2020年中考数学分类汇编(数与式).doc
2019、2020年山东中考数学试题分类(1)——数与式

2019、2020年山东中考数学试题分类(1)——数与式一.有理数的加减混合运算(共1小题) 1.(2019•德州)已知:[x ]表示不超过x 的最大整数.例:[4.8]=4,[﹣0.8]=﹣1.现定义:{x }=x ﹣[x ],例:{1.5}=1.5﹣[1.5]=0.5,则{3.9}+{﹣1.8}﹣{1}= . 二.科学记数法—表示较大的数(共5小题) 2.(2020•日照)“扶贫”是新时期党和国家的重点工作之一,为落实习近平总书记提出的“精准扶贫”战略构想,某省预计三年内脱贫1020000人,数字1020000用科学记数法可表示为( ) A .1.02×106 B .1.02×105 C .10.2×105 D .102×104 3.(2020•潍坊)今年的政府工作报告中指出:去年脱贫攻坚取得决定性成就,农村贫困人口减少1109万.数字1109万用科学记数法可表示为( ) A .1.109×107 B .1.109×106 C .0.1109×108 D .11.09×106 4.(2020•泰安)2020年6月23日,中国北斗系统第五十五颗导航卫星暨北斗三号最后一颗全球组网卫星成功发射入轨,可以为全球用户提供定位、导航和授时服务.今年我国卫星导航与位置服务产业产值预计将超过4000亿元.把数据4000亿元用科学记数法表示为( ) A .4×1012元 B .4×1010元 C .4×1011元 D .40×109元 5.(2020•烟台)5G 是第五代移动通信技术,其网络下载速度可以达到每秒1300000KB 以上,正常下载一部高清电影约需1秒.将1300000用科学记数法表示为 . 6.(2019•济南)2019年1月3日,“嫦娥四号”探测器成功着陆在月球背面东经177.6度、南纬45.5度附近,实现了人类首次在月球背面软着陆.数字177.6用科学记数法表示为( ) A .0.1776×103 B .1.776×102 C .1.776×103 D .17.76×102 三.科学记数法—表示较小的数(共2小题) 7.(2020•威海)人民日报讯,2020年6月23日,中国成功发射北斗系统第55颗导航卫星.至此中国提前半年全面完成北斗三号全球卫星导航系统星座部署.北斗三号卫星上配置的新一代国产原子钟,使北斗导航系统授时精度达到了十亿分之一秒.十亿分之一用科学记数法可以表示为( )A .10×10﹣10B .1×10﹣9C .0.1×10﹣8 D .1×109 8.(2019•烟台)某种计算机完成一次基本运算的时间约为1纳秒(ns ),已知1纳秒=0.000 000 001秒,该计算机完成15次基本运算,所用时间用科学记数法表示为( )A .1.5×10﹣9秒B .15×10﹣9秒C .1.5×10﹣8秒D .15×10﹣8秒 四.计算器—基础知识(共1小题)9.(2020•东营)利用科学计算器求值时,小明的按键顺序为,则计算器面板显示的结果为( ) A .﹣2 B .2 C .±2 D .4五.实数的性质(共1小题) 10.(2020•济南)﹣2的绝对值是( ) A .2 B .﹣2 C .±2 D .√2六.实数大小比较(共1小题) 11.(2020•菏泽)下列各数中,绝对值最小的数是( ) A .﹣5B .12C .﹣1D .√2七.规律型:数字的变化类(共4小题) 12.(2020•淄博)某快递公司在甲地和乙地之间共设有29个服务驿站(包括甲站、乙站),一辆快递货车由甲站出发,依次途经各站驶往乙站,每停靠一站,均要卸下前面各站发往该站的货包各1个,又要装上该站发往后面各站的货包各1个.在整个行程中,快递货车装载的货包数量最多是 个. 13.(2019•济宁)已知有理数a ≠1,我们把11−a称为a 的差倒数,如:2的差倒数是11−2=−1,﹣1的差倒数是11−(−1)=12.如果a 1=﹣2,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数……依此类推,那么a 1+a 2+…+a 100的值是( ) A .﹣7.5 B .7.5C .5.5D .﹣5.514.(2020•泰安)如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n个数记为a n,则a4+a200=.15.(2020•滨州)观察下列各式:a1=23,a2=35,a3=107,a4=159,a5=2611,…,根据其中的规律可得a n=(用含n的式子表示).八.规律型:图形的变化类(共3小题)16.(2020•聊城)人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①①①…的次序铺设地砖,把第n个图形用图ⓝ表示,那么第50个图形中的白色小正方形地砖的块数是()A.150B.200C.355D.50517.(2019•青岛)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图①是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b为正整数).把图①放置在图①中,使它恰好盖住图①中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图①,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图①,在3×2的方格纸中,共可以找到2个位置不同的2×2方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.探究三:把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图①,在a×2的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.探究四:把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图①,在a×3的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.……问题解决:把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图①是一个由4个棱长为1的小立方体构成的几何体,图①是一个长、宽、高分别为a,b,c(a ≥2,b≥2,c≥2,且a,b,c是正整数)的长方体,被分成了a×b×c个棱长为1的小立方体.在图①的不同位置共可以找到个图①这样的几何体.18.(2020•日照)用大小相同的圆点摆成如图所示的图案,按照这样的规律摆放,则第10个图案中共有圆点的个数是()A.59B.65C.70D.71九.完全平方公式(共2小题)19.(2019•烟台)南宋数学家杨辉在其著作《详解九章算法》中揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律如下,后人也将右表称为“杨辉三角”(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…则(a+b)9展开式中所有项的系数和是()A.128B.256C.512D.102420.(2020•济南)下列运算正确的是( ) A .(﹣2a 3)2=4a 6 B .a 2•a 3=a 6 C .3a +a 2=3a 3 D .(a ﹣b )2=a 2﹣b 2 一十.整式的混合运算(共1小题) 21.(2020•东营)下列运算正确的是( ) A .(x 3)2=x 5 B .(x ﹣y )2=x 2+y 2 C .