常用酿酒酵母菌株基因型

合集下载

发酵工业中常用常见的酵母菌

发酵工业中常用常见的酵母菌

发酵工业中常用常见的酵母菌(一)酿酒酵母(Saccharomyces cerevisiae)这是发酵工业上最常用的菌种之一(图2-84)。

按细胞长与宽的比例可将其分为三组。

1)细胞多为圆形或卵形,长与宽之比为1~2。

这类酵母除了用于酿造饮料酒和制作面包外,还用于乙醇发酵。

其中德国2号和12号(RasseII和RasseXII)最有名,但因其不能耐高浓度盐类,故只适用于以糖化的淀粉质为原料生产乙醇和白酒。

2)细胞形状以卵形和长卵形为主,也有些圆形或短卵形细胞,长与宽之比通常为2。

常形成假菌丝,但不发达也不典型。

这类酵母主要用于酿造葡萄酒和果酒,也可用于酿造啤酒、蒸馏酒和酵母生产。

葡萄酒酿造业称此为葡萄酒酵母(Sac.ellisoideus)。

3)大部分细胞长宽之比大于2,它以俗名为台湾396号酵母为代表。

我国南方常将其用于糖蜜原料生产乙醇。

其特点为耐高渗压,可忍受高浓度盐类。

该酵母原称魏氏酵母(Sac.willanus)。

在啤酒酿造中最早采用的酵母是卡尔斯伯啤酒厂的E.C.Hansen(1842~1909年)在1883年分离的卡尔斯伯酵母(Saccharomyces carlsbergensis),这是一种底面发酵酵母。

酿酒酵母也可用于啤酒酿造,但属上面发酵酵母,这两种酵母发酵的过程和啤酒风味都有所不同。

目前在分类上皆采用酿酒酵母的学名。

底面发酵酵母其细胞为圆形或卵圆形,直径为5~10μm。

它与酿酒酵母在外形上的区别是,卡氏酵母部分细胞的细胞壁有一平端。

另外,温度对这两类酵母的影响也不同。

在高温时,酿酒酵母比卡氏酵母生长得更快,但在低温时卡氏酵母生长较快。

酿酒酵母繁殖速度最高时的温度为33℃,而卡氏酵母需在36℃。

但在8℃时卡氏酵母较酿酒酵母繁殖速度几乎快一倍。

(二)异常汉逊酵母(Hansenula anomala)细胞为圆形,直径4~7μm,椭圆形成腊肠形,大小为(2.5~6)μm×(4.5~20)μm,甚至有长达30μm的长细胞,多边芽殖,发酵,液面有白色菌醭,培养液混浊,有菌体沉淀于管底(图2-85)。

基因工程:第四章-酵母基因工程

基因工程:第四章-酵母基因工程

UBC4-UBC5双突变型:
UBC4-UBC5双突变型能大幅度削弱泛
素介导的蛋白降解。
7个泛素连接酶基因的突变对衰减蛋白 降解作用同样有效。
6、内源性蛋白酶缺陷型的突变宿主菌
酿酒酵母具有20多种蛋白酶 空泡蛋白酶基因PEP4野生型和
pep4-3突变株
B-半乳糖苷酶活性明显升高
(三) 酵母菌的载体系统
酵母基因工程
酵母菌作为外源基因表达受体菌的特征 酵母菌的宿主系统 酵母菌的载体系统 酵母菌的转化系统 酵母菌的表达系统 利用重组酵母生产乙肝疫苗
1974 Clarck-Walker和Miklos发现在多数酿酒酵母 中存在质粒。
1978 Hinnen将来自一株酿酒酵母的leu2基因导入 另一株酿酒酵母,弥补了后者leu2的缺陷, 标志着酵母表达系统建立。
酵母菌有4个泛素编码基因:
UBI1 编码泛素-羧基延伸蛋白52 对数生长期表达 稳定期关闭
UBI2 编码泛素-羧基延伸蛋白52 对数生长期表达 稳定期关闭
UBI3 编码泛素-羧基延伸蛋白76 对数生长期表达 稳定期关闭
UBI4 编码泛素五聚体
对数生长期关闭 稳定期表达
酵母菌有7个泛素连接酶基因:
UBC1、UBC2、UBC3、UBC4、UBC5、UBC6、UBC7
酵母菌表达外源基因的优势: 全基因组测序,基因表达调控机理清楚,遗传 操作简便。 具有真核生物蛋白翻译后加工修饰系统。 能将外源基因表达产物分泌至培养基中。 大规模发酵工艺简单、成本低廉。
不含特异性病毒、不产毒素,被美国FDA认定为 安全的基因工程受体系统。
酵母菌表达外源基因的缺点:
表达产物的糖基化位点和结构特点 与高等真核生物有差距。
特点:

酿酒酵母培养基配方

酿酒酵母培养基配方

种子培养基(g/L ) : 无氨基酵母氮源(YNB, Difco) 15, 尿嘧啶0. 04, 腺嘌岭0. 04, 色氨酸0. 02,组氨酸0.02, 精氨酸0.02, 蛋氨酸0.02, 苏氨酸0.03。

