vasp与lammps学习资料2020年
lammps20版使用手册

LAMMPS 20版:分子动力学模拟的全新体验LAMMPS(Large-scale Atomic/Molecular Massively Parallel Simulator)是一款开源的分子动力学模拟软件,广泛应用于材料科学、化学、生物学、地球物理学等多个领域。
随着科技的不断发展,LAMMPS也在不断更新迭代,最新版本为LAMMPS 20版。
我们将以LAMMPS 20版使用手册为中心,介绍LAMMPS 20版的新特性、应用场景以及使用技巧,带您一起探索分子动力学模拟的全新体验。
新特性:更高效、更精确LAMMPS 20版相较于旧版有了很多改进和升级。
LAMMPS 20版支持更多的硬件平台,包括GPU、MPI、OpenMP等,大大提高了计算效率。
LAMMPS 20版新增了一些功能模块,如新的分子力场、新的计算器、新的输出格式等,使得模拟更加精确、更加方便。
LAMMPS 20版还优化了一些算法和数据结构,如改进的Lennard-Jones势函数、新的动态网格算法等,使得模拟更加稳定、更加准确。
应用场景:多领域研究工具LAMMPS 20版作为一款通用的分子动力学模拟软件,被广泛应用于多个领域的研究中。
在材料科学领域,LAMMPS 20版可以用于模拟材料的物理性质,如弹性模量、热膨胀系数、热导率等。
在化学领域,LAMMPS 20版可以用于模拟化学反应的动力学过程,如溶剂化、化学反应速率等。
在生物学领域,LAMMPS 20版可以用于模拟蛋白质的结构和动力学性质,如蛋白质折叠、蛋白质-蛋白质相互作用等。
在地球物理学领域,LAMMPS 20版可以用于模拟地球内部的物理和化学过程,如岩石的形成、地震的发生等。
LAMMPS 20版是一款功能强大、通用性强的分子动力学模拟软件,适用于多个领域的研究。
使用技巧:从入门到精通LAMMPS 20版使用手册详细介绍了LAMMPS的安装、使用、参数设置等方面的内容,对于初学者来说是一个很好的入门指南。
(完整版)LAMMPS手册学习.doc

LAMMPS手册学习一、简介本部分大至介绍了LAMMPS的一些功能和缺陷。
1.什么时LAMMPS?LAMMPS是一个经典的分子动力学代码,他可以模拟液体中的粒子,固体和汽体的系综。
他可以采用不同的力场和边界条件来模拟全原子,聚合物,生物,金属,粒状和粗料化体系。
LAMMPS可以计算的体系小至几个粒子,大到上百万甚至是上亿个粒子。
LAMMPS可以在单个处理器的台式机和笔记本本上运行且有较高的计算效率,但是它是专门为并行计算机设计的。
他可以在任何一个按装了C++编译器和MPI的平台上运算,这其中当然包括分布式和共享式并行机和Beowulf型的集群机。
LAMMPS是一可以修改和扩展的计算程序,比如,可以加上一些新的力场,原子模型,边界条件和诊断功能等。
通常意义上来讲,LAMMPS是根据不同的边界条件和初始条件对通过短程和长程力相互作用的分子,原子和宏观粒子集合对它们的牛顿运动方程进行积分。
高效率计算的LAMMPS通过采用相邻清单来跟踪他们邻近的粒子。
这些清单是根据粒子间的短程互拆力的大小进行优化过的,目的是防止局部粒子密度过高。
在并行机上,LAMMPS采用的是空间分解技术来分配模拟的区域,把整个模拟空间分成较小的三维小空间,其中每一个小空间可以分配在一个处理器上。
各个处理器之间相互通信并且存储每一个小空间边界上的”ghost”原子的信息。
LAMMPS(并行情况)在模拟3维矩行盒子并且具有近均一密度的体系时效率最高。