﹣x 2y 3•2xy 2=﹣2x 3y 5 D .﹣(3x +y )=﹣3x +y 一十一.提公因式法与公式法的综合运用(共1小题) 22.(2019•临沂)将a 3b ﹣ab 进行因式分解,正确的是( ) A .a (a 2b ﹣b ) B .ab (a ﹣1)2C .ab (a +1)(a ﹣1)D .ab (a 2﹣1) 一十二.分式的混合运算(共3小题) 23.(2019•青岛)(1)化简:a −aa ÷(a 2+a 2a−2n );(2)解不等式组{1−15a ≤653a −1<8,并写出它的正整数解.24.(2020•青岛)(1)计算:(1a+1a)÷(a a−a a);(2)解不等式组:{2a −3≥−5,13a +2<a .25.(2020•泰安)(1)化简:(a ﹣1+1a −3)÷a 2−4a −3;(2)解不等式:a +13−1<a −14.一十三.分式的化简求值(共12小题) 26.(2020•烟台)先化简,再求值:(aa −a−a 2a 2−a 2)÷aaa +a 2,其中x =√3+1,y =√3−1.27.(2019•日照)(1)计算:|√3−2|+π0+(﹣1)2019﹣(12)﹣1;(2)先化简,再求值:1−a +3a 2−1÷a +3a −1,其中a =2;(3)解方程组:{2a −a =5,3a +4a =2.28.(2019•菏泽)先化简,再求值:1a −a (2aa +a−1)÷1a 2−a 2,其中x =y +2019.29.(2019•枣庄)先化简,再求值:a 2a 2−1÷(1a −1+1),其中x 为整数且满足不等式组{a −1>1,5−2a ≥−2.30.(2019•滨州)先化简,再求值:(a 2a −1−a 2a 2−1)÷a 2−aa 2−2a +1,其中x 是不等式组{a −3(a −2)≤4,2a −33<5−a 2的整数解.31.(2019•泰安)先化简,再求值:(a ﹣9+25a +1)÷(a ﹣1−4a −1a +1),其中a =√2. 32.(2019•德州)先化简,再求值:(2a−1a)÷(a 2+a 2aa−5a a)•(a2a+2a a+2),其中√a +1+(n ﹣3)2=0.33.(2020•东营)(1)计算:√27+(2cos60°)2020﹣(12)﹣2﹣|3+2√3|;(2)先化简,再求值:(x −2aa −a 2a )÷a 2−a2a 2+aa,其中x =√2+1,y =√2. 34.(2020•潍坊)先化简,再求值:(1−a +1a 2−2a +1)÷a −3a −1,其中x 是16的算术平方根.35.(2020•菏泽)先化简,再求值:(2a −12a a +2)÷a −4a 2+4a +4,其中a 满足a 2+2a ﹣3=0. 36.(2020•德州)先化简:(a −1a −2−a +2a )÷4−aa 2−4a +4,然后选择一个合适的x 值代入求值.37.(2020•滨州)先化简,再求值:1−a −a a +2a ÷a 2−a 2a 2+4aa +4a 2;其中x =cos30°×√12,y =(π﹣3)0﹣(13)﹣1.一十四.最简二次根式(共1小题) 38.(2020•济宁)下列各式是最简二次根式的是( ) A .√13B .√12C .√a 3D .√53一十五.二次根式的加减法(共1小题) 39.(2020•日照)下列各式中,运算正确的是( ) A .x 3+x 3=x 6 B .x 2•x 3=x 5 C .(x +3)2=x 2+9 D .√5−√3=√2 一十六.二次根式的混合运算(共6小题) 40.(2019•聊城)下列各式不成立的是( ) A .√18−√89=73√2B .√2+23=2√23C .√8+√182=√4+√9=5D .√3+√2=√3−√241.(2020•菏泽)计算(√3−4)(√3+4)的结果是 . 42.(2020•青岛)计算:(√12−√43)×√3= . 43.(2019•临沂)计算:√12×√6−tan45°= .44.(2019•青岛)计算:√24+√8√2−(√3)0= . 45.(2020•临沂)计算:√(13−12)2+√221√6−sin60°.2019、2020年山东中考数学试题分类(1)——数与式参考答案与试题解析一.有理数的加减混合运算(共1小题) 1.【解答】解;根据题意可得原式=(3.9﹣3)+[(﹣1.8)﹣(﹣2)]﹣(1﹣1)=0.9+0.2=1.1; 故答案为:1.1二.科学记数法—表示较大的数(共5小题) 2.【解答】解:1020000=1.02×106. 故选:A . 3.【解答】解:∵1109万=11090000, ∴11090000=1.109×107. 故选:A . 4.【解答】解:4000亿=4000×108=4×1011, 故选:C . 5.【解答】解:将数据1300000用科学记数法可表示为:1.3×106. 故答案为:1.3×106. 6.【解答】解:177.6=1.776×102. 故选:B .三.科学记数法—表示较小的数(共2小题) 7.【解答】解:∵十亿分之一=11000000000=1×10﹣9,∴十亿分之一用科学记数法可以表示为:1×10﹣9. 故选:B .8.【解答】解:所用时间=15×0.000 000 001=1.5×10﹣8. 故选:C .四.计算器—基础知识(共1小题)9.【解答】解:表示“√4=”即4的算术平方根,∴计算器面板显示的结果为2, 故选:B .五.实数的性质(共1小题) 10.【解答】解:﹣2的绝对值是2; 故选:A .六.实数大小比较(共1小题)11.【解答】解:∵|﹣5|=5,|12|=12,|﹣1|=1,|√2|=√2, ∴绝对值最小的数是12.故选:B .七.规律型:数字的变化类(共4小题) 12.【解答】解:当一辆快递货车停靠在第x 个服务驿站时,快递货车上需要卸下已经通过的(x ﹣1)个服务驿站发给该站的货包共(x ﹣1)个, 还要装上下面行程中要停靠的(n ﹣x )个服务驿站的货包共(n ﹣x )个. 根据题意,完成下表:服务驿站序号 在第x 服务驿站启程时快递货车货包总数1 n ﹣12 (n ﹣1)﹣1+(n ﹣2)=2(n ﹣2)3 2(n ﹣2)﹣2+(n ﹣3)=3(n ﹣3)4 3(n ﹣3)﹣3+(n ﹣4)=4(n ﹣4)5 4(n ﹣4)﹣4+(n ﹣5)=5(n ﹣5)……n 0由上表可得y =x (n ﹣x ).当n =29时,y =x (29﹣x )=﹣x 2+29x =﹣(x ﹣14.5)2+210.25, 当x =14或15时,y 取得最大值210. 故答案为:210. 13.【解答】解:∵a 1=﹣2,∴a 2=11−(−2)=13,a 3=11−13=32,a 4=11−32=−2,…… ∴这个数列以﹣2,13,32依次循环,且﹣2+13+32=−16,∵100÷3=33…1,∴a 1+a 2+…+a 100=33×(−16)﹣2=−152=−7.5,故选:A .14.【解答】解:观察“杨辉三角”可知第n 个数记为a n =(1+2+…+n )=12n (n +1), 则a 4+a 200=12×4×(4+1)+12×200×(200+1)=20110. 故答案为:20110.15.【解答】解:由分析可得a n =a 2+(−1)a +12a +1.故答案为:a 2+(−1)a +12a +1.八.规律型:图形的变化类(共3小题) 16.【解答】解:由图形可知:第1个图形12块白色小正方形,第2个图形19个白色小正方形,第3个图形26个白色小正方形则图ⓝ的白色小正方形地砖有(7n +5)块, 当n =50时,7n +5=350+5=355. 故选:C . 17.