常规发酵培养基(g/L ) : 大豆蛋白胨(Difco )40, 酵母粉(Difco) 40, 葡萄糖20。

合成培养基由葡萄糖(60 g/L )、氨基酸、微量矿物质和维生素构成。

氨基酸成分与种子培养基相同。

微量矿物质和维生素的构成如下:微量矿物质(g/L ) : (NH4)2SO4 20, KH2PO4 0.3, M gSO4·7H2O 0.5, EDTA 1.5, ZnSO4·7H2O0.0045, CoCl2 · 6H2O 0.003, M nCl2 · 4H2O 0.001, CuSO4 ·5H2O 0.003, CaCl2 ·2H2O 0.0045, FeSO4·7H2O 0.003, H3BO3 0.001, KI 0.001(121 °C灭菌30 m in)。

维生素(mg/L ) : 生物素0.5, 泛酸0.1, 尼克酸1.0, 肌醇25.0, 硫胺素1.0, 吡哆酸1.0, 对氨基苯甲酸20, 叶酸1, 胆碱15, 核黄素4 (过滤灭菌)。

合成培养基(g/L ):1,(NH4)2SO4 25,KH2PO4 25,MgSO47.3,CaSO4.2H2O 12,YNB 13.4,His 1,Leu 2,Trp 23,PTM1 4ml4,甘油3050%甘油补料(g/L ):1,甘油5002,12ml PTM13,His 1,Leu 2,Trp 220%半乳糖诱导(g/L ):1,半乳糖2002,6ml PTM13,His 1,Leu 2,Trp 2。

