向量法求空间距离和角

合集下载

专题6 向量法求空间角与距离(课件)高考数学二轮复习(新高考地区专用)

专题6 向量法求空间角与距离(课件)高考数学二轮复习(新高考地区专用)

=|cos 〈u,n〉|=
·


·

.
例1 [2023·河北沧州模拟]如图,在三棱锥P - ABC中,AB是△ABC外
接圆的直径,△PAC是边长为2的等边三角形,E,F分别是PC,PB的
中点,PB=AB,BC=4.
(1)求证:平面PAC⊥平面ABC;
(2)求直线AB与平面AEF所成角的正弦值.
A.直线BC1与DA1所成的角为90°
B.直线BC1与CA1所成的角为90°
C.直线BC1与平面BB1D1D所成的角为45°
D.直线BC1与平面ABCD所成的角为45°
答案:ABD
)
2.[2022·新高考Ⅰ卷 ]如 图,直三棱柱ABC - A1B1C1 的体积为4 ,
△A1BC的面积为2 2.
(1)求A到平面A1BC的距离;
=2.
(1)证明:BD⊥EA.
(2)求平面EDCF与平面EAB夹角的余弦值.
题型三 (空间距离)点到平面的距离
已知平面α的法向量为n,A是平面α内的定点,P是平面α外一点.过
点P作平面α的垂线l,交平面α于点Q,则n是直线l的方向向量,且点P
到平面α的距离就是AP到直线l上的投影向量QP的长度.因此PQ=
(1)证明:A1C⊥AB1;
(2)若三棱锥B1 -
2 2
A1AC的体积为 ,求二面角A1
3
- B1C - A的大小.
题后师说
用法向量求二面角的关键是正确写出点的坐标和法向量,再利用两
个平面的夹角公式求解.
巩固训练2
[2023·河南安阳模拟]在多面体EF - ABCD中,平面EDCF⊥平面
ABCD,EDCF是面积为 3的矩形,CD∥AB,AD=DC=CB=1,AB