【解答】解:探究三:根据探究二,a ×2的方格纸中,共可以找到(a ﹣1)个位置不同的 2×2方格, 根据探究一结论可知,每个2×2方格中有4种放置方法,所以在a ×2的方格纸中,共可以找到(a ﹣1)×4=(4a ﹣4)种不同的放置方法; 故答案为a ﹣1,4a ﹣4;探究四:与探究三相比,本题矩形的宽改变了,可以沿用上一问的思路:边长为a ,有(a ﹣1)条边长为2的线段, 同理,边长为3,则有3﹣1=2条边长为2的线段,所以在a ×3的方格中,可以找到2(a ﹣1)=(2a ﹣2)个位置不同的2×2方格,根据探究一,在在a ×3的方格纸中,使它恰好盖住其中的三个小正方形,共有(2a ﹣2)×4=(8a ﹣8)种不同的放置方法.故答案为2a ﹣2,8a ﹣8;问题解决:在a ×b 的方格纸中,共可以找到(a ﹣1)(b ﹣1)个位置不同的2×2方格,依照探究一的结论可知,把图①放置在a ×b 的方格纸中,使它恰好盖住其中的三个小正方形,共有4(a ﹣1)(b ﹣1)种不同的放置方法;问题拓展:发现图①示是棱长为2的正方体中的一部分,利用前面的思路, 这个长方体的长宽高分别为a 、b 、c ,则分别可以找到(a ﹣1)、(b ﹣1)、(c ﹣1)条边长为2的线段,所以在a ×b ×c 的长方体共可以找到(a ﹣1)(b ﹣1)(c ﹣1)位置不同的2×2×2的正方体, 再根据探究一类比发现,每个2×2×2的正方体有8种放置方法, 所以在a ×b ×c 的长方体中共可以找到8(a ﹣1)(b ﹣1)(c ﹣1)个图①这样的几何体; 故答案为8(a ﹣1)(b ﹣1)(c ﹣1). 18.【解答】解:根据图中圆点排列,当n =1时,圆点个数5+2;当n =2时,圆点个数5+2+3;当n =3时,圆点个数5+2+3+4;当n =4时,圆点个数5+2+3+4+5,…∴当n =10时,圆点个数5+2+3+4+5+6+7+8+9+10+11=4+(1+2+3+4+5+6+7+8+9+10+11)=4+12×11×(11+1)=70. 故选:C .九.完全平方公式(共2小题) 19.【解答】解:由“杨辉三角”的规律可知,(a +b )9展开式中所有项的系数和为(1+1)9=29=512 故选:C . 20.【解答】解:∵(﹣2a 3)2=4a 6,故选项A 正确; ∵a 2•a 3=a 5,故选项B 错误;∵3a +a 2不能合并,故选项C 错误;∵(a ﹣b )2=a 2﹣2ab +b 2,故选项D 错误; 故选:A .一十.整式的混合运算(共1小题) 21.【解答】解:A 、原式=x 6,不符合题意; B 、原式=x 2﹣2xy +y 2,不符合题意; C 、原式=﹣2x 3y 5,符合题意; D 、原式=﹣3x ﹣y ,不符合题意. 故选:C .一十一.提公因式法与公式法的综合运用(共1小题) 22.【解答】解:a 3b ﹣ab =ab (a 2﹣1)=ab (a +1)(a ﹣1), 故选:C .一十二.分式的混合运算(共3小题)23.【解答】解:(1)原式=a −a a ÷a 2+a 2−2aaa=a −a a ×a (a −a )2=1a −a; (2){1−15a ≤65a 3a −1<8a 由①,得x ≥﹣1, 由①,得x <3.所以该不等式组的解集为:﹣1≤x <3. 所以满足条件的正整数解为:1、2.24.【解答】解:(1)原式=(a aa+aaa)÷(a 2aa−a 2aa)=a +a aa ÷a 2−a 2aa=a +aaa •aa (a +a )(a −a ) =1a −a ;(2)解不等式2x ﹣3≥﹣5,得:x ≥﹣1, 解不等式13x +2<x ,得:x >3, 则不等式组的解集为x >3.25.【解答】解:(1)原式=[(a −1)(a −3)a −3+1a −3]÷(a +2)(a −2)a −3=(a 2−4a +3a −3+1a −3)•a −3(a +2)(a −2)=(a −2)2a −3•a −3(a +2)(a −2)=a −2a +2;(2)去分母,得:4(x +1)﹣12<3(x ﹣1), 去括号,得:4x +4﹣12<3x ﹣3, 移项,得:4x ﹣3x <﹣3﹣4+12, 合并同类项,得:x <5.一十三.分式的化简求值(共12小题) 26.【解答】解:(aa −a −a 2a 2−a 2)÷aaa +a 2,=[a (a +a )(a +a )(a −a )−a 2(a +a )(a −a )]÷a a (a +a ), =aa (a +a )(a −a )×a (a +a )a , =a 2a −a ,当x =√3+1,y =√3−1时,原式=(√3−1)22=2−√3. 27.【解答】解:(1)|√3−2|+π0+(﹣1)2019﹣(12)﹣1=2−√3+1+(﹣1)﹣2 =−√3; (2)1−a +3a 2−1÷a +3a −1 =1−a +3(a +1)(a −1)⋅a −1a +3=1−1a +1 =a +1−1a +1=a a +1当a =2时,原式=22+1=23;(3){2a −a =5a3a +4a =2a ,①×4+①,得 11x =22, 解得,x =2,将x =2代入①中,得 y =﹣1,故原方程组的解是{a =2a =−1.28.【解答】解:1a −a (2aa +a−1)÷1a 2−a 2=1a −a ⋅2a −(a +a )a +a⋅(a +a )(a −a )=﹣(2y ﹣x ﹣y ) =x ﹣y ,∵x =y +2019,∴原式=y +2019﹣y =2019.29.【解答】解:原式=a 2(a +1)(a −1)÷(1a −1+a −1a −1)=a 2(a +1)(a −1)•a −1a=a a +1,解不等式组{a −1>1,5−2a ≥−2.得2<x ≤72,则不等式组的整数解为3,当x =3时,原式=33+1=34. 30.【解答】解:原式=[a 3+a 2(a +1)(a −1)−a 2(a +1)(a −1)]•(a −1)2a (a −1)=a 3(a +1)(a −1)•(a −1)2a (a −1) =a 2a +1,解不等式组{a −3(a −2)≤4,2a −33<5−a 2得1≤x <3, 则不等式组的整数解为1、2, 又x ≠±1且x ≠0, ∴x =2, ∴原式=43.31.【解答】解:原式=(a 2−8a −9a +1+25a +1)÷(a 2−1a +1−4a −1a +1)=a 2−8a +16a +1÷a 2−4a a +1 =(a −4)2a +1•a +1a (a −4)=a −4a ,当a =√2时, 原式=√2−4√2=1﹣2√2.32.【解答】解:(2a −1a )÷(a 2+a 2aa −5aa)•(a2a+2a a+2)=2a −a aa ÷a 2+a 2−5a 2aa •a 2+4a 2+4aa 2aa=2a −aaa •aa (a +2a )(a −2a )•(a +2a )22aa=−a +2a 2aa .∵√a +1+(n ﹣3)2=0.∴m +1=0,n ﹣3=0, ∴m =﹣1,n =3.∴−a +2a2aa =−−1+2×32×(−1)×3=56. ∴原式的值为56.33.【解答】解:(1)原式=3√3+(2×12)2020﹣22﹣(3+2√3) =3√3+1﹣4﹣3﹣2√3 =√3−6;(2)原式=a 2−2aa +a 2a •a 2+aa a 2−a 2 =(a −a )2a •a (a +a )(a +a )(a −a )=x ﹣y .当x =√2+1,y =√2时,原式=√2+1−√2=1.34.【解答】解:原式=(a 2−2a +1a 2−2a +1−a +1a 2−2a +1)÷a −3a −1, =(a 2−3a a 2−2a +1)×a −1a −3, =a (a −3)(a −1)2×a −1a −3, =a a −1. ∵x 是16的算术平方根,∴x =4,当x =4时,原式=43. 35.