常用酿酒酵母菌株基因型

常用酿酒酵母菌株基因型

常⽤酿酒酵母菌株基因型Commonly used strainsinformation include:used lab strainsidentity between common lab strainsS288CGenotype:MATαSUC2 gal2 mal mel flo1 flo8-1 hap1 ho bio1 bio6Notes: Strain used in the systematic sequencing project, the sequence stored in SGD. S288C does not form pseudohyphae. In addition, since it has a mutated copy of HAP1, it is not a good strain for mitochondrial studies. It has an allelic variant of MIP1 which increases petite frequency. S288C strains are gal2- and they do not use galactose anaerobically.The S288C genome was recently resequenced at the Sanger Institute.References:Mortimer and Johnston (1986) Genetics 113:35-43.BY4743Genotype:MAT a/αhis3Δ1/his3Δ1 leu2Δ0/leu2Δ0 LYS2/lys2Δ0 met15Δ0/MET15 ura3Δ0/ura3Δ0Notes: Strain used in the systematic deletion project, generated from a cross between BY4741 and BY4742, which are derived from S288C. As S288c, these strains have an allelic variant of MIP1 which increases petite frequency. See Brachmann et al. reference for details.References:Brachmann et al. (1998) Yeast 14:115-32.FY4Genotype:MAT aNotes: Derived from S288C.References:Winston et al. (1995) Yeast 11:53-55.FY1679Genotype:MAT a/αura3-52/ura3-52 trp1Δ63/TRP1 leu2Δ1/LEU2 his3Δ200/HIS3 GAL2/GALNotes: Isogenic to S288C; used in the systematic sequencing project, the sequence stored in SGD.References:Winston et al. (1995) Yeast 11:53-55.AB972Genotype:MATα X2180-1B trp10 [rho 0]Notes: Isogenic to S288C; used in the systematic sequencing project, the sequence stored in SGD. AB972 is an ethidium bromide-induced rho- derivative of the strain X2180-1B-trp1.References:Olson MV et al. (1986) Proc. Natl. Acad. Sci. USA 83:7826-7830.A364AGenotype:MAT a ade1 ade2 ura1 his7 lys2 tyr1 gal1 SUC mal cup BIONotes: Used in the systematic sequencing project, the sequence stored in SGD.References:Hartwell (1967) J. Bacteriol. 93:1662-1670.XJ24-24aGenotype:MAT a ho HMa HMα ade6 arg4-17 trp1-1 tyr7-1 MAL2Notes: Derived from, but not isogenic to, S288CReferences:Strathern et al. (1979) Cell 18:309-319DC5Genotype:MAT a leu2-3,112 his3-11,15 can1-11Notes: Isogenic to S288C; used in the systematic sequencing project, the sequence stored in SGD.References:Broach et al. (1979) Gene 8:121-133X2180-1AGenotype:MAT a SUC2 mal mel gal2 CUP1Notes:S288c spontaneously diploidized to give rise to X2180. The haploid segregants X2180-1a and X2180-1b were obtained from sporulated X2180YNN216Genotype:MAT a/αura3-52/ura3-52 lys2-801amber/lys2-801amber ade2-101ochre/ade2-101ochreNotes: Congenic to S288C (see Sikorski and Hieter). Used to derive YSS and CY strains (see Sobel and Wolin). References:Sikorski RS and Hieter P (1989) Genetics 122:19-27.YPH499Genotype:MAT a ura3-52 lys2-801_amber ade2-101_ochre trp1-Δ63 his3-Δ200 leu2-Δ1Notes: Contains nonrevertible (deletion) auxotrophic mutations that can be used for selection of vectors. Notethat trp1-Δ63, unlike trp1-Δ1, does not delete adjacent GAL3 UAS sequence and retains homology to TRP1 selectable marker.gal2-, does not use galactose anaerobically. Derived from the diploid strain YNN216 (Johnston and Davis 1984; original source: M. Carlson, Columbia University), which is congenic with S288C.References:Sikorski RS and Hieter P (1989) Genetics 122:19-27.YPH500Genotype:MATαura3-52 lys2-801_amber ade2-101_ochre trp1-Δ63 his3-Δ200 leu2-Δ1Notes:MATα strain isogenic to YPH499 except at mating type locus. Derived from the diploid strain YNN216 (Johnston and Davis 1984; original source: M. Carlson, Columbia University), which is congenic with S288C. References:Sikorski RS and Hieter P (1989) Genetics 122:19-27.YPH501Genotype:MAT a/MATαura3-52/ura3-52 lys2-801_amber/lys2-801_amber ade2-101_ochre/ade2-101_ochretrp1-Δ63/trp1-Δ63 his3-Δ200/his3-Δ200 leu2-Δ1/leu2-Δ1Notes:a/α diploid isogenic to YPH499 and YPH500. Derived from the diploid strain YNN216 (Johnston and Davis 1984; original source: M. Carlson, Columbia University), which is congenic with S288C.References:Sikorski RS and Hieter P (1989) Genetics 122:19-27.Sigma 1278BNotes: Used in pseudohyphal growth studies. Detailed notes about the sigma strains have been kindly provided by Cora Styles.Sigma1278B background contain a nonsense mutation in RIM15, a G-to-T transversion at position 1216 that converts a Gly codon to an opal stop codon. This rim15 mutation interacts epistatically with mutations in certain other genes to affect colony morphology.Annotation of the Sigma1278b genome and information about the systematic deletion collection can be found here. SK1 Genotype:MAT a/α HO gal2 cup S can1R BIONotes: Commonly used for studying sporulation or meiosis. Canavanine-resistant derivative.The SK1 genome was sequenced at the Sanger Institute.References:Kane SM and Roth J. (1974) Bacteriol. 