其销量分别为8%,14%,34%,29%和15%,你认为应该多进型号的鞋,商店经理最关注的应该是这组数据的.(填“众数”“中位数”或“平均数”)三、解答题(共8题,共66分)17.(2022七上·咸阳月考)学校运动会开设了“抢收抢种”项目,八(5)班甲,两个队伍都想代表班级参赛,为了选择一个比较好的队伍,八(5)班的班委组织了一次选拔赛,甲,乙两队各5人的比赛成绩如下表(单位:分):经计算,甲队比赛成绩的平均数为8分,方差为1.2,请计算乙队比赛成绩的方差,并根据计算结果,帮助班委选择一个成绩比较稳定的队伍代表班级参赛.18.(2020八下·平桂期末)为了从甲、乙两名学生中选拔一人参加今年六月份中学生数学竞赛,每个月对他们的学习水平进行一次测验,下图是两人赛前5次测验成绩的折线统计图.谁的成绩较稳定,请说明理由.19.(2020八上·龙口期末)某市举行学科知识竞赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.20.(2023八上·榆林期末)某校举办国学知识竞赛,设定满分10分,学生得分均为整数.在初赛中,甲、乙两组(每组10人)学生成绩如下(单位:分)甲组:5,6,6,6,6,6,7,9,9,10.乙组:5,6,6,6,7,7,7,7,9,10.(1)以上成绩统计分析表中a=,b=,c=;(2)小明同学说:“这次竞赛我得了7分,在我们小组中属中游略偏上!”观察上面表格判断,小明可能是组的学生;(3)从平均数和方差看,若从甲、乙两组学生中选择一个成绩较为稳定的小组参加决赛,应选哪个组?并说明理由.21.(2022九上·晋州期中)甲、乙两名队员参加射击选拔赛,射击成绩见下列统计图:根据以上信息,整理分析数据如下:(1)直接写出表格中a,b,c的值;(2)求出d的值;(3)若从甲、乙两名队员中选派其中一名队员参赛,你认为应选哪名队员?请结合表中的四个统计量,作出简要分析.22.(2022八下·遂昌期中)某校八年级开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间每人踢100个以上(含100个)为优秀,下列是成绩最好的甲班和乙班5名学生的比赛数据(单位:个),经统计发现两班总分相等,此时有学生建议,可通过考查数据中的其他信息作为参考,请你回答下列问题:(1)计算甲、乙两班的优秀率.(2)求两班比赛成绩的中位数.(3)计算两个比赛数据的方差.(4)根据以上信息,你认为应该把冠军奖状发给哪一个班级?简述你的理由.23.(2022八下·乐清月考)某中学举行“中国梦”校园好声音歌手比赛,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,根据这10人的决赛成绩(满分为100分),制作了如图统计图:(1)根据上图提供的数据填空:a的值是,b的值是;(2)结合两队的平均数和中位数,分析哪个队的决赛成绩好;(3)根据题(1)中的数据,试通过计算说明,哪个代表队的成绩比较稳定?24.(2022九上·龙亭月考)为了提高农副产品的国际竞争力,我国一些行业协会对农副产品的规格进行了划分.某外贸公司要出口一批规格为75g的鸡腿,现有两个厂家提供货源,它们的价格相同,鸡腿的品质相近,质检员分别从两厂的产品中抽样调查了20只鸡腿,它们的质量(单位:g)如下:甲厂:76,74,74,76,73,76,76,77,78,74,76,70,76,76,73,70,77,79,78,71;乙厂:75,76,77,77,78,77,76,71,74,75,79,71,72,74,73,74,70,79,75,77.甲厂鸡腿质量频数统计表分析上述数据,得到下表:请你根据图表中的信息完成下列问题:(1)a=;b=;c=;(2)补全频数分布直方图;(3)如果只考虑出口鸡腿规格,请结合表中的某个统计量,为外贸公司选购鸡腿提供参考建议;(4)某外贸公司从甲厂采购了20000只鸡腿,并将质量(单位:g)在71≤x<77的鸡腿加工成优等品,请估计可以加工成优等品的鸡腿有多少只?答案解析部分1.【答案】A 【知识点】方差【解析】【解答】解:甲的平均成绩为10+7+10+8+105=9,乙的平均成绩为7+10+9+10+95=9;甲的方差S 甲2=15[(10−9)2+(8−9)2+(10−9)2+(10−9)2+(7−9)2]=85, 乙的方差S 乙2=15[(7−9)2+(10−9)2+(9−9)2+(9−9)2+(10−9)2]=65. 故甲,乙两人方差的大小关系是:S 甲2>S 乙2.故答案为:A .【分析】先求出甲、乙的方差,再利用方差的性质:方差越大,数据波动越大求解即可。
方差与标准差的计算题目

方差与标准差的计算题目在统计学中,方差和标准差是常用的用于衡量数据变化程度的指标,它们在数据分析和推断中发挥着重要的作用。
本文将从理论和实际计算两方面探讨方差与标准差的计算方法。
一、方差的计算方法方差(variance)是一组数据距离其平均值的偏离程度的平方的平均值。
在统计学中,方差用于衡量数据的分散程度或离散程度。
计算方差的步骤如下:1. 计算数据的平均值(也称为均值)。
2. 将每个数据点与均值之差的平方。
3. 将所有平方差求和。
4. 求和后的值除以数据数量减1。
下面给出一个方差计算的示例:假设我们有一组数据:5, 8, 7, 6, 9。