【解答】解:原式=(2a 2+4a a +2−12a a +2)÷a −4(a +2)2 =2a 2−8a a +2•(a +2)2a −4 =2a (a −4)a +2•(a +2)2a −4 =2a (a +2)=2(a 2+2a )∵a 2+2a ﹣3=0,∴a 2+2a =3,则原式=2×3=6.36.【解答】解:(a −1a −2−a +2a )÷4−aa 2−4a +4=[a (a −1)a (a −2)−(a −2)(a +2)a (a −2)]×(a −2)24−a=4−a a (a −2)⋅(a −2)24−a=a −2a , ∵x 不能取0,2,4把x =1代入a −2a =1−21=−1.37.【解答】解:原式=1−a −a a +2a ÷(a +a )(a −a )(a +2a )2=1+a −a a +2a •(a +2a )2(a +a )(a −a ) =1+a +2a a +a=a +a +a +2a a +a =2a +3a a +a ,∵x =cos30°×√12=√32×2√3=3,y =(π﹣3)0﹣(13)﹣1=1﹣3=﹣2,∴原式=2×3+3×(−2)3−2=0. 一十四.最简二次根式(共1小题)38.【解答】解:A 、√13是最简二次根式,符合题意;B 、√12=2√3,不是最简二次根式,不符合题意;C 、√a 3=a √a ,不是最简二次根式,不符合题意;D 、√53=√153,不是最简二次根式,不符合题意. 故选:A .一十五.二次根式的加减法(共1小题)39.【解答】解:A 、x 3+x 3=2x 3,故选项A 不符合题意;B 、x 2•x 3=x 5计算正确,故选项B 符合题意;C 、(x +3)2=x 2+6x +9,故选项C 不符合题意;D 、二次根式√5与√3不是同类二次根式故不能合并,故选项D 不符合题意. 故选:B .一十六.二次根式的混合运算(共6小题)40.【解答】解:√18−√89=3√2−2√23=7√23,A 选项成立,不符合题意; √2+23=√83=2√23,B 选项成立,不符合题意; √8+√182=2√2+3√22=5√22,C 选项不成立,符合题意; √3+√2=√3−√2(√3+√2)(√3−√2)=√3−√2,D 选项成立,不符合题意; 故选:C .41.【解答】解:原式=(√3)2﹣42 =3﹣16=﹣13.故答案为:﹣13.42.【解答】解:原式=(2√3−2√33)×√3 =4√33×√3=4, 故答案为:4.43.【解答】解:√12×√6−tan45°=√12×6−1=√3−1, 故答案为:√3−1.44.【解答】解:√24+√8√2−(√3)0=2√3+2﹣1=2√3+1, 故答案为:2√3+1. 45.【解答】解:原式=12−13+23−√32 =16+√36−√32=1−2√36.。
2024年中考数学总复习第一章《数与式》第一节:实数(附答案解析)

2024年中考数学总复习第一章《数与式》第一节:实数★解读课标★--------------熟悉课标要求,精准把握考点1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小;了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值;2.借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法,知道|a|的含义;3.会用科学记数法表示数;4.了解平方根、算术平方根、立方根的概念.会用根号表示数的平方根、算术平方根、立方根,会用平方运算求百以内整数的平方根;5.掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主);能运用有理数的运算解决简单的问题.★中考预测★--------------统计考题频次,把握中考方向1.实数与运算在历年中考中以考查基础为主,也是考查重点,年年考查,是广大考生的得分点,分值为14~28分。
2.预计2024年各地中考还将继续重视对正负数的意义、相反数、绝对值、倒数、数轴等实数的相关概念及实数的分类的考查,也会对有理数的运算、科学记数法、数的开方、零次幂、负整数指数幂、二次根式及运算等进行考查,且考查形式多样,为避免丢分,学生应扎实掌握。
★聚焦考点★--------------直击中考考点,落实核心素养有理数及其相关概念1.整数和分数统称为有理数。
(有限小数与无限循环小数都是有理数。
)2.正整数、0、负整数统称为整数。
正分数、负分数统称分数。
3.正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。
4.正数和负数表示相反意义的量。
【注意】0既不是正数,也不是负数。
数轴 1.数轴的三要素:原点、正方向、单位长度。
数轴是一条直线。
2.所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。
3.数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表第1页共44页。
2020年中考数学数与式专题卷(附答案)

2020年中考数学数与式专题卷(附答案)一、选择题1.在实数,- ,,中,是无理数的是()A. ,B. - ,C.D.2.下列所示的数轴中,画得正确的是()A. B. C. D.3.下列说法正确的是( )A. 的系数是3B. 2m2n的次数是2次C. 是多项式D. x2-x-1的常数项是14.若数a的近似数为1.6,则下列结论正确的是()A. a=1.6B. 1.55≤a<1.65C. 1.55<a≤1.56D. 1.55≤a<1.565.把代数式3x3-6x2y+3xy2分解因式,结果正确的是()A. x(3x+y)(x-3y)B. 3x(x2-2xy+y2)C. x(3x-y)2D. 3x(x-y)26.要使式子﹣有意义,字母x的取值必须满足()A. x≤B. x≥﹣C. x≥且x≠3D. x≥7.下列各式中,是最简分式的是()A. B. C. D.8.实数的值在( )A. 0和1之间B. 1和2之间C. 2和3之间D. 3和4之间9.用加减法解方程组中,消x用____法,消y用____法()A. 加,加B. 加,减C. 减,加D. 减,减10.已知x=1是方程x2+bx-2=0的一个根,则方程的另一个根是A. 1B. 2C. -1D. -211.已知:,,那么的值为()A. 3或-3B. 0C. 0或3D. 312.观察一串数:0,2,4,6,….第n个数应为()A. 2(n-1)B. 2n-1C. 2(n+1)D. 2n+113.如果△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x-2,2x-1,若这两个三角形全等,则x等于().A. B. 3 C. 4 D. 514.某商店在甲批发市场以每包m元的价格进了20包茶叶,又在乙批发市场以每包n元(m>n)的价格进了同样的40包茶叶,如果商家以每包元的价格卖出这种茶叶,卖完后,这家商店().A. 盈利了B. 亏损了C. 不赢不亏D. 盈亏不能确定二、填空题15.若|2x﹣y|+(y﹣2)2=0,则x+y=________ .16.若是一个完全平方公式,则m的值为________17.计算﹣(﹣1)2=________18.已知=2,则=________.19.使代数式有意义的x取值范围是________.20. 5x+9的立方根是4,则2x+3的平方根是________.21.使有意义的x的取值范围是________.22.当x变化时,|x-4|+|x-t|有最小值5,则常数t的值为________.三、解答题23.综合题。
2024年全国中考数学试题分类汇编——数与式之计算题(文字版,含答案)

4.