向量方法——求空间角和距离

向量方法——求空间角和距离

§8.7 立体几何中的向量方法(二)——求空间角和距离1. 斜线和平面所成的角(1)斜线和它在平面内的射影的所成的角叫做斜线和平面所成的角(或斜线和平面的夹角). (2)斜线和它在平面内的射影所成的角,是斜线和这个平面内所有直线所成角中最小的角. 2. 二面角(1)从一条直线出发的两个半平面所组成的图形叫做二面角.(2)在二面角α—l —β的棱上任取一点O ,在两半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB 叫做二面角α—l —β的平面角. 3. 空间向量与空间角的关系(1)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2所成的角θ满足cos θ=|cos 〈m 1,m 2〉|.(2)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α所成角θ满足sin θ=|cos 〈m ,n 〉|. (3)求二面角的大小1°如图①,AB 、CD 是二面角α—l —β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.2°如图②③,n 1,n 2分别是二面角α—l —β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉.4. 点面距的求法如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离d =|AB →·n ||n |.1. 判断下面结论是否正确(请在括号中打“√”或“×”)(1)两直线的方向向量所成的角就是两条直线所成的角.( × )(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角. ( × ) (3)两个平面的法向量所成的角是这两个平面所成的角.( × )(4)两异面直线夹角的范围是(0,π2],直线与平面所成角的范围是[0,π2],二面角的范围是[0,π].( √ )(5)直线l 的方向向量与平面α的法向量夹角为120°,则l 和α所成角为30°.( √ ) (6)若二面角α-a -β的两个半平面α、β的法向量n 1,n 2所成角为θ,则二面角α-a -β的大小是π-θ.( × )2. 已知二面角α-l -β的大小是π3,m ,n 是异面直线,且m ⊥α,n ⊥β,则m ,n 所成的角为 ( )A.2π3B.π3 C.π2 D.π6答案 B解析 ∵m ⊥α,n ⊥β,∴异面直线m ,n 所成的角的补角与二面角α-l -β互补. 又∵异面直线所成角的范围为(0,π2],∴m ,n 所成的角为π3.3. 在空间直角坐标系Oxyz 中,平面OAB 的一个法向量为n =(2,-2,1),已知点P (-1,3,2),则点P 到平面OAB 的距离d 等于 ( )A .4B .2C .3D .1 答案 B解析 P 点到平面OAB 的距离为 d =|OP →·n||n |=|-2-6+2|9=2,故选B.4. 若平面α的一个法向量为n =(4,1,1),直线l 的一个方向向量为a =(-2,-3,3),则l 与α所成角的正弦值为_________. 答案41133解析 ∵n·a =-8-3+3=-8,|n |=16+1+1=32, |a |=4+9+9=22,∴cos 〈n ,a 〉=n·a |n|·|a |=-832×22=-41133.又l 与α所成角记为θ,即sin θ=|cos 〈n ,a 〉|=41133. 5. P 是二面角α-AB -β棱上的一点,分别在平面α、β上引射线PM 、PN ,如果∠BPM =∠BPN =45°,∠MPN =60°,那么二面角α-AB -β的大小为________. 答案 90°解析 不妨设PM =a ,PN =b ,如图, 作ME ⊥AB 于E ,NF ⊥AB 于F , ∵∠EPM =∠FPN =45°, ∴PE =22a ,PF =22b , ∴EM →·FN →=(PM →-PE →)·(PN →-PF →) =PM →·PN →-PM →·PF →-PE →·PN →+PE →·PF → =ab cos 60°-a ×22b cos 45°-22ab cos 45°+22a ×22b =ab 2-ab 2-ab 2+ab2=0, ∴EM →⊥FN →,∴二面角α-AB -β的大小为90°.题型一 求异面直线所成的角例1 长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为( )A.1010 B.3010 C.21510 D.31010思维启迪 本题可以通过建立空间直角坐标系,利用向量BC 1→、AE →所成的角来求. 答案 B解析 建立坐标系如图,则A (1,0,0),E (0,2,1),B (1,2,0),C 1(0,2,2).BC 1→=(-1,0,2),AE →=(-1,2,1), cos 〈BC 1→,AE →〉=BC 1→·AE →|BC 1→|·|AE →|=3010.所以异面直线BC 1与AE 所成角的余弦值为3010. 思维升华 用向量方法求两条异面直线所成的角,是通过两条直线的方向向量的夹角来求解,而两异面直线所成角的范围是θ∈⎝⎛⎦⎤0,π2,两向量的夹角α的范围是[0,π],所以要注意二者的区别与联系,应有cos θ=|cos α|.已知直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为正方形,AA 1=2AB ,E 为AA 1的中点,则异面直线BE 与CD 1所成角的余弦值为( )A.1010 B.15 C.31010 D.35答案 C解析 如图,以D 为坐标原点建立如图所示空间直角坐标系. 设AA 1=2AB =2,则B (1,1,0),E (1,0,1),C (0,1,0),D 1(0,0,2), ∴BE →=(0,-1,1), CD 1→=(0,-1,2),∴cos 〈BE →,CD 1→〉=1+22·5=31010.题型二 求直线与平面所成的角例2 如图,已知四棱锥P —ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为H ,PH 是四棱锥的高,E 为AD 的中点. (1)证明:PE ⊥BC ;(2)若∠APB =∠ADB =60°,求直线P A 与平面PEH 所成角的正弦值.思维启迪 平面的法向量是利用向量方法解决位置关系或夹角的关键,本题可通过建立坐标系,利用待定系数法求出平面PEH 的法向量.(1)证明 以H 为原点,HA ,HB ,HP 所在直线分别为x ,y ,z 轴,线段HA 的长为单位长度,建立空间直角坐标系(如图), 则A (1,0,0),B (0,1,0).设C (m,0,0),P (0,0,n ) (m <0,n >0),则D (0,m,0),E ⎝⎛⎭⎫12,m 2,0. 可得PE →=⎝⎛⎭⎫12,m 2,-n ,BC →=(m ,-1,0).因为PE →·BC →=m 2-m 2+0=0,所以PE ⊥BC .(2)解 由已知条件可得m =-33,n =1, 故C ⎝⎛⎭⎫-33,0,0,D ⎝⎛⎭⎫0,-33,0,E ⎝⎛⎭⎫12,-36,0, P (0,0,1).设n =(x ,y ,z )为平面PEH 的法向量, 则⎩⎪⎨⎪⎧ n ·HE →=0,n ·HP →=0,即⎩⎪⎨⎪⎧12x -36y =0,z =0.因此可以取n =(1,3,0).又P A →=(1,0,-1), 所以|cos 〈P A →,n 〉|=24.所以直线P A 与平面PEH 所成角的正弦值为24. 思维升华 利用向量法求线面角的方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.(2013·湖南)如图,在直棱柱ABCD -A 1B 1C 1D 1中,AD ∥BC ,∠BAD =90°,AC ⊥BD ,BC =1,AD =AA 1=3.(1)证明:AC ⊥B 1D ;(2)求直线B 1C 1与平面ACD 1所成角的正弦值. 方法一 (1)证明如图,因为BB 1⊥平面ABCD ,AC ⊂平面ABCD ,所以AC ⊥BB 1. 又AC ⊥BD ,所以AC ⊥平面BB 1D , 而B 1D ⊂平面BB 1D , 所以AC ⊥B 1D .(2)解 因为B 1C 1∥AD ,所以直线B 1C 1与平面ACD 1所成的角等于直线AD 与平面ACD 1所成的角(记为θ).如图,连接A 1D ,因为棱柱ABCD -A 1B 1C 1D 1是直棱柱,且∠B 1A 1D 1=∠BAD =90°, 所以A 1B 1⊥平面ADD 1A 1,从而A 1B 1⊥AD 1. 又AD =AA 1=3,所以四边形ADD 1A 1是正方形. 于是A 1D ⊥AD 1,故AD 1⊥平面A 1B 1D ,于是AD 1⊥B 1D . 由(1)知,AC ⊥B 1D ,所以B 1D ⊥平面ACD 1. 故∠ADB 1=90°-θ,在直角梯形ABCD 中, 因为AC ⊥BD ,所以∠BAC =∠ADB . 从而Rt △ABC ∽Rt △DAB ,故AB DA =BC AB ,即AB =DA ·BC = 3.连接AB 1,易知△AB 1D 是直角三角形,且B 1D 2=BB 21+BD 2=BB 21+AB 2+AD 2=21,即B 1D =21.在Rt △AB 1D 中,cos ∠ADB 1=AD B 1D =321=217, 即cos(90°-θ)=217.从而sin θ=217. 即直线B 1C 1与平面ACD 1所成角的正弦值为217.方法二 (1)证明 易知,AB ,AD ,AA 1两两垂直.如图,以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设AB =t ,则相关各点的坐标为A (0,0,0),B (t,0,0),B 1(t,0,3),C (t,1,0),C 1(t,1,3),D (0,3,0),D 1(0,3,3).从而B 1D →=(-t,3,-3),AC →=(t,1,0),BD →=(-t,3,0).因为AC ⊥BD ,所以AC →·BD →=-t 2+3+0=0, 解得t =3或t =-3(舍去).于是B 1D →=(-3,3,-3),AC →=(3,1,0), 因为AC →·B 1D →=-3+3+0=0, 所以AC →⊥B 1D →,即AC ⊥B 1D .(2)解 由(1)知,AD 1→=(0,3,3),AC →=(3,1,0), B 1C 1→=(0,1,0).设n =(x ,y ,z )是平面ACD 1的一个法向量, 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD 1→=0,即⎩⎨⎧3x +y =0,3y +3z =0,令x =1,则n =(1,-3,3). 设直线B 1C 1与平面ACD 1所成角为θ,则 sin θ=|cos 〈n ,B 1C 1→〉|=⎪⎪⎪⎪⎪⎪n ·B 1C 1→|n |·|B 1C 1→|=37=217. 即直线B 1C 1与平面ACD 1所成角的正弦值为217. 题型三 求二面角例3 (2013·课标全国Ⅱ)如图,直三棱柱ABC -A 1B 1C 1中,D ,E分别是AB ,BB 1的中点,AA 1=AC =CB =22AB . (1)证明:BC 1∥平面A 1CD ; (2)求二面角D -A 1C -E 的正弦值.思维启迪 根据题意知∠ACB =90°,故CA 、CB 、CC 1两两垂直,可以C 为原点建立空间直角坐标系,利用向量求二面角.(1)证明 连接AC 1交A 1C 于点F ,则F 为AC 1的中点. 又D 是AB 的中点,连接DF ,则BC 1∥DF . 因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD , 所以BC 1∥平面A 1CD .(2)解 由AC =CB =22AB 得,AC ⊥BC . 以C 为坐标原点,CA →的方向为x 轴正方向,CB →的方向为y 轴正方向,CC 1→的方向为z 轴正方向,建立如图所示的空间直角坐标系Cxyz . 设CA =2,则D (1,1,0),E (0,2,1),A 1(2,0,2), CD →=(1,1,0),CE →=(0,2,1),CA 1→=(2,0,2). 