2.LAMMPS的功能总体功能:可以串行和并行计算分布式MPI策略模拟空间的分解并行机制开源高移植性C++语言编写MPI和单处理器串行FFT的可选性(自定义)可以方便的为之扩展上新特征和功能只需一个输入脚本就可运行有定义和使用变量和方程完备语法规则在运行过程中循环的控制都有严格的规则只要一个输入脚本试就可以同时实现一个或多个模拟任务粒子和模拟的类型:(atom style命令)原子粗粒化粒子全原子聚合物,有机分子,蛋白质,DNA联合原子聚合物或有机分子金属粒子材料粗粒化介观模型延伸球形与椭圆形粒子点偶极粒子刚性粒子所有上面的杂化类型力场:(命令:pair style, bond style, angle style, dihedral style, improper style, kspace style)对相互作用势:L-J, Buckingham, Morse, Yukawa, soft, class2(COMPASS), tabulated.带点对相互作用势:Coulombic, point-dipole.多体作用势:EAM, Finnis/Sinclair EAM, modified EAM(MEAM), Stillinger-Weber, Tersoff, AIREBO, ReaxFF粗粒化作用势:DPD, GayBerne, Resquared, Colloidal, DLVO介观作用势:granular, Peridynamics键势能:harmonic, FENE, Morse, nonlinear, class2, quartic键角势能:harmonic, CHARMM, cosine, cosine/squared, class2(COMPASS)二面角势能:harmonic, CHARMM, multi-harmonic, helix, OPLS, class2(COMPASS) 不合理势能:harmonic, CVFF, class2(COMPASS)聚合物势能:all-atom, united-atom, bead-spring, breakable水势能:TIP3P,TIP4P,SPC隐式溶剂势能:hydrodynamic lubrication, Debye长程库伦与分散:Ewald, PPPM, Ewald/N(针对长程L-J作用)可以有与普适化力场如CHARMM,AMBER,OPLS,GROMACS相兼容的力场可以采用GPU加速的成对类型杂化势能函数:multiple pair, bond, angle, dihedral, improper potentials(多对势能处于更高的优先级)原子创建:(命令:read_data, lattice, create-atoms, delete-atoms, displace-atoms, replicate)从文件中读入各个原子的坐标在一个或多个晶格中创建原子删除几何或逻辑原子基团复制已存在的原子多次替换原子系综,约束条件,边界条件:(命令:fix)二维和三维体系正角或非正角模拟空间常NVE,NVT,NPT,NPH积分器原子基团与几何区域可选择不同的温度控制器有Nose/Hoover和Berendsen压力控制器来控制体系的压力(任一维度上)模拟合子的变形(扭曲与剪切)简谐(unbrella)束缚力刚体约束摇摆键与键角约束各种边界环境非平行太分子动力学NEMD各种附加边界条件和约束积分器:Velocity-verlet积分器Brown积分器rRESPA继承时间延化积分器刚体积分器共轭梯度或最束下降算法能量最小化器输出:(命令:dump, restart)热力学信息日志原子坐标,速度和其它原子量信息的文本dump文件二进制重启文件各原子量包括:能量,压力,中心对称参数,CAN等用户自定义系统宽度或各原子的计算信息每个原子的时间与空间平均系统宽量的时间平均原子图像,XYZ,XTC,DCD,CFG格式数据的前处理与后处理:包里提供了一系列的前处理与后处理工具另外,可以使用独立发行的工具组pizza.py, 它可以进行LAMMPS模拟的设置,分析,作图和可视化工作。
LAMMPS手册-中文版讲解

LAMMPS手册-中文解析一、简介本部分大至介绍了LAMMPS的一些功能和缺陷。
1.什么是LAMM PS?LAMMPS是一个经典的分子动力学代码,他可以模拟液体中的粒子,固体和汽体的系综。
他可以采用不同的力场和边界条件来模拟全原子,聚合物,生物,金属,粒状和粗料化体系。
LAMMPS可以计算的体系小至几个粒子,大到上百万甚至是上亿个粒子。
LAMMPS可以在单个处理器的台式机和笔记本本上运行且有较高的计算效率,但是它是专门为并行计算机设计的。