5.【答案】 ,
6.【答案】-1
7.【答案】从第②步开始出现错误,正确过程如下:
解: ①
10.【详解】解:
,
当 时,原式 .
11.解:
;
12.解:
.
13.
14.
.
15. 16.
17. 18.
19.
20.
第三组数与式计算题 专题分类汇编
1.(内蒙古赤峰市卷)计算: ;
2.(内蒙古赤峰市卷)已知 ,求代数式 的值.
3.(吉林省长春市卷)先化简,再求值: ,其中 .
4.(吉林省卷)先化简,再求值: ,其中 .
5.(江苏省常州市卷)先化简,再求值: ,其中 .
6.(江苏省连云港市卷)17.计算 .
7.(江苏省连云港市卷)19.下面是某同学计算 解题过程:
解: ①
②
③
上述解题过程从第几步开始出现错误?请写出完整的正确解题过程.
解: …①
…②
…③
…④
…⑤
当 时,原式 .
(1)小乐同学的解答过程中,第______步开始出现了错误;
(2)请帮助小乐同学写出正确的解答过程.
17.(黑龙江省齐齐哈尔市卷)计算:
18.(黑龙江省齐齐哈尔市卷)分解因式:
19.(湖北省卷)计算:
20.(湖南省长沙市卷)计算: .
第一组 中考 数与式计算题 试题汇编答案
【一】
1.【详解】解:原式
,
∵ ,
∴ ,
∴原式 .
2.【详解】解:原式 .
3.
6.解:原式=|﹣2|﹣3+1
=2﹣3+1
=2+1﹣3
6.(四川省广安市卷)计算: .
专题01 数与式-2020年中考数学真题分专题训练(四川专版)(教师版含解析)

专题01 数与式类型一实数1.(2020•成都)﹣2的绝对值是()A.﹣2B.1C.2D.12【答案】C【解析】﹣2的绝对值为2.故选:C.2.(2020•达州)下列各数中,比3大比4小的无理数是()A.3.14B.103C.√12D.√17【答案】C【解析】3=√9,4=√16,A、3.14是有理数,故此选项不合题意;B、103是有理数,故此选项不符合题意;C、√12是比3大比4小的无理数,故此选项符合题意;D、√17比4大的无理数,故此选项不合题意;故选:C.3.(2020•徐州)3的相反数是()A.﹣3B.3C.−13D.13【答案】A【解析】根据相反数的含义,可得3的相反数是:﹣3.故选:A.4.(2020•甘孜州)气温由﹣5℃上升了4℃时的气温是()A.﹣1℃B.1℃C.﹣9℃D.9℃【答案】A【解析】根据题意得:﹣5+4=﹣1,则气温由﹣5℃上升了4℃时的气温是﹣1℃.故选:A.5.(2020•乐山)12的倒数是()A.−12B.12C.﹣2D.2【答案】D【解析】根据倒数的定义,可知12的倒数是2.故选:D.6.(2020•凉山州)﹣12020=()A.1B.﹣1C.2020D.﹣2020【答案】B【解析】﹣12020=﹣1.故选:B.7.(2020•凉山州)下列等式成立的是()A.√81=±9B.|√5−2|=−√5+2C.(−12)﹣1=﹣2D.(tan45°﹣1)0=1【答案】C【解析】A.√81=9,此选项计算错误;B.|√5−2|=√5−2,此选项错误;C.(−12)﹣1=﹣2,此选项正确;D.(tan45°﹣1)0无意义,此选项错误;故选:C.8.(2020•乐山)数轴上点A表示的数是﹣3,将点A在数轴上平移7个单位长度得到点B.则点B表示的数是()A.4B.﹣4或10C.﹣10D.4或﹣10【答案】D【解析】点A表示的数是﹣3,左移7个单位,得﹣3﹣7=﹣10,点A表示的数是﹣3,右移7个单位,得﹣3+7=4.所以点B表示的数是4或﹣10.故选:D.9.(2020•泸州)2的倒数是()A.12B.−12C.2D.﹣2【答案】A【解析】2的倒数是12.故选:A.10.(2020•南充)若1x=−4,则x的值是()A.4B.14C.−14D.﹣4【答案】C【解析】∵1x =−4,∴x=−14,故选:C.11.(2020•甘孜州)计算:|﹣5|=5.【答案】5【解析】|﹣5|=5.故答案为:512.(2020•自贡)与√14−2最接近的自然数是2.【答案】2【解析】∵3.5<√14<4,∴1.5<√14−2<2,∴与√14−2最接近的自然数是2.故答案为:2.13.(2020•乐山)用“>”或“<”符号填空:﹣7>﹣9.【答案】>【解析】∵|﹣7|=7,|﹣9|=9,7<9,∴﹣7>﹣9,故答案为:>.14.(2020•南充)2020年南充市各级各类学校在校学生人数约为1150000人,将1150000用科学记数法表示为(A)A.1.15×106B.1.15×107C.11.5×105D.0.115×107【答案】A【解析】1150000=1.15×106,故选:A.15.(2020•泸州)将867000用科学记数法表示为()A.867×103B.8.67×104C.8.67×105D.8.67×106【答案】C【解析】867000=8.67×105,故选:C.16.(2020•攀枝花)中国抗疫取得了巨大成就,堪称奇迹,为世界各国防控疫情提供了重要借鉴和支持,让中国人民倍感自豪.2020年1月12日,世界卫生组织正式将2019新型冠状病毒命名为2019﹣nCoV.该病毒的直径在0.00000008米﹣0.000000012米,将0.000000012用科学记数法表示为a×10n的形式,则n为() A.﹣8B.﹣7C.7D.8【答案】A【解析】0.000000012用科学记数法表示为1.2×10﹣8,∴n=﹣8,故选:A.17.(2020•自贡)5月22日晚,中国自贡第26届国际恐龙灯会开启网络直播,有着近千年历史的自贡灯会进入“云游”时代,70余万人通过“云观灯”感受了“天下第一灯”的璀璨.人数700000用科学记数法表示为() A.70×104B.0.7×107C.7×105D.7×106【答案】【解析】700000用科学记数法表示为7×105,故选:C.18.(2020•成都)2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成.该卫星距离地面约36000千米,将数据36000用科学记数法表示为()A.3.6×103B.3.6×104C.3.6×105D.36×104【答案】B【解析】36000=3.6×104,故选:B.19.(2020•达州)人类与病毒的斗争是长期的,不能松懈.据中央电视台报道,截止北京时间2020年6月30日凌晨,全球新冠肺炎患者确诊病例达到1002万.1002万用科学记数法表示,正确的是()A.1.002×107B.1.002×106C.1002×104D.1.002×102万【答案】A【解析】1002万用科学记数法表示为1.002×107,故选:A.20.(2020•甘孜州)月球与地球之间的平均距离约为38.4万公里,38.4万用科学记数法表示为() A.38.4×104B.3.84×105C.0.384×106D.3.84×106【答案】B【解析】38.4万=384000=3.84×105,故选:B.21.已知a=7﹣3b,则代数式a2+6ab+9b2的值为49.【答案】49【解析】∵a=7﹣3b,∴a+3b=7,∴a2+6ab+9b2=(a+3b)2=72=49,故答案为:49.22.(2020•甘孜州)若m2﹣2m=1,则代数式2m2﹣4m+3的值为5.【答案】5【解析】∵m2﹣2m=1,∴原式=2(m2﹣2m)+3=2+3=5.