设n =(x 1,y 1,z 1)是平面A 1CD 的法向量,则⎩⎪⎨⎪⎧n ·CD →=0,n ·CA 1→=0,即⎩⎪⎨⎪⎧x 1+y 1=0,2x 1+2z 1=0.可取n =(1,-1,-1).同理,设m 是平面A 1CE 的法向量, 则⎩⎪⎨⎪⎧m ·CE →=0,m ·CA 1→=0.可取m =(2,1,-2).从而cos 〈n ,m 〉=n ·m |n ||m |=33,故sin 〈n ,m 〉=63.即二面角D -A 1C -E 的正弦值为63. 思维升华 求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.如图,在圆锥PO 中,已知PO =2,⊙O 的直径AB =2,C 是AB 的中点,D 为AC 的中点. (1)证明:平面POD ⊥平面P AC ; (2)求二面角B -P A -C 的余弦值. (1)证明如图,以O 为坐标原点,OB ,OC ,OP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则O (0,0,0),A (-1,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D (-12,12,0).设n 1=(x 1,y 1,z 1)是平面POD 的一个法向量, 则由n 1·OD →=0,n 1·OP →=0, 得⎩⎪⎨⎪⎧-12x 1+12y 1=0,2z 1=0.所以z 1=0,x 1=y 1,取y 1=1,得n 1=(1,1,0). 设n 2=(x 2,y 2,z 2)是平面P AC 的一个法向量, 则由n 2·P A →=0,n 2·PC →=0,得⎩⎨⎧-x 2-2z 2=0,y 2-2z 2=0.所以x 2=-2z 2,y 2=2z 2. 取z 2=1,得n 2=(-2,2,1). 因为n 1·n 2=(1,1,0)·(-2,2,1)=0, 所以n 1⊥n 2.从而平面POD ⊥平面P AC . (2)解 因为y 轴⊥平面P AB ,所以平面P AB 的一个法向量为n 3=(0,1,0).由(1)知,平面P AC 的一个法向量为n 2=(-2,2,1). 设向量n 2和n 3的夹角为θ, 则cos θ=n 2·n 3|n 2|·|n 3|=25=105.由图可知,二面角B -P A -C 的平面角为锐角, 所以二面角B -P A -C 的余弦值为105. 题型四 求空间距离例4 已知正方形ABCD 的边长为4,CG ⊥平面ABCD ,CG =2,E ,F 分别是AB ,AD 的中点,则点C 到平面GEF 的距离为________.思维启迪 所求距离可以看作CG 在平面GEF 的法向量的投影. 答案61111解析 建立如图所示的空间直角坐标系Cxyz ,则CG →=(0,0,2),由题意易得平面GEF 的一个法向量为n =(1,1,3), 所以点C 到平面GEF 的距离为d =|n ·CG →||n |=61111.思维升华 求点面距一般有以下三种方法:①作点到面的垂线,点到垂足的距离即为点到平面的距离;②等体积法;③向量法.其中向量法在易建立空间直角坐标系的规则图形中较简便.(2012·大纲全国改编)已知直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为正方形,AB =2,CC 1=22,E 为CC 1的中点,则点A 到平面BED 的距离为 ( ) A .2 B. 3 C. 2 D .1 答案 D解析 以D 为原点,DA 、DC 、DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系(如图),则D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),C 1(0,2,22),E (0,2,2). 设n =(x ,y ,z )是平面BDE 的法向量. 则⎩⎪⎨⎪⎧n ·BD →=2x +2y =0n ·DE →=2y +2z =0.取y =1,则n =(-1,1,-2)为平面BDE 的一个法向量. 又DA →=(2,0,0),∴点A 到平面BED 的距离是 d =|n ·DA →||n |=|-1×2+0+0|(-1)2+12+(-2)2=1.利用空间向量求角典例:(12分)(2013·江西)如图,四棱锥P -ABCD 中,P A ⊥平面ABCD ,E 为BD 的中点,G为PD 的中点,△DAB ≌△DCB ,EA =EB =AB =1,P A =32,连接CE 并延长交AD 于F .(1)求证:AD ⊥平面CFG ;(2)求平面BCP 与平面DCP 的夹角的余弦值. 思维启迪 (1)可利用判定定理证明线面垂直;(2)利用AD 、AP 、AB 两两垂直建立空间直角坐标系,求两个平面的法向量,利用向量夹角求两个平面BCP 、DCP 夹角的余弦值. 规范解答(1)证明 在△ABD 中,因为E 为BD 的中点, 所以EA =EB =ED =AB =1,故∠BAD =π2,∠ABE =∠AEB =π3.因为△DAB ≌△DCB ,所以△EAB ≌△ECB , 从而有∠FED =∠BEC =∠AEB =π3,所以∠FED =∠FEA .[2分]故EF ⊥AD ,AF =FD ,又因为PG =GD ,所以FG ∥P A . 又P A ⊥平面ABCD ,[4分] 所以GF ⊥AD , 故AD ⊥平面CFG .[6分](2)解 以A 为坐标原点建立如图所示的坐标系,则A (0,0,0),B (1,0,0),C ⎝⎛⎭⎫32,32,0,D (0,3,0),P ⎝⎛⎭⎫0,0,32,故BC →=⎝⎛⎭⎫12,32,0,CP →=⎝⎛⎭⎫-32,-32,32,CD →=⎝⎛⎭⎫-32,32,0.[8分]设平面BCP 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·CP →=0,n 1·BC →=0,即⎩⎨⎧-32x 1-32y 1+32z 1=012x 1+32y 1=0令y 1=-3,则x 1=3,z 1=2,n 1=(3,-3,2).[9分] 同理求得面DCP 的法向量为n 2=(1,3,2),[10分] 从而平面BCP 与平面DCP 的夹角θ的余弦值为 cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|=44×22=24.[12分]利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角.第六步:反思回顾.查看关键点、易错点和答题规范.温馨提醒 (1)利用向量求角是高考的热点,几乎每年必考,主要是突出向量的工具性作用.(2)本题易错点是在建立坐标系时不能明确指出坐标原点和坐标轴,导致建系不规范. (3)将向量的夹角转化成空间角时,要注意根据角的概念和图形特征进行转化,否则易错.方法与技巧1.用向量来求空间角,各类角都可以转化为向量的夹角来计算.2.求点到平面的距离,若用向量知识,则离不开以该点为端点的平面的斜线段. 失误与防范1.利用向量求角,一定要注意将向量夹角转化为各空间角.因为向量夹角与各空间角的定 义、范围不同.2.求点到平面的距离,有时利用等体积法求解可能更方便.3.求二面角要根据图形确定所求角是锐角还是钝角.A 组 专项基础训练 (时间:40分钟)一、选择题1. 已知正方体ABCD —A 1B 1C 1D 1如图所示,则直线B 1D 和CD 1所成的角为( )A .60°B .45°C .30°D .90°答案 D解析 以A 为原点,AB 、AD 、AA 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,设正方体边长为1,则射线CD 1、B 1D 的方向向量分别是CD 1→=(-1,0,1),B 1D →=(-1,1,-1),cos 〈CD 1→,B 1D →〉=1+0-12×3=0,∴直线B 1D 和CD 1所成的角为90°.2. 如图,四棱锥S -ABCD 的底面为正方形,SD ⊥底面ABCD ,则下列结论中不正确的是( )A .AC ⊥SB B .AB ∥平面SCDC .SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角 D .AB 与SC 所成的角等于DC 与SA 所成的角 答案 D解析 ∵四边形ABCD 是正方形,∴AC ⊥BD . 又∵SD ⊥底面ABCD ,∴SD ⊥AC .其中SD ∩BD =D ,∴AC ⊥平面SDB ,从而AC ⊥SB . 故A 正确;易知B 正确;设AC 与DB 交于O 点,连接SO .则SA 与平面SBD 所成的角为∠ASO ,SC 与平面SBD 所成的角为∠CSO , 又OA =OC ,SA =SC ,∴∠ASO =∠CSO . 故C 正确;由排除法可知选D.3. (2013·山东)已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P 为底面A 1B 1C 1的中心,则P A 与平面ABC 所成角的大小为 ( )A.5π12B.π3C.π4D.π6 答案 B解析 如图所示:S ABC =12×3×3×sin π3=334.∴111ABC A B C V -=S ABC ×OP =334×OP =94,∴OP = 3.又OA =32×3×23=1, ∴tan ∠OAP =OP OA =3,又0<∠OAP <π2,∴∠OAP =π3.4. 在正方体ABCD —A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A.12B.23C.33D.22 答案 B解析 以A 为原点建立如图所示的空间直角坐标系Axyz ,设棱长为1, 则A 1(0,0,1),E ⎝⎛⎭⎫1,0,12,D (0,1,0), ∴A 1D →=(0,1,-1),A 1E →=⎝⎛⎭⎫1,0,-12, 设平面A 1ED 的一个法向量为n 1=(1,y ,z ), 则⎩⎪⎨⎪⎧y -z =0,1-12z =0, ∴⎩⎪⎨⎪⎧y =2,z =2.∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1),∴cos 〈n 1,n 2〉=23×1=23.即所成的锐二面角的余弦值为23.5. 在四面体P -ABC 中,P A ,PB ,PC 两两垂直,设P A =PB =PC =a ,则点P 到平面ABC的距离为( )A.63 B.33a C.a3D.6a 答案 B 解析根据题意,可建立如图所示的空间直角坐标系Pxyz ,则P (0,0,0),A (a,0,0),B (0,a,0),C (0,0,a ).过点P 作PH ⊥平面ABC ,交平面ABC 于点H ,则PH 的长即为点P 到平面ABC 的距离. ∵P A =PB =PC ,∴H 为△ABC 的外心. 又∵△ABC 为正三角形,∴H 为△ABC 的重心, 可得H 点的坐标为⎝⎛⎭⎫a 3,a 3,a 3. ∴PH =⎝⎛⎭⎫a 3-02+⎝⎛⎭⎫a 3-02+⎝⎛⎭⎫a 3-02=33a .∴点P 到平面ABC 的距离为33a . 二、填空题6. 已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角的大小为________. 答案 π4或3π4解析 cos 〈m ,n 〉=m ·n |m ||n |=22,∴〈m ,n 〉=π4. ∴两平面所成二面角的大小为π4或3π4.7. 如图所示,在三棱柱ABC —A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E 、F 分别是棱AB 、BB 1的中点,则直线EF 和 BC 1所成的角是________. 答案 60°解析 以BC 为x 轴,BA 为y 轴,BB 1为z 轴,建立空间直角坐标系.设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1),则EF →=(0,-1,1),BC 1→=(2,0,2), ∴EF →·BC 1→=2, ∴cos 〈EF →,BC 1→〉=22×22=12,∴EF 和BC 1所成的角为60°.8. 正方体ABCD -A 1B 1C 1D 1的棱长为1,E 、F 分别为BB 1、CD 的中点,则点F 到平面A 1D 1E的距离为________. 