118: 8-14CEN.PK (aka CEN.PK2)Genotype:MAT a/α ura3-52/ura3-52 trp1-289/trp1-289 leu2-3_112/leu2-3_112 his3 Δ1/his3 Δ1 MAL2-8C/MAL2-8CSUC2/SUC2Notes: CEN.PK possesses a mutation in CYR1 (A5627T corresponding to a K1876M substitution near the end of the catalytic domain in adenylate cyclase which eliminates glucose- and acidification-induced cAMP signalling and delaysReferences:van Dijken et al. (2000) Enzyme Microb Technol 26:706-714W303Genotype:MAT a/MATα {leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15} [phi+]Notes: W303 also contains a bud4 mutation that causes haploids to bud with a mixture of axial and bipolar budding patterns. In addition, the original W303 strain contains the rad5-535 allele. As S288c, W303 has an allelic variantof MIP1 which increases petite frequency.The W303 genome was sequenced at the Sanger Institute.References: W303 constructed by Rodney Rothstein (see detailed notes from RR and Stephan Bartsch).bud4 info: Voth et al. (2005) Eukaryotic Cell, 4:1018-28.rad5-535 info: Fan et al. (1996) Genetics 142:749W303-1AGenotype:MAT a {leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15}Notes: W303-1A possesses a ybp1-1 mutation (I7L, F328V, K343E, N571D) which abolishes Ybp1p function, increasing sensitivity to oxidative stress.References: W303 constructed by Rodney Rothstein (see detailed notes from RR and Stephan Bartsch).ybp1-1 info: Veal et al. (2003) J. Biol. Chem. 278:30896-904.W303-1BGenotype:MATα {leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15}References: W303 constructed by Rodney Rothstein (see detailed notes from RR and Stephan Bartsch).W303-K6001Genotype:MAT a; {ade2-1, trp1-1, can1-100, leu2-3,112, his3-11,15, GAL, psi+, ho::HO::CDC6 (at HO), cdc6::hisG,ura3::URA3 GAL-ubiR-CDC6 (at URA3)}References: K6001 was developed by Bobola et al in Kim Nasmyth's lab (PMID: 8625408), and has become a common model in yeast aging research (PMID: 15489200). Its genome has been sequenced by Timmermann et al (PMID: 20729566) D273-10BGenotype:MATαmalNotes: Normal cytochrome content and respiration; low frequency of rho-. This strain and its auxotrophic derivatives were used in numerious laboratories for mitochondrial and related studies and for mutant screens. Good respirer that's relatively resistant to glucose repression.References:Sherman, F. (1963) Genetics 48:375-385.FL100Genotype:MAT aReferences:Lacroute, F. (1968) J. Bacteriol. 95:824-832.Sources: ATCC: 28383SEY6210/SEY6211Genotype:MAT a/MATαleu2-3,112/leu2-3,112 ura3-52/ura3-52 his3-Δ200/his3-Δ200 trp1-Δ901/trp1-Δ901ade2/ADE2 suc2-Δ9/suc2-Δ9 GAL/GAL LYS2/lys2-801Notes: SEY6210/SEY6211, also known as SEY6210.5, was constructed by Scott Emr and has been used in studies of autophagy, protein sorting etc. It is the product of crossing with strains from 5 different labs (Gerry Fink, Ron Davis, David Botstein, Fred Sherman, Randy Schekman). It has several selectable markers, good growth properties and good sporulation.References:Robinson et al. (1988) Mol Cell Biol 8(11):4936-48SEY6210Genotype:MATαleu2-3,112 ura3-52 his3-Δ200 trp1-Δ901 suc2-Δ9 lys2-801; GALNotes: SEY6210 is a MATalpha haploid constructed by Scott Emr and has been used in studies of autophagy, protein sorting etc. It is the product of crossing with strains from 5 different labs (Gerry Fink, Ron Davis, David Botstein, Fred Sherman, Randy Schekman). It has several selectable markers and good growth properties.References:Robinson et al. (1988) Mol Cell Biol 8(11):4936-48SEY6211Genotype:MAT a leu2-3,112 ura3-52 his3-Δ200 trp1-Δ901 ade2-101 suc2-Δ9; GALNotes: SEY6211 is a MATa haploid constructed by Scott Emr and has been used in studies of autophagy, protein sorting etc. It is the product of crossing with strains from 5 different labs (Gerry Fink, Ron Davis, David Botstein, Fred Sherman, Randy Schekman). It has several selectable markers and good growth properties.References:Robinson et al. (1988) Mol Cell Biol 8(11):4936-48JK9-3dThere are a, alpha and a/alpha diploids of JK9-3d with the following genotypes:Genotypes: JK9-3da MAT a leu2-3,112 ura3-52 rme1 trp1 his4JK9-3dα has the same genotype as JK9-3da with the exception of the MAT locusJK9-3da/α is homozygous for all markers except mating typeNotes: JK9-3d was constructed by Jeanette Kunz while in Mike Hall's lab. She made the original strain while Joe Heitman isolated isogenic strains of opposite mating type and derived the a/alpha isogenic diploid by mating type switching. It has in its background S288c, a strain from the Oshima lab, and a strain from the Herskowitz lab. It was chosen because of its robust growth and sporulation, as well as good growth on galactose (GAL+) (so that genes under control of the galactose promoter could be induced). It may also have a SUP mutation that allows translation through premature STOP codons and therefore produces functional alleles with many point mutations.88(5):1948-52RM11-1aGenotype:MAT a leu2Δ ura3Δ ho::KanNotes: RM11-1a is a haploid derivative of Bb32(3), a natural isolate collected by Robert Mortimer from a California vineyard, as in Mortimer et al., 1994. It has high spore viability (80–90%) and has been extensively characterized phenotypically under a wide range of conditions. It has a significantly longer life span than typical lab yeast strains and accumulates age-associated abnormalities at a lower rate. It displays approximately 0.5–1% sequence divergence relative to S288c. More information is available at the Broad Institute website.References:Brem et al. (2002) Science 296(5568):752-5Y55Genotype:MAT a /MAT alpha HO/HONotes: Y55 is a prototrophic, homothallic diploid strain that was originally isolated by Dennis Winge. Many auxotrophic mutant derivatives have been created by John McCusker by using ethidium bromide treatment to eliminate。