首先,计算数据的平均值:(5 + 8 + 7 + 6 + 9) / 5 = 35 / 5 = 7接下来,计算每个数据点与均值之差的平方,并将结果求和:(5-7)^2 + (8-7)^2 + (7-7)^2 + (6-7)^2 + (9-7)^2 = 4 + 1 + 0 + 1 + 4 = 1010 / (5-1) = 10 / 4 = 2.5因此,这组数据的方差为2.5。
二、标准差的计算方法标准差(standard deviation)是方差的平方根,它衡量了数据的离散程度,并且具有与原始数据相同的量纲。
计算标准差的步骤如下:1. 计算数据的平均值。
2. 将每个数据点与均值之差的平方。
3. 将所有平方差求和。
4. 求和后的值除以数据数量减1。
5. 对结果求平方根。
以下是标准差计算的示例:假设我们仍然使用之前的数据:5, 8, 7, 6, 9。
首先,计算数据的平均值:(5 + 8 + 7 + 6 + 9) / 5 = 35 / 5 = 7接下来,计算每个数据点与均值之差的平方,并将结果求和:(5-7)^2 + (8-7)^2 + (7-7)^2 + (6-7)^2 + (9-7)^2 = 4 + 1 + 0 + 1 + 4 = 1010 / (5-1) = 10 / 4 = 2.5最后,对结果求平方根:√2.5 ≈ 1.58因此,这组数据的标准差为约1.58。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.数据8,10,9,11,12的方差是 ( )
A B .2 C. 10 D .50
2.如果一组数据1x , 2x ,… n x 的方差是2,那么另一组数据13x , 23x ,… 3n x 的方差是 ( )A. 2 B. 18 C. 12 D. 6
3.(2003•四川)某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为甲=82分,乙=82分,S 甲2=245,S 乙2
=190,那么成绩较为整齐的是( ) A .甲班 B .乙班 C .两班一样整齐 D .无法确定
4.若一组数据a 1,a 2,…,a n 的方差是5,则一组新数据2a 1,2a 2,…,2a n 的方差是( )
A .5
B .10
C .20
D .50
5.小明与小华本学期都参加了5次数学考试(总分均为100分),数学老师想判断这两位同学的数学成绩谁更稳定,在作统计分析时,老师需比较这两人5次数学成绩的( ).
A.平均数;
B.方差;
C.众数;
D.中位数.
二、填空题
1.(2006•浙江)甲、乙两台机器分别罐装每瓶质量为500克的矿泉水.从甲、乙罐装的矿
泉水中分别随机抽取了30瓶,测算得它们实际质量的方差是:S 甲2=4.8,S 乙2=3.6.那么
_________ 罐装的矿泉水质量比较稳定.
2.(2002•宁夏)已知一个样本1,4,2,5,3,那么这个样本的标准差是 _________ .
3.已知一个样本1,2,3,x ,5,它的平均数是3,则这个样本的极差是 _________ ;方差是 ________ .
4.(2007•贵阳)如图所示是甲、乙两地某十天的日平均气温统计图,则甲、乙两地这10
天的日平均气温的方差大小关系为:S 甲2 _________ S 乙2(用>,=,<填空).
5. 如果一组数据
1x , 2x ,… n x 的平均数是x ,方差为2S ,那么 (1)新数据
1ax , 2ax ,… n ax 的平均数是 ,方差为 ; (2)新数据
1x b +, 2x b +,… n x b +的平均数是 ,方差为 ; (3)新数据
1ax b +, 2ax b +,… n ax b
+的平均数是 ,方差为 .
1.甲、乙两人在相同条件下各射靶的成绩情况如图所示。
(1) 请填写下表
平均数 方差 中位数 命中9环及以上次数
甲 7 1
乙 7 5.4
(2) 请从下列三个不同的角度对这次测试结果进行分析:
①从平均数和方差相结合看,
分析谁的成绩稳定些; ②从平均数和命中9环及以上的次数相结合看, 分析谁的成绩好些; ③从折线图上两人射击命中环数的走势看, 分析谁更有潜力些.
2、已知一组同学练习射击,击中靶子的环数分别为10
3、98、99、101、100、98、97、104,计算它们的方差。
3、两人练习百米跑步,甲的成绩为13、12、1
4、12、12;乙的成绩为12、11、13、14、12,1 2 3 4 5 6 7 8 9 10 次数
10
9
8
7
6
5
4
3
2
1
0 环数
甲 乙
问谁的成绩好一些?谁的成绩稳定一些?(单位为s)
4、已知样本甲为a1、a2、a3样本乙为b1、b2、b3,若a1-b2=a2-b2=a3-b3,那么样本甲与样本乙的方差有什么关系,并证明你的结论。
5、有甲、乙、丙三名射击运动员,要从中选拔一名参加比赛,在选技赛中每人打10发,环数如下:
甲:10、10、9、10、9、9、9、9、9、9,
乙:10、10、10、9、10、8、8、10、10、8,
丙:10、9、8、10、8、9、10、9、9、9。
根据以上环数谁应参加比赛?
答案
一、选择题
1、 B
2、 B
3、B
4、C .
5、B
二、填空题
1. 乙
2.(标准差是 .
3.已知一个样本1,2,3,x ,5,它的平均数是3,则这个样本的极差是 4 ;方差是 2 .
4. S 甲2 > S 乙2.
5.ax 22a S x b + 2S ax b + 22a S
三、简答题
1. (1)1.2 7 7.5 3 (2)甲 乙 乙
2、5.5;
3、乙的成绩好 甲稳定一些;
4、S21=S22;
5、甲。