答案3510解析 以A 为坐标原点,AB 、AD 、AA 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示, 则A 1(0,0,1),E (1,0,12),F (12,1,0),D 1(0,1,1).∴A 1E →=(1,0,-12),A 1D 1→=(0,1,0).设平面A 1D 1E 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ n ·A 1E →=0,n ·A 1D 1→=0,即⎩⎪⎨⎪⎧x -12z =0,y =0.令z =2,则x =1.∴n =(1,0,2). 又A 1F →=(12,1,-1),∴点F 到平面A 1D 1E 的距离为 d =|A 1F →·n ||n |=|12-2|5=3510.三、解答题9. 如图,四棱锥P —ABCD 中,PD ⊥平面ABCD ,P A 与平面ABD所成的角为60°,在四边形ABCD 中,∠ADC =∠DAB =90°, AB =4,CD =1,AD =2.(1)建立适当的坐标系,并写出点B ,P 的坐标; (2)求异面直线P A 与BC 所成的角的余弦值. 解 (1)建立如图空间直角坐标系,∵∠ADC =∠DAB =90°,AB =4,CD =1,AD =2, ∴A (2,0,0),C (0,1,0),B (2,4,0).由PD ⊥平面ABCD ,得∠P AD 为P A 与平面ABCD 所成的角, ∴∠P AD =60°.在Rt △P AD 中,由AD =2, 得PD =23,∴P (0,0,23).(2)∵P A →=(2,0,-23),BC →=(-2,-3,0), ∴cos 〈P A →,BC →〉 =2×(-2)+0×(-3)+(-23)×0413=-1313,∴异面直线P A 与BC 所成的角的余弦值为1313.10.(2013·天津)如图,四棱柱ABCD -A 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ∥DC ,AB ⊥AD ,AD =CD =1,AA 1=AB =2,E 为棱 AA 1的中点. (1)证明:B 1C 1⊥CE ;(2)求二面角B 1-CE -C 1的正弦值;(3)设点M 在线段C 1E 上,且直线AM 与平面ADD 1A 1所成角的正弦值为26,求线段AM 的长.方法一 如图,以点A 为原点,以AD ,AA 1,AB 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,依题意得A (0,0,0),B (0,0,2),C (1,0,1),B 1(0,2,2),C 1(1,2,1),E (0,1,0). (1)证明 易得B 1C 1→=(1,0,-1),CE →=(-1,1,-1),于是B 1C 1→·CE →=0,所以B 1C 1⊥CE . (2)解 B 1C →=(1,-2,-1). 设平面B 1CE 的法向量m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·B 1C →=0,m ·CE →=0,即⎩⎪⎨⎪⎧x -2y -z =0,-x +y -z =0.消去x ,得y +2z =0,不妨令z =1,可得一个法向量为m =(-3,-2,1).由(1)知,B 1C 1⊥CE ,又CC 1⊥B 1C 1,可得B 1C 1⊥平面CEC 1,故B 1C 1→=(1,0,-1)为平面CEC 1的一个法向量.于是cos 〈m ,B 1C 1→〉=m ·B 1C 1→|m |·|B 1C 1→|=-414×2=-277,从而sin 〈m ,B 1C 1→〉=217,所以二面角B 1-CE -C 1的正弦值为217. (3)解 AE →=(0,1,0),EC 1→=(1,1,1),设EM →=λEC 1→=(λ,λ,λ),0≤λ≤1,有AM →=AE →+EM →=(λ,λ+1,λ).可取AB →=(0,0,2)为平面ADD 1A 1的一个法向量. 设θ为直线AM 与平面ADD 1A 1所成的角,则 sin θ=|cos 〈AM →,AB →〉|=|AM →·AB →||AM →|·|AB →|=2λλ2+(λ+1)2+λ2×2=λ3λ2+2λ+1, 于是λ3λ2+2λ+1=26,解得λ=13(负值舍去),所以AM = 2.方法二 (1)证明 因为侧棱CC 1⊥底面A 1B 1C 1D 1,B 1C 1⊂平面A 1B 1C 1D 1,所以CC 1⊥B 1C 1.经计算可得B 1E =5,B 1C 1=2,EC 1=3,从而B 1E 2=B 1C 21+EC 21,所以在△B 1EC 1中,B 1C 1⊥C 1E ,又CC 1,C 1E ⊂平面CC 1E ,CC 1∩C 1E =C 1, 所以B 1C 1⊥平面CC 1E ,又CE ⊂平面CC 1E ,故B 1C 1⊥CE .(2)解 过B 1作B 1G ⊥CE 于点G ,连接C 1G .由(1)知,B 1C 1⊥CE ,故CE ⊥平面B 1C 1G ,得CE ⊥C 1G ,所以∠B 1GC 1为二面角B 1-CE -C 1的平面角.在△CC 1E 中,由CE =C 1E =3,CC 1=2,可得C 1G =263.在Rt △B 1C 1G 中,B 1G =423,所以sin ∠B 1GC 1=217, 即二面角B 1-CE -C 1的正弦值为217. (3)解 连接D 1E ,过点M 作MH ⊥ED 1于点H ,可得MH ⊥平面ADD 1A 1,连接AH ,AM ,则∠MAH 为直线AM 与平面ADD 1A 1所成的角. 设AM =x ,从而在Rt △AHM 中,有 MH =26x ,AH =346x . 在Rt △C 1D 1E 中,C 1D 1=1,ED 1=2, 得EH =2MH =13x .在△AEH 中,∠AEH =135°,AE =1, 由AH 2=AE 2+EH 2-2AE ·EH cos 135°, 得1718x 2=1+19x 2+23x , 整理得5x 2-22x -6=0,解得x =2(负值舍去). 所以线段AM 的长为 2.B 组 专项能力提升 (时间:30分钟)1. 过正方形ABCD 的顶点A 作线段P A ⊥平面ABCD ,若AB =P A ,则平面ABP 与平面CDP所成的二面角为( )A .30°B .45°C .60°D .90° 答案 B解析 建立如图所示的空间直角坐标系,设AB =P A =1,知A (0,0,0),B (1,0,0),D (0,1,0),C (1,1,0),P (0,0,1) 由题意得,AD ⊥平面ABP ,设E 为PD 的中点, 连接AE ,则AE ⊥PD ,又∵CD ⊥平面P AD ,∴AE ⊥CD , 又PD ∩CD =D ,∴AE ⊥平面CDP .∴AD →=(0,1,0),AE →=(0,12,12)分别是平面ABP 、平面CDP 的法向量,而〈AD →,AE →〉=45°,∴平面ABP 与平面CDP 所成的二面角为45°.2. 在棱长为2的正方体ABCD —A 1B 1C 1D 1中,O 是底面ABCD 的中点,E ,F 分别是CC 1,AD 的中点,那么异面直线OE 和FD 1所成的角的余弦值等于________. 答案155解析 以D 为原点,分别以DA 、DC 、DD 1为x 轴、y 轴、z 轴建立空间直角坐标系,∴F (1,0,0),D 1(0,0,2),O (1,1,0),E (0,2,1), ∴FD 1→=(-1,0,2), OE →=(-1,1,1),∴cos 〈FD 1→,OE →〉=1+25·3=155.3. 设正方体ABCD -A 1B 1C 1D 1的棱长为2,则点D 1到平面A 1BD 的距离是________.答案233解析 如图建立空间直角坐标系,则D 1(0,0,2),A 1(2,0,2),D (0,0,0),B (2,2,0), ∴D 1A 1→=(2,0,0),DA 1→=(2,0,2),DB →=(2,2,0),设平面A 1BD 的一个法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DA 1→=2x +2z =0n ·DB →=2x +2y =0.令x =1,则n =(1,-1,-1),∴点D 1到平面A 1BD 的距离 d =|D 1A 1→·n ||n |=23=233.4. 如图,在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 在棱AB 上移动. (1)证明:D 1E ⊥A 1D ;(2)当E 为AB 的中点时,求点E 到面ACD 1的距离; (3)AE 等于何值时,二面角D 1-EC -D 的大小为π4.解 以D 为坐标原点,直线DA ,DC ,DD 1分别为x ,y ,z 轴,建立空间直角坐标系,设AE =x ,则D (0,0,0),A 1(1,0,1),D 1(0,0,1),E (1,x,0),A (1,0,0),C (0,2,0).(1)∵DA 1→=(1,0,1),D 1E →=(1,x ,-1),∴DA 1→·D 1E →=(1,0,1)·(1,x ,-1)=0,故DA 1→⊥D 1E →.(2)因为E 为AB 的中点,则E (1,1,0),从而AC →=(-1,2,0),D 1E →=(1,1,-1),AD 1→=(-1,0,1),设平面ACD 1的法向量为n =(a,1,c ),则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD 1→=0,也即⎩⎪⎨⎪⎧ -a +2=0,-a +c =0,得⎩⎪⎨⎪⎧ a =2,c =2,从而n =(2,1,2),所以点E 到平面ACD 1的距离为h =|D 1E →·n ||n |=2+1-23=13.(3)设平面CD 1E 的法向量m =(m,1,n ),从而CE →=(1,x -2,0),D 1C →=(0,2,-1),DD 1→=(0,0,1),由⎩⎪⎨⎪⎧m ·D 1C →=0,m ·CE →=0,即⎩⎪⎨⎪⎧2-n =0,m +x -2=0,得m =(2-x,1,2),依题意得:cos π4=|m ·DD 1→||m ||DD 1→|=22,∴2(x -2)2+5=22,解得x 1=2+3(不合题意,舍去),x 2=2-3,∴AE =2-3时,二面角D 1-EC -D 的大小为π4.5. (2013·北京)如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形.平面ABC ⊥平面AA 1C 1C ,AB =3,BC =5.(1)求证:AA 1⊥平面ABC ; (2)求二面角A 1-BC 1-B 1的余弦值;(3)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B ,并求BD BC 1的值. (1)证明 在正方形AA 1C 1C 中,A 1A ⊥AC .又平面ABC ⊥平面AA 1C 1C ,且平面ABC ∩平面AA 1C 1C =AC ,∴AA 1⊥平面ABC .(2)解在△ABC 中,AC =4,AB =3,BC =5,∴BC 2=AC 2+AB 2,AB ⊥AC∴以A 为坐标原点,建立如图所示空间直角坐标系Axyz .A 1(0,0,4),B (0,3,0),C 1(4,0,4),B 1(0,3,4),A 1C 1→=(4,0,0),A 1B →=(0,3,-4),B 1C 1→=(4,-3,0),BB 1→=(0,0,4).设平面A 1BC 1的法向量n 1=(x 1,y 1,z 1),平面B 1BC 1的法向量n 2=(x 2,y 2,z 2).∴⎩⎪⎨⎪⎧A 1C 1→·n 1=0,A 1B →·n 1=0⇒⎩⎪⎨⎪⎧ 4x 1=03y 1-4z 1=0, ∴取向量n 1=(0,4,3)由⎩⎪⎨⎪⎧ B 1C 1→·n 2=0,BB 1→·n 2=0⇒⎩⎪⎨⎪⎧4x 2-3y 2=0,4z 2=0. 取向量n 2=(3,4,0)∴cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=165×5=1625. 由题意知二面角A 1-BC 1-B 1为锐角,所以二面角A 1-BC 1-B 1的余弦值为1625. (3)证明 设D (x ,y ,z )是直线BC 1上一点,且BD →=λBC 1→.∴(x ,y -3,z )=λ(4,-3,4),解得x =4λ,y =3-3λ,z =4λ.∴AD →=(4λ,3-3λ,4λ)又AD⊥A1B,∴0+3(3-3λ)-16λ=0则λ=925,因此BDBC1=925.。