故答案为:5.23.(2020•南充)计算:|1−√2|+20=√2.【答案】√2.【解析】原式=√2−1+1=√2.故答案为:√2.24.(9分)(2020•乐山)计算:|﹣2|﹣2cos60°+(π﹣2020)0.+1解:原式=2−2×12=2.25.(2020•泸州)计算:|﹣5|﹣(π﹣2020)0+2cos60°+(1)﹣1.3+3解:原式=5﹣1+2×12=5﹣1+1+3=8.26.(2020•自贡)计算:|﹣2|﹣(√5+π)0+(−1)﹣1.6解:原式=2﹣1+(﹣6)=1+(﹣6)=﹣5.类型二整式1.(2020•攀枝花)下列式子中正确的是()A.a2﹣a3=a5B.(﹣a)﹣1=a C.(﹣3a)2=3a2D.a3+2a3=3a3【答案】D【解析】a2和a3不是同类项,不能合并,因此选项A不正确;(−a)−1=−1,因此选项B不正确;a(﹣3a)2=9a2,因此选项C不正确;a3+2a3=3a3,因此选项D正确;故选:D.2.(2020•成都)下列计算正确的是()A.3a+2b=5ab B.a3•a2=a6C.(﹣a3b)2=a6b2D.a2b3÷a=b3【答案】C【解析】A、3a与2b不是同类项,不能合并,原计算错误,故此选项不符合题意;B、a3•a2=a5,原计算错误,故此选项不符合题意;C、(﹣a3b)2=a6b2,原计算正确,故此选项符合题意;D、a2b3÷a=ab3,原计算错误,故此选项不符合题意.故选:C.3.(2020•南充)下列运算正确的是()A.3a+2b=5ab B.3a•2a=6a2C.a3+a4=a7D.(a﹣b)2=a2﹣b2【答案】B【解析】A、原式不能合并,不符合题意;B、原式=6a2,符合题意;C、原式不能合并,不符合题意;D、原式=a2﹣2ab+b2,不符合题意.故选:B.4.(2020•甘孜州)下列运算中,正确的是()A.a4•a4=a16B.a+2a2=3a3C.a3÷(﹣a)=﹣a2D.(﹣a3)2=a5【答案】C【解析】A.a4•a4=a8,故本选项不合题意;B.a与2a2不是同类项,所以不能合并,故本选项不合题意;C.a3÷(﹣a)=﹣a2,故本选项符合题意;D.(﹣a3)2=a6,故本选项不合题意;故选:C.5.(2020•乐山)已知3m=4,32m﹣4n=2.若9n=x,则x的值为()A.8B.4C.2√2D.√2【答案】C【解析】∵3m=4,32m﹣4n=(3m)2÷(3n)4=2.∴42÷(3n)4=2,∴(3n)4=42÷2=8,又∵9n=32n=x,∴(3n)4=(32n)2=x2,∴x2=8,∴x=√8=2√2.故选:C.6.(2020•泸州)下列各式运算正确的是()A.x2+x3=x5B.x3﹣x2=x C.x2•x3=x6D.(x3)2=x6【答案】D【解析】A.x2与x3不是同类项,所以不能合并,故本选项不合题意;B.x3与﹣x2不是同类项,所以不能合并,故本选项不合题意;C.x2•x3=x5,故本选项不合题意;D.(x3)2=x6,故本选项符合题意.故选:D.7.(2020•攀枝花)因式分解:a﹣ab2=a(1+b)(1﹣b).【答案】a(1+b)(1﹣b)【解析】原式=a(1﹣b2)=a(1+b)(1﹣b),故答案为:a(1+b)(1﹣b) 8.(2020•自贡)分解因式:3a2﹣6ab+3b2=3(a﹣b)2.【答案】3(a﹣b)2【解析】3a2﹣6ab+3b2=3(a2﹣2ab+b2)=3(a﹣b)2.故答案为:3(a﹣b)2.9.(2020•凉山州)因式分解:a3﹣ab2=a(a+b)(a﹣b).【答案】a(a+b)(a﹣b).【解析】a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b).10.(2020•泸州)若x a+1y3与12x4y3是同类项,则a的值是3.【答案】3【解析】∵x a+1y3与12x4y3是同类项,∴a+1=4,解得a=3,故答案为:3.11.(2020•成都)分解因式:x2+3x=x(x+3).【答案】x(x+3).【解析】x2+3x=x(x+3).12.(2020•乐山)已知y≠0,且x2﹣3xy﹣4y2=0.则xy的值是4或﹣1.【答案】4或﹣1.【解析】∵x2﹣3xy﹣4y2=0,即(x﹣4y)(x+y)=0,可得x=4y或x=﹣y,∴xy=4或xy=−1,即xy的值是4或﹣1;故答案为:4或﹣1.13.(2020•攀枝花)已知x=3,将下面代数式先化简,再求值.(x﹣1)2+(x+2)(x﹣2)+(x﹣3)(x﹣1).解:(x﹣1)2+(x+2)(x﹣2)+(x﹣3)(x﹣1)=x2+1﹣2x+x2﹣4+x2﹣x﹣3x+3=3x2﹣6x将x=3代入,原式=27﹣18=9.14.(5分)(2020•凉山州)化简求值:(2x+3)(2x﹣3)﹣(x+2)2+4(x+3),其中x=√2.解:原式=4x2﹣9﹣(x2+4x+4)+4x+12=4x2﹣9﹣x2﹣4x﹣4+4x+12=3x2﹣1,当x=√2时,原式=3×(√2)2﹣1=3×2﹣1=6﹣1=5.类型三分式1.(2020•成都)已知x=2是分式方程kx +x−3x−1=1的解,那么实数k的值为()A.3B.4C.5D.6【答案】B【解析】把x=2代入分式方程得:k2−1=1,解得:k=4.故选:B.2.(2020•甘孜州)分式方程3x−1−1=0的解为()A.x=1B.x=2C.x=3D.x=4【答案】D【解析】分式方程3x−1−1=0,去分母得:3﹣(x﹣1)=0,去括号得:3﹣x+1=0,解得:x=4,经检验x=4是分式方程的解.故选:D.3.(2020•泸州)已知关于x的分式方程mx−1+2=−31−x的解为非负数,则正整数m的所有个数为()A .3B .4C .5D .6【答案】B 【解析】去分母,得:m +2(x ﹣1)=3, 移项、合并,得:x =5−m 2,∵分式方程的解为非负数,∴5﹣m ≥0且5−m 2≠1,解得:m ≤5且m ≠3,∴正整数解有1,2,4,5共4个, 故选:B .4.(2020•南充)若x 2+3x =﹣1,则x −1x+1= ﹣2 . 【答案】-2【解析】x −1x+1=x(x+1)−1x+1 =x 2+x−1x+1,∵x 2+3x =﹣1,∴x 2=﹣1﹣3x ,∴原式=−1−3x+x−1x+1=−2x−2x+1=−2(x+1)x+1=−2,故答案为:﹣2.5.(2020•自贡)先化简,再求值:x+1x 2−4•(1x+1+1),其中x 是不等式组{x +1≥05−2x >3的整数解. 解:x+1x 2−4•(1x+1+1)=x+1(x+2)(x−2)⋅1+x+1x+1 =x+2(x+2)(x−2)=1x−2,由不等式组{x +1≥05−2x >3,得﹣1≤x <1, ∵x 是不等式组{x +1≥05−2x >3的整数解,∴x =﹣1,0,∵当x =﹣1时,原分式无意义, ∴x =0,当x =0时,原式=10−2=−12. 6.(2020•甘孜州)化简:(3a−2−1a+2)•(a 2﹣4). 解:(3a−2−1a+2)•(a 2﹣4)=3(a+2)−(a−2)(a+2)(a−2)•(a +2)(a ﹣2)=3a +6﹣a +2=2a +8.6.