酿酒酵母鉴定

酿酒酵母鉴定

酿酒酵母鉴定在生物学和酿酒工业中,对酿酒酵母的鉴定和分类是非常重要的。

以下是酿酒酵母鉴定的几种主要方法:1.形态学鉴定形态学鉴定是通过观察酵母细胞的形态、大小、结构等特征来进行鉴定的一种方法。

酿酒酵母的细胞通常为圆形或卵圆形,具有一个大的液泡。

通过显微镜观察酿酒酵母的形态,可以对其种类进行初步鉴定。

2.生理生化鉴定生理生化鉴定是通过观察酵母的生理生化反应来鉴定其种类的一种方法。

例如,酿酒酵母可以发酵葡萄糖、麦芽糖等糖类,产生酒精和二氧化碳。

通过观察酵母的发酵能力和代谢产物,可以对其种类进行进一步鉴定。

3.基因型鉴定基因型鉴定是通过分析酵母基因序列来进行鉴定的一种方法。

通过对酿酒酵母的基因序列进行分析,可以确定其种类和亲缘关系。

基因型鉴定被认为是酿酒酵母分类最准确的方法之一。

4.生态学鉴定生态学鉴定是通过研究酵母在生态系统中的分布和作用来进行鉴定的一种方法。

酿酒酵母通常在酒精发酵和面包制作等过程中发挥作用。

通过研究酵母在生态系统中的生态学特征,可以对其种类进行鉴定。

5.抗性鉴定抗性鉴定是通过观察酵母对抗菌剂的抵抗力来进行鉴定的一种方法。

不同种类的酵母对抗菌剂的抵抗力不同。

通过抗性鉴定可以初步确定酵母的种类。

6.代谢产物鉴定代谢产物鉴定是通过分析酵母代谢产物的种类和含量来进行鉴定的一种方法。

不同种类的酵母具有不同的代谢途径和产物。

通过分析代谢产物的种类和含量,可以对其种类进行鉴定。

7.生长曲线鉴定生长曲线鉴定是通过观察酵母在不同环境下的生长曲线来进行鉴定的一种方法。

不同种类的酵母在不同环境下具有不同的生长曲线。

通过生长曲线鉴定可以初步确定酵母的种类和适应环境的能力。

以上就是酿酒酵母鉴定的几种主要方法,每种方法都有其独特的优点和局限性,需要根据具体的应用场景选择合适的方法进行鉴定。

酵母菌遗传

酵母菌遗传

在酿酒酵母中,所有染色体的CEN 序列的长度均大于130bp,由5′→3′ 依次分为 CDEⅠ、CDEⅡ和CDEⅢ 三个区。
2.端粒(telomere)
端粒是真核生物线性染色体两端的特殊DNA-蛋白质复合体 结构,这种复合体结构是由 DNA重复序列和与之相结合的蛋 白质分子构成的。
在大多数生物中,端粒DNA只是由几个碱基组成的DNA重复 单位通过串联重复而形成,长度从20bp到几个kb不等。
(1)自主复制序列ARS的结构: 酿酒酵母中,ARS是长度为100-200bp、富含AT的 DNA 片段。根据其在质粒中稳定性,可将ARS分为A、B、C三 个结构域,其中A和B最为重要。 A区:由11bp核苷酸(A/T)TTTAT(A/G)TTT(A/T)组成 的保守序列,即ARS共有序列 。 B区:位于ACS的3′末端,长度约80bp 。 C区:结构域位于ACS的5′末端,这一结构域也是富含AT, 但C结构域之间不具有同源性,也不含共有序列。
3. 酿酒酵母染色体基因组中,有5885个可能是编码蛋白质 的ORF,每个ORF约为1.4kb,而基因间的平均间隔为 600bp。
4. ORF大约占整个基因组70%,其中一半是已知的基因或与 已知基因有关的基因,其余是新基因。 5. 酿酒酵母中约4%编码蛋白质的基因含有内含子,而在粟酒 裂殖酵母(Schizosaccha-romyces pombe)中,40%编码蛋白 质的基因具有内含子。
酵母线粒体基因组图谱
第二节
接合型基因及其基因型转换
一、酿酒酵母的生活史
二、 酵母接合型的遗传控制
酵母的有性生殖取决于两个单倍体细胞的接合型,其接合型 的“性别” 是由其本身的遗传物质所决定的,是稳定的遗 传特征。
基因 asg(a型细胞特异的基因) MFa1、MFa2 a-因子 基因产物或功能