他可以在任何一个按装了C++编译器和MPI的平台上运算,这其中当然包括分布式和共享式并行机和B e owulf型的集群机。
LAMMPS是一可以修改和扩展的计算程序,比如,可以加上一些新的力场,原子模型,边界条件和诊断功能等。
通常意义上来讲,LAMMPS是根据不同的边界条件和初始条件对通过短程和长程力相互作用的分子,原子和宏观粒子集合对它们的牛顿运动方程进行积分。
高效率计算的LAMMPS通过采用相邻清单来跟踪他们邻近的粒子。
这些清单是根据粒子间的短程互拆力的大小进行优化过的,目的是防止局部粒子密度过高。
在并行机上,LAMMPS采用的是空间分解技术来分配模拟的区域,把整个模拟空间分成较小的三维小空间,其中每一个小空间可以分配在一个处理器上。
各个处理器之间相互通信并且存储每一个小空间边界上的”ghost”原子的信息。
LAMMPS(并行情况)在模拟3维矩行盒子并且具有近均一密度的体系时效率最高。
2.LAMMPS的功能总体功能:可以串行和并行计算分布式MPI策略模拟空间的分解并行机制开源高移植性C++语言编写MPI和单处理器串行FFT的可选性(自定义)可以方便的为之扩展上新特征和功能只需一个输入脚本就可运行有定义和使用变量和方程完备语法规则在运行过程中循环的控制都有严格的规则只要一个输入脚本试就可以同时实现一个或多个模拟任务粒子和模拟的类型:(atom style命令)原子粗粒化粒子全原子聚合物,有机分子,蛋白质,DNA联合原子聚合物或有机分子金属粒子材料粗粒化介观模型延伸球形与椭圆形粒子点偶极粒子刚性粒子所有上面的杂化类型力场:(命令:pair style, bond style, angle style, dihedral style, improper style, kspacestyle)对相互作用势:L-J, Bucking ham, Morse, Yukawa, soft, class2(COMPASS), tabulat ed.带点对相互作用势:Coulombi c, point-dipole.多体作用势:EAM, Finnis/Sinclai r EAM, modifie d EAM(MEAM), Stillin g er-Weber, Tersoff, AIREBO, ReaxFF粗粒化作用势:D PD, GayBern e, Resquar ed, Colloid al, DLVO介观作用势:granula r, Peridyn amics键势能:harmoni c, FENE, Morse, nonlinear, class2, quartic键角势能:harmoni c, CHARMM, cosine, cosine/squared, class2(COMPASS)二面角势能:harmoni c, CHARMM, multi-harmoni c, helix, OPLS, class2(COMPASS)不合理势能:harmoni c, CVFF, class2(COMPASS)聚合物势能:all-atom, united-atom, bead-spring, breakabl e水势能:TIP3P,TIP4P,SPC隐式溶剂势能:h y drody n amiclubrication, Debye长程库伦与分散:Ewald, PPPM, Ewald/N(针对长程L-J作用)可以有与普适化力场如CHARMM,AMBER,OPLS,GROMACS相兼容的力场可以采用GPU加速的成对类型杂化势能函数:m ultipl e pair, bond, angle, dihedral, imprope r potenti als(多对势能处于更高的优先级)原子创建:(命令:read_da ta, lattice, create-atoms, delete-atoms, displac e-atoms, replica te)从文件中读入各个原子的坐标在一个或多个晶格中创建原子删除几何或逻辑原子基团复制已存在的原子多次替换原子系综,约束条件,边界条件:(命令:fix)二维和三维体系正角或非正角模拟空间常NVE,NVT,NPT,NPH积分器原子基团与几何区域可选择不同的温度控制器有Nose/Hoover和Berend