1.4.2 用空间向量研究距离、夹角问题(课件)

1.4.2 用空间向量研究距离、夹角问题(课件)

二面角的大小为
.
π4或34π 解析: cos〈m,n〉=|mm|·|nn|= 22,∴〈m,n〉=π4. ∴两平面所成二面角的大小为π4或34π.
经典例题
角度1:点线距
题型一 利用空间向量求距离
用向量法求点到直线的距离时需注意以下几点: (1)不必找点在直线上的垂足以及垂线段. (2)在直线上可以任意选点,但一般选较易求得坐标的特殊点. (3)直线的方向向量可以任取,但必须保证计算正确.
则 在法向量 n 上的投影向量的长度即为异面直线 a,b 的距离,所以距离为
.
自主学习
二.空间角的向量求法 空间角包括线线角、线面角、二面角,这三种角的定义确定了它
们相应的取值范围,结合它们的取值范围可以用向量法进行求解.
自主学习
角的分类
向量求法
范围
两异面直线 l1 与 l2 所成的角为 θ
设 l1 与 l2 的方向向量分别为 u,v,
经典例题
题型一 利用空间向量求距离
例 2 在三棱锥 S-ABC 中,△ABC 是边长为 4 的正三角形,平面 SAC⊥平面 ABC,
SA=SC=2 3,M,N 分别为 AB,SB 的中点,如图所示.求点 B 到平面 CMN 的 距离.
取 AC 的中点 O,连接 OS,OB. ∵SA=SC,AB=BC,∴AC⊥SO,AC⊥BO. ∵平面 SAC⊥平面 ABC,平面 SAC∩平面 ABC=AC, ∴SO⊥平面 ABC. 又 BO⊂平面 ABC,∴SO⊥BO. 又∵△ABC 为正三角形,O 为 AC 的中点,∴AO⊥BO. 如图所示,分别以 OA,OB,OS 所在直线为 x 轴,y 轴,z 轴, 建立空v>|
则 cosθ=
|u·v| = |u||v|

专题8.8 立体几何中的向量方法(二)—求空间角与距离(重难点突破)(解析版)

专题8.8  立体几何中的向量方法(二)—求空间角与距离(重难点突破)(解析版)