酿酒酵母菌基因分析报告

酿酒酵母菌基因分析报告

酿酒酵母菌基因分析报告引言:酿酒是一项源远流长的发酵工艺,酿酒酵母菌作为重要的微生物参与其中起到至关重要的作用。

随着现代分子生物学和基因工程技术的发展,我们可以通过对酿酒酵母菌基因进行分析,深入了解其中的机制和调控网络。

本文将对酿酒酵母菌基因进行分析,并探讨其在酿酒过程中的作用和潜力。

一、酿酒酵母菌基因组结构酿酒酵母菌的基因组由DNA分子构成,通过基因的编码和调控,控制酵母菌的生长、发育和代谢等重要生物过程。

酿酒酵母菌基因组包含了许多基因,其中包括编码各类酶的基因、编码调控因子的基因以及其他功能基因等。

通过对酿酒酵母菌基因组的测序和比对,我们可以了解基因组的大小、结构和功能。

二、酿酒酵母菌基因的编码和表达酿酒酵母菌基因的编码是指将DNA序列转录为RNA分子,再通过翻译作用转化为蛋白质分子的过程。

酿酒酵母菌基因的表达是指基因在不同生长阶段和环境条件下的活动程度。

通过对酿酒酵母菌基因的编码和表达进行分析,我们可以揭示基因的功能和调控机制。

三、酿酒酵母菌基因的功能和调控网络酿酒酵母菌基因承担着多种功能,其中包括酵母菌的生长、发育、代谢和应激等方面。

通过对酿酒酵母菌基因的功能分析,我们可以了解各个基因在酵母菌生理过程中的作用和相互关系。

另外,酿酒酵母菌基因的调控网络是指各类调控因子对基因表达的影响和调控。

通过对酿酒酵母菌基因的调控网络进行分析,我们可以揭示调控因子之间的相互关系和调控机制。

四、未来展望和应用价值酿酒酵母菌基因分析为我们深入了解酵母菌生理过程提供了重要的工具和方法。

未来我们可以通过基因工程技术对酿酒酵母菌基因进行改造,以生产出更符合市场需求的酿酒产品。

同时,对酿酒酵母菌基因的深入研究还可以帮助我们理解其他微生物的生理过程,为微生物工程和发酵工业的发展提供理论基础和技术支持。

结论:通过对酿酒酵母菌基因的分析,我们可以深入了解酿酒过程中的生理过程和调控网络。

基因分析为我们解决实际问题和推动酿酒工业的发展提供了新的思路和方法。

酿酒酵母的遗传学与基因组学研究

酿酒酵母的遗传学与基因组学研究

酿酒酵母的遗传学与基因组学研究酿酒酵母是一种被广泛应用于酿造酒类、烤面包等食品加工中的真菌,其发酵产物的质量、产量和品种多样性都受制于酵母自身的遗传特性。

因此,对酿酒酵母遗传学与基因组学的研究非常重要,不仅有助于优化产业生产,还可以从分子遗传学的角度深入了解酿酒酵母的变化机理及其在生物学和生物工程学中的应用。

1. 酿酒酵母的基本遗传特征酿酒酵母的基因组由16个染色体组成,其总大小为12百万个碱基对(1 bp)。

这些染色体基本上是严格定位和有序的;它们的排列顺序和相对大小在各个酵母属和种之间保持不变。

酿酒酵母的基因组中包含约6000个蛋白编码基因,可以被快速、便捷地进行基因编辑和功能敲除。

此外,酿酒酵母还有着非常短的生成周期,以及较强的产生可控结果的倾向;这些特征使其成为分子遗传学和发酵工业领域内的理想研究对象。

2. 酿酒酵母遗传变异及其对酒类品质的影响在固体发酵过程中,酿酒酵母的基因表达、代谢、孢子萌发等方面受到基因调控的影响,从而对酒的香味、口感、颜色和风味等多个方面产生影响。

酿酒酵母的亚种和母本对这些品质的影响因素也是受到基因遗传的影响。

酿酒酵母的功能基因组学研究中,报道了大量影响酿造品质的基因家族、调控网和mRNA-splicing、miRNA、长链非编码RNA和RNA结构的遗传调控机制。

Xue和Zhao(2012)和Liti等人(2009)证明,酿酒酵母亚种之间的小量基因变异不仅影响了酒的酯气味生成,而且影响了机械传感器的呼吸(Xue和Zhao,2012)和色素的生成。

(Liti等人,2009)由於 nitrogen metabolism 及阴阳离和的性质,质量参数和来源的可能性可能与homozygote和heterozygote的存在有关;某些基因交互作用在前者中略有变异。