sen压力控制器来控制体系的压力(任一维度上)模拟合子的变形(扭曲与剪切)简谐(unbrell a)束缚力刚体约束摇摆键与键角约束各种边界环境非平行太分子动力学NEMD各种附加边界条件和约束积分器:Velocit y-verlet积分器Brown积分器rRESPA继承时间延化积分器刚体积分器共轭梯度或最束下降算法能量最小化器输出:(命令:dump, restart)热力学信息日志原子坐标,速度和其它原子量信息的文本dump文件二进制重启文件各原子量包括:能量,压力,中心对称参数,CAN等用户自定义系统宽度或各原子的计算信息每个原子的时间与空间平均系统宽量的时间平均原子图像,XYZ,XTC,DCD,CFG格式数据的前处理与后处理:包里提供了一系列的前处理与后处理工具另外,可以使用独立发行的工具组p i zza.py, 它可以进行LAMMPS模拟的设置,分析,作图和可视化工作。
vasp与lammps学习资料2020年

LAMMPS分子动力学模拟技术与应用课程内容一、LAMMPS基础1分子动力学模拟入门理论——掌握lammps的in文件中各命令的意义1.1系综理论1.2主要算法介绍1.3积分步长的选取1.4温度和压力控制1.5周期性边界条件1.6分子动力学模拟流程二、LAMMPS入门学习2LAMMPS入门操作基础2.1Linux命令入门基础——熟练掌握LAMMPS所用的Linux命令2.2LAMMPS中一些安装包的介绍——为以后创建自己体系进行选择性安装2.3LAMMPS的linux版串行和并行及GPU版编译安装——掌握LAMMPS的编译方法,针对自己体系编译可执行文件。
2.4LAMMPS的in文件结构格式、基本语法及常用命令讲解、data文件格式。
2.5LAMMPS实例讲解。
实例操作:在linux系统编译安装自己的LAMMPS可执行程序。
三、LAMMPS进阶学习MMPS各种参数计算3.1颗粒模拟3.2可视化快照3.3弹性常数模拟3.4计算热导率3.5计算粘度3.6计算均方位移3.7计算径向分布函数3.8计算扩散系数3.9计算能量数据3.10Lammps常见错误及解决途径实例操作:学员结合自己的科研方向,选择运行契合自己研究方向的例子四、Lammps的建模4LAMMPS建模——掌握基本操作流程4.1掌握lattice命令建立晶体模型4.2Packmol建模语法学习及实操4.3Material Studio建模学习及实操4.4VMD建模学习及实操实例操作:把上述实操模型转换成lammps的data文件五、从examples的简单例子,到完成自己的科研课题5通过examples中的例子,理解要模拟对象的物理意义5.1运行examples\flow到建立水分子在石墨烯片层(碳纳米管)内的流动模拟5.2运行examples\shear到石墨烯力学性质模拟5.3运行examples\friction到金属/合金的摩擦模拟5.4特殊结构的模拟建模(C60系列模型)实例操作:学员探索由简单例子到自己科研课题的模拟过程六、环氧树脂在二氧化硅表面吸附建模(CVFF力场)6环氧树脂在二氧化硅表面吸附吸能的影响模拟过程6.1创建构型文件6.2建立输入脚本6.3运行能量最小化及体系的预松弛6.4压缩盒子达到指定的密度(针对不同研究体系掌握压缩方法的不同,并掌握判断方法和依据)6.5模拟步骤:包括能量最小化-NVT 平衡-NPT 平衡-对研究目标的性质进行长时间轨迹平衡-输出研究所关心的性质。
lammps学习指南(可编辑修改word版)

lammps学习指南(可编辑修改word版)温馨提示:(1)点击标题可直接到相关的“章节”。
(2)为避免混淆,上面的各“章”,在本文中用“步骤2”、“步骤5”这样的词代指;而文中其它地方出现的“章节”是指lammps 手册中的章节。
(3)文中跟某些名词相关的网页已加注超链接,直接点击可浏览该页面以获得更详尽的信息。
0. 写在最开始的话从2007 年5 月初开始接触和学习lammps,时至今日,依然对lammps 存有很多疑惑。