专题8.7 立体几何中的向量方法(二)求空间角与距离一、考纲要求1.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题;2.了解向量方法在研究立体几何问题中的应用.二、考点梳理考点一 异面直线所成的角设a ,b 分别是两异面直线l 1,l 2的方向向量,则a 与b 的夹角β l 1与l 2所成的角θ范围 (0,π) ⎝⎛⎦⎤0,π2 求法cos β=a ·b|a ||b |cos θ=|cos β|=|a ·b ||a ||b |考点二 求直线与平面所成的角设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,则sin θ=|cos 〈a ,n 〉|=|a ·n ||a ||n |.考点三 求二面角的大小(1)如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=__〈AB →,CD →〉.(2)如图②③,n 1,n 2 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 【特别提醒】1.线面角θ的正弦值等于直线的方向向量a 与平面的法向量n 所成角的余弦值的绝对值,即sin θ=|cos 〈a ,n 〉|,不要误记为cos θ=|cos 〈a ,n 〉|.2.二面角与法向量的夹角:利用平面的法向量求二面角的大小时,当求出两半平面α,β的法向量n 1,n 2时,要根据向量坐标在图形中观察法向量的方向,来确定二面角与向量n 1,n 2的夹角是相等,还是互补.三、题型分析例1. (黑龙江鹤岗一中2019届期末)如图,在空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,则OA 与BC 所成角的余弦值为( )A.3-225B.2-26C.12D.32【答案】A【解析】因为BC →=AC →-AB →,所以OA →·BC →=OA →·AC →-OA →·AB →=|OA →||AC →|cos 〈OA →,AC →〉-|OA →||AB →|cos 〈OA →,AB →〉=8×4×cos 135°-8×6×cos 120°=-162+24. 所以cos 〈OA →,BC →〉=OA →·BC →|OA →||BC →|=24-1628×5=3-225.即OA 与BC 所成角的余弦值为3-225.【变式训练1-1】、(天津新华中学2019届高三质检)如图所示,四棱柱ABCD -A 1B 1C 1D 1中,底面为平行四边形,以顶点A 为端点的三条棱长都为1,且两两夹角为60°.(1)求AC 1的长; (2)求证:AC 1⊥BD ;(3)求BD 1与AC 夹角的余弦值.【解析】(1) 记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, ∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×⎝⎛⎭⎫12+12+12=6, ∴|AC →1|=6,即AC 1的长为 6. (2)证明 ∵AC 1→=a +b +c ,BD →=b -a ,∴AC 1→·BD →=(a +b +c )·(b -a )=a ·b +|b |2+b ·c -|a |2-a ·b -a ·c =b ·c -a ·c =|b ||c |cos 60°-|a ||c |cos 60°=0.∴AC 1→⊥BD →,∴AC 1⊥BD .(3)解 BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3, BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1.∴cos 〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66.∴AC 与BD 1夹角的余弦值为66.例2、(2018年天津卷)如图,且AD =2BC ,,且EG =AD ,且CD =2FG ,,DA =DC =DG =2.(I )若M 为CF 的中点,N 为EG 的中点,求证:;(II )求二面角的正弦值;(III )若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ).【解析】依题意,可以建立以D 为原点, 分别以,,的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),E (2,0,2),F (0,1,2),G (0,0,2),M (0,,1),N (1,0,2).(Ⅰ)依题意=(0,2,0),=(2,0,2).设n0=(x,y,z)为平面CDE的法向量,则即不妨令z=–1,可得n0=(1,0,–1).又=(1,,1),可得,又因为直线MN平面CDE,所以MN∥平面CDE.(Ⅱ)依题意,可得=(–1,0,0),,=(0,–1,2).设n=(x,y,z)为平面BCE的法向量,则即不妨令z=1,可得n=(0,1,1).设m=(x,y,z)为平面BCF的法向量,则即不妨令z=1,可得m=(0,2,1).因此有cos<m,n>=,于是sin<m,n>=.所以,二面角E–BC–F的正弦值为.(Ⅲ)设线段DP的长为h(h∈[0,2]),则点P的坐标为(0,0,h),可得.易知,=(0,2,0)为平面ADGE的一个法向量,故,由题意,可得=sin60°=,解得h=∈[0,2].所以线段的长为.【变式训练2-1】、(吉林长春市实验中学2019届高三模拟)如图所示,在四棱锥P-ABCD中,底面ABCD 是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,过点E作EF⊥PB于点F.求证:(1)PA ∥平面EDB ; (2)PB ⊥平面EFD .【证明】以D 为坐标原点,射线DA ,DC ,DP 分别为x 轴、y 轴、z 轴的正方向建立如图所示的空间直角坐标系D -xyz .设DC =a .(1)连接AC 交BD 于点G ,连接EG .依题意得A (a,0,0),P (0,0,a ),C (0,a,0),E ⎝⎛⎭⎫0,a 2,a 2. 因为底面ABCD 是正方形,所以G 为AC 的中点故点G 的坐标为⎝⎛⎭⎫a 2,a 2,0,所以PA ―→=(a,0,-a ),EG ―→=⎝⎛⎭⎫a2,0,-a 2, 则PA ―→=2EG ―→,故PA ∥EG .而EG ⊂平面EDB ,PA ⊄平面EDB ,所以PA ∥平面EDB . (2)依题意得B (a ,a,0),所以PB ―→=(a ,a ,-a ).又DE ―→=⎝⎛⎭⎫0,a 2,a 2, 故PB ―→·DE ―→=0+a 22-a 22=0,所以PB ⊥DE ,所以PB ⊥DE .由题可知EF ⊥PB ,且EF ∩DE =E ,所以PB ⊥平面EFD .例3、如图,在四棱锥PABCD 中,底面ABCD 是矩形,PA ⊥底面ABCD ,E 是PC 的中点.已知AB =2,AD =22,PA =2,求异面直线BC 与AE 所成的角的大小.【解析】 建立如图所示的空间直角坐标系,则A(0,0,0),B(2,0,0),C(2,22,0),E(1,2,1),AE →=(1,2,1),BC →=(0,22,0).设AE →与BC →的夹角为θ,则cosθ=AE →·BC →|AE →|·|BC →|=42×22=22,所以θ=π4,所以异面直线BC 与AE 所成的角的大小是π4.【变式训练3-1】、 如图所示,在空间直角坐标系中有直三棱柱ABCA 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为________.【答案】55【解析】 不妨令CB =1,则CA =CC 1=2,可得C(0,0,0),B(0,0,1),C 1(0,2,0),A(2,0,0),B 1(0,2,1),所以BC 1→=(0,2,-1),AB 1→=(-2,2,1),所以cos 〈BC 1→,AB 1→〉=BC 1→·AB 1→|BC 1→|·|AB 1→|=4-15×9=15=55>0,所以BC 1→与AB 1→的夹角即为直线BC 1与直线AB 1的夹角,所以直线BC 1与直线AB 1夹角的余弦值为55.【变式训练3-2】、如图,已知三棱柱ABC -A 1B 1C 1,平面A 1ACC 1⊥平面ABC ,∠ABC =90°,∠BAC =30°,A 1A =A 1C =AC ,E ,F 分别是AC ,A 1B 1的中点. (1)证明:EF ⊥BC ;(2)求直线EF 与平面A 1BC 所成角的余弦值.【解析】 (1)证明:连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E -xyz . 不妨设AC =4,则A 1(0,0,23),B (3,1,0),B 1(3,3,23),F ⎝⎛⎭⎫32,32,23,C (0,2,0). 因此,EF ―→=⎝⎛⎭⎫32,32,23,BC ―→=(-3,1,0).由EF ―→·BC ―→=0得EF ⊥BC .(2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得BC ―→=(-3,1,0),A 1C ―→=(0,2,-23).设平面A 1BC 的法向量为n =(x ,y ,z ).由⎩⎪⎨⎪⎧BC ―→·n =0,A 1C ―→·n =0,得⎩⎨⎧-3x +y =0,y -3z =0.取n =(1, 3,1),故sin θ=|cos 〈EF ―→,n 〉|=|EF ―→·n ||EF ―→|·|n |=45,∴cos θ=35.因此,直线EF 与平面A 1BC 所成的角的余弦值为35.。