(2020•南充)先化简,再求值:(1x+1−1)÷x 2−x x+1,其中x =√2+1. 解:(1x+1−1)÷x 2−x x+1 =1−(x+1)x+1⋅x+1x(x−1) =1−x−1x(x−1)=−x x(x−1) =11−x ,当x =√2+1时,原式=1−√2−1=−√22. 7.(2020•泸州)化简:(x+2x +1)÷x 2−1x . 解:原式=2x+2x ×x (x+1)(x−1)=2(x+1)x ×x (x+1)(x−1)=2x−1.16.(2020•成都)先化简,再求值:(1−1x+3)÷x+2x 2−9,其中x =3+√2.解:原式=x+3−1x+3•(x−3)(x+3)x+2 =x ﹣3,当x =3+√2时,原式=√2. 8.(2020•达州)求代数式(2x−1x−1−x ﹣1)÷x−2x 2−2x+1的值,其中x =√2+1.解:原式=(2x−1x−1−x 2−1x−1)÷x−2(x−1)2 =−x 2+2x x−1)÷x−2(x−1)2 =−x(x−2)x−1•(x−1)2x−2=﹣x (x ﹣1)当x =√2+1时,原式=﹣(√2+1)(√2+1﹣1)=﹣(√2+1)×√2=﹣2−√2.9.(2020•乐山)已知y =2x ,且x ≠y ,求(1x−y+1x+y )÷x 2y x 2−y 2的值. 解:原式=2x (x+y)(x−y)÷x 2y x 2−y 2=2x x 2−y 2×x 2−y 2x 2y =2xy ,∵y =2x ,∴原式=2x⋅2x =1 解法2:同解法1,得原式=2xy ,∵y =2x ,∴xy =2,∴原式=22=1.类型四 二次根式1.(2020•攀枝花)下列说法中正确的是( ) A .0.09的平方根是0.3B .√16=±4C .0的立方根是0D .1的立方根是±1 【答案】C【解析】A .0.09的平方根是±0.3,故此选项错误;B .√16=4,故此选项错误;C .0的立方根是0,故此选项正确;D .1的立方根是1,故此选项错误;故选:C .2.(2020•攀枝花)实数a 、b 在数轴上的位置如图所示,化简√(a +1)2+√(b −1)2−√(a −b)2的结果是( )A .﹣2B .0C .﹣2aD .2b【答案】A【解析】由数轴可知﹣2<a <﹣1,1<b <2, ∴a +1<0,b ﹣1>0,a ﹣b <0,∴√(a +1)2+√(b −1)2−√(a −b)2=|a +1|+|b ﹣1|﹣|a ﹣b |=﹣(a +1)+(b ﹣1)+(a ﹣b )=﹣a ﹣1+b ﹣1+a ﹣b=﹣2故选:A .3.(2020•成都)(1)计算:2sin60°+(12)﹣2+|2−√3|−√9;解:(1)原式=2×√32+4+2−√3−3 =√3+4+2−√3−3=3;4.(2020•达州)计算:﹣22+(13)﹣2+(π−√5)0+√−1253. 解:原式=﹣4+9+1﹣5=1.5.(2020•甘孜州)(1)计算:√12−4sin60°+(2020﹣π)0. 解:(1)原式=2√3−4×√32+1 =2√3−2√3+1=1;。
2020年浙江省中考数学分类汇编专题02 数与式(2)

2020年浙江省中考数学分类汇编专题02 数与式(2)一、单选题(共8题;共16分)1.(2020·衢州)要使二次根式有意义,则x的值可以是()A. 0B. 1C. 2D. 42.(2020·衢州)计算(a²)3,正确的结果是()A. a5B. a6C. a8D. a93.(2020·台州)计算2a2·3 a4的结果是()A. 5a6B. 5a8C. 6a6D. 6a84.(2020·杭州)× =( )A. B. C. 2 D. 35.(2020·宁波)二次根式中字母x的取值范围是()A. B. C. D.6.(2020·金华·丽水)下列多项式中,能运用平方差公式分解因式的是()A. B. C. D.7.(2020·金华·丽水)分式的值是零,则x的值为()A. 5B. 2C. -2D. -58.(2020·杭州)(1+y)(1-y)=( )A. 1+y²B. -1-y²C. 1-y²D. -1+y二、填空题(共9题;共9分)9.(2020·台州)因式分解:x2-9=________.10.(2020·台州)计算的结果是________.11.(2020·绍兴)分解因式:1-x2=________ 。
12.(2020·宁波)分解因式:________.13.(2020·衢州)定义a※b=a(b+1),例如2※3=2×(3+1)=2×4=8,则(x-1)※x的结果为________。
14.(2020·温州)分解因式:m²-25=________。
15.(2020·湖州)化简:=________.16.(2020·嘉兴·舟山)分解因式:x²-9=________。
2020年全国各地中考数学解析汇编1 有理数.doc

2020年全国各地中考数学解析汇编1 有理数1.1 正数和负数1.(2020浙江丽水3分,1题)如果零上2℃记作+2℃,那么零下3℃记作( )A.-3℃B.-2℃C.+3℃D.+2℃【解析】根据相反意义的量可知,零上2℃记作“+2℃”,则零下3℃记作“-3℃”,故选A.【答案】A【点评】本题考查相反意义的量.2.(2020山东德州中考,9,4,)-1, 0, 0.2,71 , 3 中正数一共有 个. 【解析】由题意知2,17,3是正数,共有三个. 【答案】3.【点评】有理数的分类方法有2种:①正有理数、0、负有理数;②整数和分数.3.(2020安徽,1,4分)下面的数中,与-3的和为0的是 ( ) A.3 B.-3 C.31 D.31- 【解析】根据有理数的运算法则,可以把选项中的数字和-3相加,进行筛选只有选项A 符合,也可以利用相反数的性质,根据互为相反数的两数和为0,必选-3的相反数3.【答案】A .【点评】本题考查了有理数的运算、及其概念,理解有关概念,掌握运算法则,是解答此类题目的基础.4.(2020山东泰安,1,3分)下列各数比-3小的数是( )A. 0B. 1C.-4D.-1【解析】根据正数大于0,0大于负数,两个负数绝对值大的反而小可得,比-3小的数是-4.【答案】C【点评】本题考查了实数大小的比较.要掌握实数大小的比较:正数大于0,负数小于0,正数大于负数;数轴上表示的两个数,右边的比左边的大.5.(2020浙江省衢州,1,3分)下列四个数中,最小的数是( )A.2B.-2C.0D. 21- 【解析】根据有理数比较大小的法则进行判断,有-2<12-<0<2. 【答案】B【点评】本题考查了有理数大小的比较,①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.6.(2020重庆,1,4分)在一3,一1,0,2这四个数中,最小的数是()A.一3 B.一1 C.0 D.2【解析】正数大于0,负数小于0,两个负数绝对值大的反而小。
2019-2020年中考数学汇编数与式人教新课标版.docx