如同一个刚入门的工匠面对着一台功能强大的复杂机器,不知所措。
虽然还有好多好多的东西要学习,但是也已经了解了一些最最基本的东西了。
我可以去帮助那些刚刚入门的人,正如我刚刚开始学习lammps 时诸位热心网友对我的帮助。
现在,我写一写自己知道的东西,希望对lammps 的新手有所帮助,不当之处,真诚地希望各位读者多多指正。
我写的这点儿东西,使用者仅限于使用lammps 的新手,而且里面只讲到了ubuntu 下编译lammps 的单机版,没有涉及并行版的编译。
我希望这个“指南”会帮他们更快地了解和学习lammps。
如果你已经在使用lammps 了,我觉得这个“指南”是不会对你有什么帮助的。
不过,对于高手来说,如果你有时间,我还是希望你能看完这篇,因为我接触lammps 和MD 的时间都不长,我怕我的某些错误会误导新手。
所以,希望大家一起努力,完善这个指南。
对这个“指南”有任何的建议,请联系我,联系方式如下:QQ: 365449075Email: wfc@/doc/8815552588.html,另外,我只把这篇文章放在这个由学校提供的个人网页空间。
之前QQ 空间的那篇文章,因为对其内容改动较大,故我已将其删除。
我并不反对转载,(先自我陶醉一下下,可是会有吗?呵呵)但是转载之前,请注意:(1)文章中的一些表述我尚不肯定正确与否。
所以转载之前,请你负责任地认真读完这篇文章并确认你是否认可我的表述。
个人非常好的VASP学习与总结

精析V ASP目录第一章LINUX命令11.1 常用命令11.1.1 浏览目录11.1.2 浏览文件11.1.3 目录操作11.1.4 文件操作11.1.5 系统信息1第二章SSH软件使用22.1 软件界面22.2 SSH transfer的应用32.2.1 文件传输32.2.2 简单应用3第三章VASP的四个输入文件33.1 INCAR 33.2 KPOINTS 43.3 POSCAR 43.4 POTCAR 5第四章实例54.1 模型的构建54.2 VASP计算84.2.1 参数测试(VASP)参数设置这里给出了赝势、ENCUF、K点、SIMGA一共四个参数。
是都要验证吗?还是只要验证其中一些?84.2.2 晶胞优化(Cu) 134.2.3 Cu(100)表面的能量144.2.4 吸附分子CO、H、CHO的结构优化154.2.5 CO吸附于Cu100表面H位174.2.6 H吸附于Cu100表面H位184.2.7 CHO吸附于Cu100表面B位194.2.8 CO和H共吸附于Cu100表面204.2.9 过渡态计算21第一章Linux命令1.1 常用命令1.1.1 浏览目录cd: 进入某个目录。
如:cd /home/songluzhi/vasp/CH4 cd .. 上一层目录;cd / 根目录;ls: 显示目录下的文件。
注:输入目录名时,可只输入前3个字母,按Tab键补全。
1.1.2 浏览文件cat:显示文件内容。
如:cat INCAR如果文件较大,可用:cat INCAR | more (可以按上下键查看) 合并文件:cat A B > C (A和B的内容合并,A在前,B在后) 1.1.3 目录操作mkdir:建立目录;rmdir:删除目录。
如:mkdir T-CH3-Rh1111.1.4 文件操作rm:删除文件;vi:编辑文件;cp:拷贝文件mv:移动文件;pwd:显示当前路径。
如:rm INCAR rm a* (删除以a开头的所有文件)rm -rf abc (强制删除文件abc)tar:解压缩文件。
VASP经典学习教程有用

VASP经典学习教程有用VASP(Vienna Ab initio Simulation Package)是一种用于固体材料计算的第一性原理计算软件包。
它使用密度泛函理论和平面波基组进行计算,可以预测材料的结构、能带、力学性质等基本属性。
本文将介绍VASP的经典学习教程,帮助初学者快速入门。
1.VASP的安装与基本操作-输入文件和输出文件:介绍VASP的常用输入文件和输出文件,以及它们的格式和含义。