用空间向量研究距离、夹角问题全文

用空间向量研究距离、夹角问题全文

P• β
d
n Q
αA
例6 如图示,在棱长为1的正方体ABCD-A1B1C1D1中,E为线段AB的中点,F为线段
AB的中点.
z
(1) 求点B到直线AC1的距离;
D
C
(2) 求直线FC到平面AEC1的距离.
解 : (1) 如图示,以D1为原点建立空间直角坐标系, 则有
A
F
B
B(1,1,1), A(1, 0,1), C1(0,1, 0).
EF=l,求公垂线AA′的长.
A′ m E
a
解:∵ EF =EA+ AA+ AF, ∴EF 2 =(EA+ AA+ AF )2
A
n
Fb
2
2
2
=EA + AA + AF +2(EA AA+AA AF +AF AA)
m2 d 2 n2 2mncos .
∴d l2 m2 n2 2mncos .
(1, 0,
1 ), 2
A1 A
(0, 0, 1).
设平面AB1E的一个法向量为n ( x, y, z) ,则
y z 0

x
1 2
z
0
,
取z
2, 则x
1,
y
2.
D
A x
F
C
y
B
∴平面AB1E的一个法向量为n (1, 2, 2).
点A1到平面AB1E 的距离为 |
A1 A n |n|
|
2 3
.
D1
∴AB (0,1,0), AC1 (1,1, 1).
A1
直线AC1 的单位方向向量为u

向量法求空间距离和角

向量法求空间距离和角

—的平而角“a®牆用向量方法求空间角和距离在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解 法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向 量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,木专题将运用 向量方法简捷地解决这些问题.1求空间角问题空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角.(1)求异而直线所成的角.=arcsinli I/II H I法一、在Q 内N 丄/,在0内b 丄/,其方向如图,则二面角设方、乙分别为异而直线a 、b 的方向向量, a 则两异而直线所成的角 a — arccos 1 而Q 所成的角方向向量,;;是平而&的法 (3)求二而法二、设入云是二而角a-/-0的两个半平而的法向量,其方向一个指向内侧,另一个指向外侧,则二面角a-1-p的平而角a =arccos彳"22求空间距离问题构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,象异而直线间的距离、线而距离;而而距离都可化为点而距离来求.(1)求点而距离法一、设;;是平面Q的法向量,在a内取一点B,则A■ ■■I“・•到&的距离d =1 AB II cos 0\=空叫\n\法二、设AO丄a于O,利用AO丄a和点0在&内的向量表示,可确定点O的位置,从而求出I走1・(2)求异而直线的距离二 ___ ?—法一、找平而0使比0且砂0,则异而直线a、b的距离就转化为直线a到平面0的距离,又转化为点A到平面0的距离.法二、在a上取一点A,在b上取一点B,设方、b分别为异面直线a、b的方向向量,求;;(万丄方,齐丄乙),则・・D于点而距异而直线a、b的距离心而llcos弘空叫(此方法移植丨川(I )求异而直线DE 与FG 所成的角;rh 向量法求空间距离和角例1.如图,在棱长为2的正方体ABCD-gCQ 中,分别是棱4久心的中点•(II )求g 和ffiEFBD 所成的角;(III)求Q 到面EFBD 的距离解:(I )记异而直线DE 与g 所成的角为—则&等于向量码运的夹角或其补角,■ D E.FC 、|cos a =1—:_ I \DE\.\FC {\(II)缈初万冷万石)•(两霸頁艸坐标系D-小, —I 一 ・• II DE bl FC [丨呢= (1,0,2),面= (220)设面E 単翌進|=二・・・a 回風X^s£=("l ) A /5V5 5— _v 、 DE ・H = 0<DB • /z = 0得 7 = (-221)又 BC ; = (-2,0,2)记g 和而EFBD 所成的角为&则 sin 0 =1 cos 〈BC], n) 1=1 ."9 ? 1=I BC { II7? I 2 ・•・Bq 和面EFBD 所成的角为冬.4(III)点目到ffiEFBD 的距离d 等于向量丽;在而EFBD 的法向量上的投影的绝对值,BiTl 33.完成这3道小题后, 总结:例2・己知A BCD 是边长为1的正方形,四边形DA ・ q=0DC ・ q = 0向量法求空间距离和角设计说明:1・作为本专题的例1,首先选择以一个容易建立空间直角坐标系 的多而体 正方体为载体,来说明空间角和距离的向量求法易于学生理解.2.解决(1)后,可让学生进一步求这两条异而直线的距离,并让学生体会一下:如果用传统方法恐怕很难(不必多讲,高考对公垂线的作法不作要求).角、距离还是证明平行、垂直(是前者的特殊情况),都可用向量方法来解决, 向量方法可以人人学会,它程序化,不需技巧.AA'B'B 是矩形,平丄平面A3CD 。

高考数学复习考点知识讲解课件40 向量方法求空间角 空间距离

高考数学复习考点知识讲解课件40 向量方法求空间角 空间距离


|cos

→ AB1

→ EB1

|

-12,
23,-1·0,

3 2
23,0=
46.故选
A.
— 13 —
(新教材) 高三总复习•数学
— 返回 —
4.已知两平面的法向量分别为 m=(0,1,0),n=(0,1,1),则两平面所成的二面角为( C )
A.45°
B.135°
C.45°或 135° D.90°
= 2,则异面直线 AB 与 CD 所成角的余弦值为( B )
A.
2 3
B.
2 4
C.
14 4
D.-
2 4
— 19 —
(新教材) 高三总复习•数学
— 返回 —
[解析] 取 BD 的中点 O,连接 AO,OC,由 CA=CB=CD=BD=2,AB=AD= 2,
得 AO⊥BD,CO⊥BD,且 OC= 3,AO=1.在△AOC 中,AC2=AO2+OC2,故 AO⊥OC,
方向向量为 u,平面 α 的法向量为 n,则 sinθ=|cos u,n |=|uu|·|nn|= |u||n| .
— 4—
(新教材) 高三总复习•数学
— 返回 —
3.平面与平面的夹角 如图,平面 α 与平面 β 相交,形成四个二面角,我们把这四个二面角中不大于 90°的 二面角称为平面 α 与平面 β 的夹角.
(新教材) 高三总复习•数学
— 返回 —
利用向量求线面角的 2 种方法 (1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的 夹角(或其补角). (2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取 其余角就是斜线与平面所成的角.

向量法求空间的距离和角

向量法求空间的距离和角

所以异面直线BD与D1A间的距离为
3 。 3
(2) A1 B1 = (0,1, 0), 设n = ( x, y, z )是平面A1DB的一 个法向量,因为DA1 = (1, 0,1), DB = (1,1, 0), ì ì x +z = 0 nDA1 = 0 镲 由眄 即 取x = - 1, 镲 î x+y =0 î nDB = 0 | nA1 B1 | 1 2 于是n = (-1,1,1, ),且 = = 。 2 |n| 2 2 所以点B1到平面A1 BD的距离为 。 2
例1:如图1所示: 三棱柱ABC - A1 B1C1中,CA=CB, AB = AA1, ? BAA1 60o, ( 1)求证:AB^ A1C (2)若平面ABC ^ 平面AA1 B1 B, AB =CB,求直线A1C与平面BB1C1C 所成角的正弦值。
C C1
B A A1
B1
图1
C
C1
O
B A1
Z
解:由(1)知OC ^ AB,OA1 ^ AB, 又平面ABC ^ 平面AA1 B1 B,交线 为AB,所以OC ^ 平面AA1 B1 B, 故OA、OA1、OC两两相互垂直。 建立如图所示的空间直角坐标系 A
O
C
C1
B A1
B1 图1-2
X o - xyz 设AB = 2,由题设知A(1, 0, 0)、B(- 1, 0, 0)、C (0, 0, 3)、A1 (0, 3, 0), 则BC = (1, 0, 3)、 BB1 = AA1 = (- 1, 3, 0)、 A1C = (0, - 3, 3). 设n = ( x, y, z )是平面BBCC的法向量,则 ì x + 3z = 0 ì nBC = 0 镲 即 可取n = ( 3,1, -1), 眄 镲 î nBB1 = 0 î - x + 3y = 0 nA1C 10 故 cos < n, A1C >= =. 5 | n | ×| A1C |
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用向量方法求空间角和距离
在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题.
1 求空间角问题
空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角. (1)求异面直线所成的角
设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos ||||||
a b
a b (2)求线面角
设l 是斜线l 的方向向量,n 是平面α的法
向量, 则斜线l 与平