2019-2020 年中考数学汇编数与式人教新课标版1.选择题1.(连云港市 2010 中考题) 1.下面四个数中比- 2 小的数是()A . 1B. 0C.- 1D.-32.(连云港市 2010 中考题)下列计算正确的是()A . a+ a= x2B. a· a2=a2C.( a2) 3= a5D. a2 (a+ 1)= a3+ 13.(连云港市2010 中考题)今年 1 季度,连云港市高新技术产业产值突破110 亿元,同比增长59%.数据“ 110 亿”用科学记数可表示为()A . 1. 1×1010B. 11×1010C. 1. 1×109 D . 11×109( 1)( 2010 年福建德化)2的3倍是()A 、6B 、1C、6 D 、5答案: A( 2)( 2010 年福建德化)下列计算正确的是()A、20 =2 10B、2 36C、422D、( 3)23答案: B1.( 2010 安徽芜湖)-6 的绝对值是()11A . 6B.- 6C.6D.-62.( 2010 安徽芜湖) 2010 年芜湖市承接产业转移示范区建设成效明显,一季度完成固定资产投资238 亿元,用科学记数法可记作()A . 238×108元B .23. 8× 109元C. 2. 38× 1010元 D . 0. 238× 1011元5.( 2010 安徽芜湖)要使式子a+2有意义, a 的取值范围是()aA . a≠ 0B. a>- 2 且 a≠ 0C. a>- 2 或 a≠ 0 D . a≥- 2 且 a≠01.( 2010北京) 2 的倒数是 (A)112(D) 2。
(B)(C)222. ( 2010北京) 2010 年 6 月 3 日,人类首次模拟火星载人航天飞行试验“火星 -500 ”正式启动。
包括中国志愿者王跃在内的 6 名志愿者踏上了为期12480 小时的“火星之旅”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学专题训练(一):数与式
一、选择题
1. 点A 在数轴上表示+2,从点A 沿数轴向左平移3个单位到点B ,则点B 所表示的实数是( )
A. 3
B. –1
C. 5
D. –1或3
2.下列计算中,正确的是( ).A. B. C. D.
3.为了响应中央号召,今年我市加大财政支农力度,全市农业支出累计达到234 760 000元,其 中234 760 000元用科学记数法可表示为( )(保留三位有效数字).
A .2.34×108元
B .2.35×108元
C .2.35×109 元
D . 2.34×109元 4. 若代数式2231y y +=,那么代数式2469y y +-的值是( )。
A.2 B.17 C.-7
D.7
5. 估计1832
⨯+的运算结果应在( )A .1到2之间 B .2到3之间 C .3到4之间D .4到5之间
6. 如图所示,下列每个图是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n 盆花,每个图案花盆总数是S ,按此推断S 与n 的关系式为( )。
A .S=3n
B .S=3(n -1)
C .S=3n -1
D .S=3n +1
7. 若的值为则2y -x 2
,54,32==y x ( ) A.53 B.-2 C.553 D.5
6 8. 若,则ab =( ) A.1 B.2 C.-2 D.0
9.下列各式正确的是( )A 、 a 4·a 5=a 20 B 、a 2+2a 2=3a 2 C 、(-a 2b 3)2= a 4b 9
D 、a 4÷a= a 2 10.分式29(1)(3)
x x x ---的值等于0,则x 的值为( ) A 、3 B 、-3 C 、3或-3
D 、0
二、填空题
11. 已知一个数的平方根是31a +和11a +,则这个数的相反数是________,倒数是______.
12、因式分解 (1) 2
1222++x x = (2) =-x xy 42_______________;
13、 定义一种新运算:=**-=*321,2
)则(
b a b a _________ 14. 计算:①02)36(|221|8)3(----+--=__________ 15. 观察等式:2
22211⨯=+,333322⨯=+,444433⨯=+,555544
⨯=+,L .设n 表示正整数,请用关于n 的等式表示这个观律为:_________。
16.5x a+2b y 8 与-4x 2y 3a+4b 是同类项,则a+b=________.a
b a a 1⨯÷= 17.当x_________时,x -2在实数范围内有意义;当x 时,分式
41-x 有意义. 18.李明的作业本上有六道题:
(1)3322-=-,(2)24-=-(3)2)2(2-=-,(4)=4±2 ,(5)22414m
m =-, (6)a a a =
-23如果你是他的数学老师,请找出他做对的题是 (填
序号)。
三.解答题 19(6分)、计算:(1)424
1)4(5854232÷+⨯-⨯--⨯-
02)+
20(10分)、先化简再求值:(1)114
122122--+-÷+-x x x x x x 其中x=3 (2)请选择你认为合适的x,y 的值,求式子211(
)()2x y xy x y x y x y x y
+⋅÷++++的值
21(10分)、(1)实数a 、b 、c 在数轴上的点如图所示,
化简:
(2)若10m n +=,24mn =,求22m n +的值
22(10分).已知A =a +2,B =a 2-a +5,C =a 2+5a -19,其中a >2.
(1)求证:B -A >0,并指出A 与B 的大小关系;
(2)指出A 与C 哪个大?说明理由.
23(10分)、据有关资料统计,两个城市之间每天的电话通话次数T 与这两个城市的人口数m 、n (单位:万)以及两城市的距离d (单位:km )有T =2d
kmn 的关系(k 为常数),已知A 、B 、C 三个城市的人口数及它们之间的距离如图所示,如果A 、B 两个城市间每天的电话通话次数为t ,那么B 、C 两个城市间每天的电话通话次数是多少?(用含t 的代数式表示)
24(10)、已知两个分式:A=221x -,B=1111x x
++-,其中x ≠±1.下面有三个结论: 甲说:A=B ; 乙说:A 、B 互为倒数; 丙说:A 、B 互为相反数.
哪个说法正确?为什么?
25(10)、(121
2()02x y -+-=y x +(2)已知m 、n 是实数,且551,m n n =--求23m n -的值
26(12).如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,因此4,12,20这三个数都是神秘数.
(1)28和2 012这两个数是神秘数吗?为什么?
(2)设两个连续偶数为2k +2和2k (其中k 取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?
(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?
27(12分)、张老师购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示,根据图中的数据(单位:m ),解答下列问题:
(1)用含x 、y 的代数式表示地面的总面积;
(2)已知客厅面积比卫生间面积多212m ,且地面总面积是卫生间的面积的15倍.若铺12m 地砖的平均费用为80元,那么铺地砖的总费用为
多少元?。