-运行VASP计算:教授如何编写VASP运行脚本,以及如何使用命令行界面运行VASP计算。
2.VASP的输入参数和设置-INCAR文件:介绍VASP的主要输入文件INCAR的各种参数和选项,如体系的外部压力、电子迭代的收敛准则等。
-POTCAR文件:讲解VASP的赝势文件POTCAR的作用和用法,以及如何选择合适的赝势。
-KPOINTS文件:讲解KPOINTS文件对计算结果的影响,以及如何选择合适的K点网格。
3.VASP的基本计算-结构优化计算:教授如何进行结构优化计算,寻找稳定的材料晶格参数和原子位置。
-能带计算:讲解如何计算材料的能带结构,以及如何分析能带图和带隙。
-DOS计算:介绍如何计算材料的态密度,以及如何分析态密度图和能带图。
4.VASP的高级计算-弛豫计算:讲解如何进行离子和电子的同时弛豫计算,得到材料的稳定结构和力学性质。
-嵌入原子计算:介绍如何在材料中嵌入原子,并计算嵌入原子的相互作用能。
-软件接口和后处理:讲解VASP与其他软件(如VASPKIT、VESTA等)的接口,以及如何进行后处理分析。
5.VASP的实际应用-表面计算:介绍如何计算材料的表面能和表面形貌。
-催化剂计算:讲解如何通过VASP计算催化剂的吸附能和反应能垒,以预测其催化活性。
-界面计算:讲解如何计算材料的界面能和界面结构。
通过以上内容,初学者可以掌握VASP的基本原理和使用方法,并能在实际应用中进行一些基本的材料计算。
个人非常好的VASP学习与总结

个人非常好的VASP学习与总结VASP(Vienna Ab initio Simulation Package)是一种用于计算材料电子结构和材料性质的第一性原理软件包。
它是由奥地利维也纳大学的Peter Blöchl教授和Jürgen Hafner教授等人开发的。
VASP广泛应用于材料科学、凝聚态物理、表面科学、催化化学等领域,并且已成为当前计算材料科学研究中的重要工具。
我的VASP学习与总结主要包括以下几个方面:一、理论基础在学习VASP之前,我首先了解了从头计算的理论基础。
这包括了量子力学、自旋极化的密度泛函理论、平面波基组和赝势等关键概念。
我通过阅读相关文献和教材,深入理解了这些理论基础,并通过编程实现了一些基本的从头计算算法,如Hartree-Fock法和密度泛函理论。
二、VASP软件架构和输入文件学习VASP的过程中,我详细了解了VASP的软件架构和输入文件的格式。
VASP的软件架构分为主程序和一系列的预处理工具、后处理工具和与其他软件的接口。
对于输入文件,我了解了INCAR文件中的各种参数,如体系的描述、计算方法、收敛准则等;POSCAR文件中的晶体结构描述;KPOINTS文件中的k点网格描述等。
我还学习了如何使用VASP进行周期性边界条件下的能带计算、电子密度计算和弛豫力计算等。
三、VASP计算结果的解析和可视化VASP计算得到的结果需要进一步解析和可视化。
我学习了使用一些常用的后处理工具,如VASP可视化工具、VESTA和XCrysDen等,来分析和可视化VASP计算的结果。
这些工具可以帮助我理解晶体结构、电子能带结构以及电荷分布等。
四、VASP参数优化和计算效率为了得到准确的计算结果,我尝试了调整VASP计算中的一些参数,如波函数截断、k点密度、能量收敛准则等,以获得更准确的计算结果。
此外,我还学习了使用并行计算技术来提高VASP计算的效率,如MPI和OpenMP等,并了解了VASP在高性能计算集群上的使用方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LAMMPS分子动力学模拟技术与应用课程内容
一、LAMMPS基础1分子动力学模拟入门理论——掌握lammps的in文件中各命令的意义1.1系综理论
1.2主要算法介绍
1.3积分步长的选取
1.4温度和压力控制
1.5周期性边界条件
1.6分子动力学模拟流程
二、LAMMPS入门学习2LAMMPS入门操作基础
2.1Linux命令入门基础——熟练掌握LAMMPS所用的Linux命令