(Gibson等人2008年)在多味性的机制中,大约 35%的变异性即可由轻度基因突变来激活。

(Plech等人,2019)3. 酿酒酵母的基因组学研究进展2009年,国际酿酒酵母功能基因组合作组织(SGRP)发布了酿酒酵母的全基因组序列,并发表了其最早的基因组学研究结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Commonly used strains▪▪van Dijken et al. (2000) Enzyme Microb Technol 26:706-714 - compares various characteristics of commonly used lab strains▪Winzeler et al. (2003) Genetics 163:79-89 - uses SFP (single-feature polymorphisms) analysis to study genetic identity between common lab strainsS288CGenotype:MATαSUC2 gal2 mal mel flo1 flo8-1 hap1 ho bio1 bio6Notes: Strain used in the systematic sequencing project, the sequence stored in SGD. S288C does not form pseudohyphae. In addition, since it has a mutated copy of HAP1, it is not a good strain for mitochondrial studies. It has an allelic variant of MIP1 which increases petite frequency. S288C strains are gal2- and they do not use galactose anaerobically.The S288C genome was recently resequenced at the Sanger Institute.References:Mortimer and Johnston (1986) Genetics 113:35-43.BY4743Genotype:MAT a/αhis3Δ1/his3Δ1 leu2Δ0/leu2Δ0 LYS2/lys2Δ0 met15Δ0/MET15 ura3Δ0/ura3Δ0Notes: Strain used in the systematic deletion project, generated from a cross between BY4741 and BY4742, which are derived from S288C. As S288c, these strains have an allelic variant of MIP1 which increases petite frequency. See Brachmann et al. reference for details.References:Brachmann et al. (1998) Yeast 14:115-32.FY4Genotype:MAT aNotes: Derived from S288C.References:Winston et al. (1995) Yeast 11:53-55.FY1679Genotype:MAT a/αura3-52/ura3-52 trp1Δ63/TRP1 leu2Δ1/LEU2 his3Δ200/HIS3 GAL2/GALNotes: Isogenic to S288C; used in the systematic sequencing project, the sequence stored in SGD.References:Winston et al. (1995) Yeast 11:53-55.AB972Genotype:MATα X2180-1B trp10 [rho 0]Notes: Isogenic to S288C; used in the systematic sequencing project, the sequence stored in SGD. AB972 is an ethidium bromide-induced rho- derivative of the strain X2180-1B-trp1.References:Olson MV et al. (1986) Proc. Natl. Acad. Sci. USA 83:7826-7830.A364AGenotype:MAT a ade1 ade2 ura1 his7 lys2 tyr1 gal1 SUC mal cup BIONotes: Used in the systematic sequencing project, the sequence stored in SGD.References:Hartwell (1967) J. Bacteriol. 93:1662-1670.XJ24-24aGenotype:MAT a ho HMa HMα ade6 arg4-17 trp1-1 tyr7-1 MAL2Notes: Derived from, but not isogenic to, S288CReferences:Strathern et al. (1979) Cell 18:309-319DC5Genotype:MAT a leu2-3,112 his3-11,15 can1-11Notes: Isogenic to S288C; used in the systematic sequencing project, the sequence stored in SGD.References:Broach et al. (1979) Gene 8:121-133X2180-1AGenotype:MAT a SUC2 mal mel gal2 CUP1Notes:S288c spontaneously diploidized to give rise to X2180. The haploid segregants X2180-1a and X2180-1b were obtained from sporulated X2180YNN216Genotype:MAT a/αura3-52/ura3-52 lys2-801amber/lys2-801amber ade2-101ochre/ade2-101ochreNotes: Congenic to S288C (see Sikorski and Hieter). Used to derive YSS and CY strains (see Sobel and Wolin).YPH499Genotype:MAT a ura3-52 lys2-801_amber ade2-101_ochre trp1-Δ63 his3-Δ200 leu2-Δ1Notes: Contains nonrevertible (deletion) auxotrophic mutations that can be used for selection of vectors. Notethat trp1-Δ63, unlike trp1-Δ1, does not delete adjacent GAL3 UAS sequence and retains homology to TRP1 selectable marker.gal2-, does not use galactose anaerobically. Derived from the diploid strain YNN216 (Johnston and Davis 1984; original source: M. Carlson, Columbia University), which is congenic with S288C.YPH500Genotype:MATαura3-52 lys2-801_amber ade2-101_ochre trp1-Δ63 his3-Δ200 leu2-Δ1Notes:MATα strain isogenic to YPH499 except at mating type locus. Derived from the diploid strain YNN216 (Johnston and Davis 1984; original source: M. Carlson, Columbia University), which is congenic with S288C.YPH501Genotype:MAT a/MATαura3-52/ura3-52 lys2-801_amber/lys2-801_amber ade2-101_ochre/ade2-101_ochretrp1-Δ63/trp1-Δ63 his3-Δ200/his3-Δ200 leu2-Δ1/leu2-Δ1Notes:a/α diploid isogenic to YPH499 and YPH500. Derived from the diploid strain YNN216 (Johnston and Davis 1984; original source: M. Carlson, Columbia University), which is congenic with S288C.Sigma 1278BNotes: Used in pseudohyphal growth studies. Detailed notes about the sigma strains have been kindly provided by Cora Styles.Granek and Magwene, PLoS Genet. 2010 Jan 22;6(1):e1000823, established that certain lineages of theSigma1278B background contain a nonsense mutation in RIM15, a G-to-T transversion at position 1216 that converts a Gly codon to an opal stop codon. This rim15 mutation interacts epistatically with mutations in certain other genes to affect colony morphology.Annotation of the Sigma1278b genome and information about the systematic deletion collection can be found here. SK1Genotype:MAT a/α HO gal2 cup S can1R BIONotes: Commonly used for studying sporulation or meiosis. Canavanine-resistant derivative.The SK1 genome was sequenced at the Sanger Institute.References:Kane SM and Roth J. (1974) Bacteriol. 