α
所成的角
α=arcsin |
|||||
l n
l n (3)求二面角
法一、在α内a l ⊥,在β内b l ⊥,其方向如图,则二面角
l αβ--的平面角α=arccos
||||
a b
a b
法二、设12,,n n 是二面角l αβ--的两
个半平面的法向量,其方向一个指向内侧,另一个指向外侧,则二面角
l αβ--的平面角α=12
12arccos
||||
n n n n 2 求空间距离问题
构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,象异面直线间的距离、线面距离;面面距离都可化为点面距离来求. (1)求点面距离
法一、设n 是平面α的法向量,在α内取一点B, 则 A
到α的距离||
|||cos |||
AB n d AB n θ==
法二、设AO α⊥于O,利用AO α⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||AO .
(2)求异面直线的距离
法一、找平面β使b β⊂且a β,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离.
法二、在a 上取一点A, 在b 上取一点B, 设a 、b 分别
为异面直线a 、b 的方向向量,求n (n a ⊥,n b ⊥),则异面直线a 、b 的距离||
|||cos |||
AB n d AB n θ==(此方法移植于点面距离的求法).
例1.如图,在棱长为2的正方体1111ABCD A BC D -中,E 、F 分别是棱1111,A D A B 的中点. (Ⅰ)求异面直线1DE FC 与所成的角; (II )求1BC 和面EFBD 所成的角; (III )求1B 到面EFBD 的距离
解:(Ⅰ)记异面直线1DE FC 与所成的角为α, 则α等于向量1DE FC 与的夹角或其补角,
(II )如图建立空间坐标系D xyz -, 则
(1,0,2)DE =,(2,2,0)DB =
设面
向量为(,,1)n x y = 由0
DE n DB n ⎧
⋅=⎪

⋅=⎪⎩ 得(2,2,1)n =- 又1(2,0,2)BC =- 记1BC 和面EFBD 所成的角为θ 则 1112
sin |cos ,||
|2||||
BC n BC n BC n θ⋅=〈〉== ∴ 1BC 和面EFBD 所成的角为4
π
. (III )点1B 到面EFBD 的距离d等于
向量1BB 在面EFBD 的法向量上的投影的绝对值,
1||||
BB n d n ∴=
=1
3 1
1
||||11111
1cos ||
()()|
|
||||222|
|,arccos
55DE FC DE FC DD D E FB B C DE FC αα∴=++=-==∴=
设计说明:1.作为本专题的例1,首先选择以一个容易建立空间直角坐标系的多面体―――正方体为载体,来说明空间角和距离的向量求法易于学生理解. 2.解决(1)后,可让学生进一步求这两条异面直线的距离,并让学生体会一下:如果用传统方法恐怕很难(不必多讲,高考对公垂线的作法不作要求). 3.完成这3道小题后,总结:对于易建立空间直角坐标系的立几题,无论求角、距离还是证明平行、垂直(是前者的特殊情况),都可用向量方法来解决, 向量方法可以人人学会,它程序化,不需技巧.
例2.如图,三棱柱中,已知A BCD 是边长为1的正方形,四边形
B B A A '' 是矩形,。

平面平面ABCD B B A A ⊥''
(Ⅰ)若A A '=1,求直线AB 到面'DAC 的距离.
(II ) 试问:当A A '的长度为多少时,二面角
A C A D -'-的大小为? 60
解:(Ⅰ)如图建立空间坐标系A xyz -, 则 '(1,1,)DA a =- (0,1,0)DC =
设面'
DAC 的法向量为1(,,1)n x y = 则'1100
DA n DC n ⎧⋅=⎪⎨⋅=⎪⎩
得1(,0,1)n a =
直线AB 到面'DAC 的距离d就等于点A到面'
DAC 的距离, 也等于向量AD 在面'DAC 的法向量上的投影的绝对值,
11||2
2||
AD n d n ∴=
=
(II )易得面'
AAC 的法向量21
1(,,0)22
n =-
∴向量12,n n 的夹角为
60
由12
121211
cos ,2
||||
a n n n n n n ⋅〈〉=
=
=
得 1a = ∴ 当A A '=1时,二面角A C A D -'-的大小为60.
设计说明:1.通过(Ⅰ),复习线面距离转化为点面距离再转化为一向量在一向量(法向量)投影的绝对值的解题思路与方法.
2.通过(II ),复习面面角转化为两向量的夹角或其补角的方法,也可借此机会说明为什么这两个角相等或互补,就没有其他情况.
例3.正三棱柱111ABC A B C -的所有棱长均为2,P是侧棱1AA 上任意一点. (Ⅰ)求证: 直线1B P 不可能与平面11ACC A 垂直; (II )当11BC B P ⊥
时,求二面角11C B P C --的大小. 证明:(Ⅰ)如图建立空间坐标系O xyz -,设AP a = 则1,,,A C B P 的坐标分别为(0,1,0),(0,11,)a --
1(0,2,0),(3,1,2)AC B P a ∴==--- 1
20AC B P =-≠,1B P ∴不垂直AC ∴直线1B P 不可能与平面11ACC A 垂直.
(II )1(,2)BC =,由11BC B P ⊥,得110BC
B P = 即22(2)0a +-= 1a ∴= 又11B
C B C ⊥ 11BC CB P ∴⊥面

1(,2)BC =是面1CB P 的法向量
设面11C B P 的法向量为(1,,)n y z =,由1110
B P n B
C n ⎧⋅=⎪⎨
⋅=⎪⎩
得(1,3,n =-,设二面角11C B P C --的大小为α 则116
cos 4||||
BC n BC n α=
= ∴二面角11C B P C --的大小为arccos
4
. 设计说明:1.前面选择的两个题,可有现成的坐标轴,但本题x、z轴需要自己添加(也可不这样建立).
2.第(1)小题是证明题,同样可用向量方法解答,是特殊情况;本小题也可证明这条直线与这个面的法向量不平行.
通过上面的例子,我们看到向量方法(更确切地讲,是用公式: ||||cos a b a b θ=)解决空间角和距离的作用,当然,以上所举例子,用传统方法去做,也是可行的,甚至有的(例2)还较为简单,用向量法的好处在于克服传统立几以纯几何解决问题带来的高度的技巧性和随机性.向量法可操作性强―――运算过程公式化、程序化,有效地突破了立体几何教学和学习中的难点,是解决立体几何问题的重要工具.充分体现出新教材新思想、新方法的优越性.这是继解析几何后用又一次用代数的方法研究几何形体的一块好内容,数形结合,在这里得到淋漓尽致地体现.
练习:
1.在正四面体S ABC -中,棱长为a ,E,F分别为SA 和BC 的中点,求异面直线BE 和SF 所成的角.(2
arccos 3

2.在边长为1的菱形ABCD 中,60ABC ︒∠=,将菱形沿对角线AC 折起,使 折
起后BD =1,求二面角B AC D --的余弦值.(1
3

3.在四棱锥P ABCD -中,底面ABCD 为矩形,PD
P D A D a ==,问平面PBA 与平面PBC
由.(不垂直)
4.在直三棱柱111ABC A B C -中,90A ︒∠=,1,,O O G 分别为111,,BC BC AA 的中点,且12AB AC AA ===. (1) 求1O 到面11ACB 的距离;(2) (2) 求BC 到面11GB C 的距离.)
5.如图,在几何体ABCDE 中,△ABC 是等腰直角
三角形,∠ABC =900,BE 和CD 都垂直于平面ABC ,且BE =AB =2,CD =1,点F 是AE 的中点.
(Ⅰ)求证:DF ∥平面ABC ;
(Ⅱ)求AB 与平面BDF 所成角的大小(arcsin 2
3
)。

相关文档
最新文档