2.2LAMMPS中一些安装包的介绍——为以后创建自己体系进行选择性安装
2.3LAMMPS的linux版串行和并行及GPU版编译安装——掌握LAMMPS的编译方法,针对自己体系编译可执行文件。
2.4LAMMPS的in文件结构格式、基本语法及常用命令讲解、data文件格式。
2.5LAMMPS实例讲解。
实例操作:在linux系统编译安装自己的LAMMPS可执行程序。
三、LAMMPS进阶学习MMPS各种参数计算
3.1颗粒模拟
3.2可视化快照
3.3弹性常数模拟
3.4计算热导率
3.5计算粘度
3.6计算均方位移
3.7计算径向分布函数
3.8计算扩散系数
3.9计算能量数据
3.10Lammps常见错误及解决途径
实例操作:学员结合自己的科研方向,选择运行契合自己研究方向的例子
四、Lammps的建模4LAMMPS建模——掌握基本操作流程
4.1掌握lattice命令建立晶体模型
4.2Packmol建模语法学习及实操
4.3Material Studio建模学习及实操
4.4VMD建模学习及实操
实例操作:把上述实操模型转换成lammps的data文件
五、从examples的简单例子,到完成自己的科研课题5通过examples中的例子,理解要模拟对象的物理意义
5.1运行examples\flow到建立水分子在石墨烯片层(碳纳米管)内的流动模拟5.2运行examples\shear到石墨烯力学性质模拟
5.3运行examples\friction到金属/合金的摩擦模拟
5.4特殊结构的模拟建模(C60系列模型)
实例操作:学员探索由简单例子到自己科研课题的模拟过程
六、环氧树脂在二氧化硅表面吸附建模
(CVFF力场)6环氧树脂在二氧化硅表面吸附吸能的影响模拟过程
6.1创建构型文件
6.2建立输入脚本
6.3运行能量最小化及体系的预松弛
6.4压缩盒子达到指定的密度(针对不同研究体系掌握压缩方法的不同,并掌握判断方法和依据)
6.5模拟步骤:包括能量最小化-NVT 平衡-NPT 平衡-对研究目标的性质进行长时间轨迹平衡-输出研究所关心的性质。
6.6.查看动态轨迹和特殊帧的图片显示(采用
VMD 软件做出漂亮的图片和视频,学会用tcl 脚本控制输出)
6.7数据分析(origin 软件的使用)6.
7.1MSD 分析6.7.2计算RDF 6.7.3计算密度分布
七、LAMMPS 高级研
修,自建分子力场参数
文件和金属有机框架材
料晶体模型7LAMMPS 分子力场文件创建及MOFs 材料建模
7.1介绍固体材料单晶包试验数据结构,掌握基本的材料几何特征
7.2利用MS 软件构建MOFs 材料单晶包模型和H 2和CO 2分子模型
7.3分子作用势能函数,编写MS 软件中的力场参数文件(off 文件)
7.4巨正则系综Monte Carlo 方法7.5利用Sorption 模块将H 2和CO 2分子插入到MOFs 材料7.6编写LAMMPS 力场文件(frc 文件),并通过lammps 程序生成data 文件
7.7运行能量最小化及体系的预松弛
7.8模拟步骤:包括能量最小化NVT 平衡,对研究目标的性质进行长时间轨迹平衡-输出研究所关心的性质。
实例操作:金属有机框架(MOFs )储氢和碳捕集模拟
八、分子筛纳米膜分离
H 2/CO 2混合气体模拟
(模拟文献Science
346(6215),
1356-1359)8研究H 2/CO 2在ZIF-7膜材料中分离性能
模拟文献Science 346(6215),1356-1359的分离过程
8.1利用MS 软件构建ZIF-7膜材料单晶包
8.2设计H 2/CO 2与ZIF-7体系模型,模拟文献“Science 346(6215),1356-1359”的实验过程8.3自定义分子力场文件(frc 文件),并通过lammps 程序生成data 文件8.4运行能量最小化及体系的预松弛8.5模拟步骤:包括能量最小化-NVT 平衡,对研究目标的性质进行长时间轨迹平衡-输出研究所关心的性质
8.6采用VMD 查看动态轨迹
8.7数据分析,计算RDF ,MSD ,密度分布,选择性等