118: 8-14CEN.PK (aka CEN.PK2)Genotype:MAT a/α ura3-52/ura3-52 trp1-289/trp1-289 leu2-3_112/leu2-3_112 his3 Δ1/his3 Δ1 MAL2-8C/MAL2-8C SUC2/SUC2Notes: CEN.PK possesses a mutation in CYR1 (A5627T corresponding to a K1876M substitution near the end of the catalytic domain in adenylate cyclase which eliminates glucose- and acidification-induced cAMP signalling and delays glucose-induced loss of stress resistance (Vanhalewyn et al., 1999; Dumortier et al., 2000).References:van Dijken et al. (2000) Enzyme Microb Technol 26:706-714W303Genotype:MAT a/MATα {leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15} [phi+]Notes: W303 also contains a bud4 mutation that causes haploids to bud with a mixture of axial and bipolar budding patterns. In addition, the original W303 strain contains the rad5-535 allele. As S288c, W303 has an allelic variantof MIP1 which increases petite frequency.The W303 genome was sequenced at the Sanger Institute.References: W303 constructed by Rodney Rothstein (see detailed notes from RR and Stephan Bartsch).bud4 info: Voth et al. (2005) Eukaryotic Cell, 4:1018-28.rad5-535 info: Fan et al. (1996) Genetics 142:749W303-1AGenotype:MAT a {leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15}Notes: W303-1A possesses a ybp1-1 mutation (I7L, F328V, K343E, N571D) which abolishes Ybp1p function, increasing sensitivity to oxidative stress.References: W303 constructed by Rodney Rothstein (see detailed notes from RR and Stephan Bartsch).ybp1-1 info: Veal et al. (2003) J. Biol. Chem. 278:30896-904.W303-1BGenotype:MATα {leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15}References: W303 constructed by Rodney Rothstein (see detailed notes from RR and Stephan Bartsch).W303-K6001Genotype:MAT a; {ade2-1, trp1-1, can1-100, leu2-3,112, his3-11,15, GAL, psi+, ho::HO::CDC6 (at HO), cdc6::hisG, ura3::URA3 GAL-ubiR-CDC6 (at URA3)}References: K6001 was developed by Bobola et al in Kim Nasmyth's lab (PMID: 8625408), and has become a common model in yeast aging research (PMID: 15489200). Its genome has been sequenced by Timmermann et al (PMID: 20729566)D273-10BGenotype:MATαmalNotes: Normal cytochrome content and respiration; low frequency of rho-. This strain and its auxotrophic derivatives were used in numerious laboratories for mitochondrial and related studies and for mutant screens. Good respirer that's relatively resistant to glucose repression.References:Sherman, F. (1963) Genetics 48:375-385.FL100Genotype:MAT aReferences:Lacroute, F. (1968) J. Bacteriol. 95:824-832.Sources: ATCC: 28383SEY6210/SEY6211Genotype:MAT a/MATαleu2-3,112/leu2-3,112 ura3-52/ura3-52 his3-Δ200/his3-Δ200 trp1-Δ901/trp1-Δ901ade2/ADE2 suc2-Δ9/suc2-Δ9 GAL/GAL LYS2/lys2-801Notes: SEY6210/SEY6211, also known as SEY6210.5, was constructed by Scott Emr and has been used in studies of autophagy, protein sorting etc. It is the product of crossing with strains from 5 different labs (Gerry Fink, Ron Davis, David Botstein, Fred Sherman, Randy Schekman). It has several selectable markers, good growth properties and good sporulation.References:Robinson et al. (1988) Mol Cell Biol 8(11):4936-48SEY6210Genotype:MATαleu2-3,112 ura3-52 his3-Δ200 trp1-Δ901 suc2-Δ9 lys2-801; GALNotes: SEY6210 is a MATalpha haploid constructed by Scott Emr and has been used in studies of autophagy, protein sorting etc. It is the product of crossing with strains from 5 different labs (Gerry Fink, Ron Davis, David Botstein, Fred Sherman, Randy Schekman). It has several selectable markers and good growth properties.References:Robinson et al. (1988) Mol Cell Biol 8(11):4936-48SEY6211Genotype:MAT a leu2-3,112 ura3-52 his3-Δ200 trp1-Δ901 ade2-101 suc2-Δ9; GALNotes: SEY6211 is a MATa haploid constructed by Scott Emr and has been used in studies of autophagy, protein sorting etc. It is the product of crossing with strains from 5 different labs (Gerry Fink, Ron Davis, David Botstein, Fred Sherman, Randy Schekman). It has several selectable markers and good growth properties.References:Robinson et al. (1988) Mol Cell Biol 8(11):4936-48JK9-3dThere are a, alpha and a/alpha diploids of JK9-3d with the following genotypes:Genotypes: JK9-3da MAT a leu2-3,112 ura3-52 rme1 trp1 his4JK9-3dα has the same genotype as JK9-3da with the exception of the MAT locusJK9-3da/α is homozygous for all markers except mating typeNotes: JK9-3d was constructed by Jeanette Kunz while in Mike Hall's lab. She made the original strain while Joe Heitman isolated isogenic strains of opposite mating type and derived the a/alpha isogenic diploid by mating type switching. It has in its background S288c, a strain from the Oshima lab, and a strain from the Herskowitz lab. It was chosen because of its robust growth and sporulation, as well as good growth on galactose (GAL+) (so that genes under control of the galactose promoter could be induced). It may also have a SUP mutation that allows translation through premature STOP codons and therefore produces functional alleles with many point mutations. References:Heitman et al. (1991a) Science 253(5022):905-9 and Heitman et al. (1991b) Proc Natl Acad Sci U S A 88(5):1948-52RM11-1aGenotype:MAT a leu2Δ ura3Δ ho::KanNotes: RM11-1a is a haploid derivative of Bb32(3), a natural isolate collected by Robert Mortimer from a California vineyard, as in Mortimer et al., 1994. It has high spore viability (80–90%) and has been extensively characterized phenotypically under a wide range of conditions. It has a significantly longer life span than typical lab yeast strains and accumulates age-associated abnormalities at a lower rate. It displays approximately 0.5–1% sequence divergence relative to S288c. More information is available at the Broad Institute website.References:Brem et al. (2002) Science 296(5568):752-5Y55Genotype:MAT a /MAT alpha HO/HO。

相关文档
最新文档