实例操作:包括在VMD 中查看可视化的动态轨迹,计算密度分布,分子的
MSD 等,抽取轨迹的动能、势能、总能量等相关数据,对轨迹进行初步分析
九、辅助课程 1.其他相关软件的功能介绍,如GROMACS 、VASP 、NAMD 、MS 等
2.建立微信群QQ 群,建立长期技术问题答疑平台
“第一性原理计算方法及应用”
一、VASP 基本原理及
计算准备(基础篇)课程1VASP 原理及Linux 入门基本介绍1.1密度泛函理论和VASP 基本原理简介
1.2Xshell 远程登陆服务器的操作技术
1.3Linux 下常用命令(包含bash 编程基础)
1.4Linux 下常用编译器安装方法
课程2Linux 常用命令与VASP 输入出输出文件介绍
2.1Linux 常用命令(文本查找,批量提交任务,grep/sed/awk 等)
2.2VASP 输入输出文件介绍(INCAR,KPOINTS,POSCAR,POTCAR,OUTCAR 等)
2.3与VASP 相关搭配常用辅助软件介绍
课程3VASP 编译安装及结构建模介绍
3.1VASP 编译安装(vaspkit 安装,qvasp 安装及其它常用工具)
3.2利用Materials Studio 软件或者数据库建立乙醇分子模型和Si 模型
3.3纳米管搭建技巧,界面模型搭建技巧:晶格匹配
3.4通用手绘计算模型技巧(专题)
二、VASP 相关参数置
技巧及参数收敛性测
试(升阶篇)课程4VASP 输入参数设置技巧4.1INCAR 参数的设置(ENCUT,ISIF,EDIFF,EDIFFG,HSE06,LDA+U ,VDW 等)4.2K 点的设置方案(Mesh,Line-Mode 以及Rec 直接标注权重)
4.3赝势的选择及快速生成方法
课程5VASP 结构优化
5.1晶体结构的优化设置:通过实例Pt 晶体优化来了解VASP 的参数设置
5.2设置参数的最简易方法,以及归类、总结和技巧
5.3自洽、非自洽、电荷密度文件、波函数文件、总能的相关解释及用途。
课程6VASP 收敛性测试
6.1测试脚本的编写及介绍(测试的目的,意义)6.2截断能收敛性测试
6.3K 点收敛性测试6.4其他收敛性测试(表面层数,sigma 等)
三、稳定性、电子结构、光学性质、缺陷性质(实战篇:材料计算专
题)课程7VASP材料理化性质计算及结果分析
7.1材料的稳定性计算
7.1.1热力学稳定性
7.1.1.1相稳定性
7.1.1.2最优分解路径
7.1.2动力学稳定性
7.1.2.10K声子谱
7.1.2.2有限温度声子谱
7.2材料的电子结构计算
7.2.1能带基础知识介绍
7.2.2CsPbI3能带计算(PBE和HSE)与分析
7.2.3CsPbI3态密度计算与分析
7.2.4电子有效质量计算
7.2.5电荷密度与部分电荷密度
7.3VASP光学性质计算
7.3.1CsPbI3的介电常数实部和虚部
7.3.2CsPbI3的光吸收系数
7.3.3CsPbI3的联合态密度和跃迁矩阵元
7.3.4CsPbI3的跃迁允许和跃迁禁阻分析
7.4VASP本征缺陷计算
7.4.1CsPbI3的相图
7.4.2缺陷的转变能级
7.4.3缺陷的形成能
7.5特殊体系的设置方案
7.4.1HSE06杂化泛函的设置方法
7.4.2强关联体系的设置方法(LDA+U)
7.4.3GW0参数的设置
7.6实例解析:Cs2AgInCl6和Cs2InBiCl6的热稳定性和光吸收性质分析
四、吸附、过渡态以及课程8VASP表面催化反应计算及结果分析8.1固体表面具有催化活性的本质原因解析
电荷分析
(实战篇:催
化反应专题)8.2基元反应和复杂反应在固体表面催化反应研究中的关系8.3VASP 表面吸附
CO 吸附在Pt 表面计算(吸附能模型和吸附能)
8.4VASP 电荷分析
8.4.1电荷拆分
8.4.2Bader 电荷计算与结果处理
8.4.3ELF 计算与结果处理
8.5VASP 过渡态搜索
8.51插点和过渡态搜索
8.52频率分析及零点能矫正方案
8.53消虚频的方法
8.6实例解析:Pd(111)表面用H 2催化消除NO 的第一性原理研究
详情可下载网盘查阅。