二次函数复习专题讲义
2024 河北数学中考备考重难专题:二次函数图象与性质 (讲义)

2024河北数学中考备考重难专题:二次函数图象与性质(讲义)考情分析年份题号题型分值考查内容设问形式探究问题202223解答题10(1)抛物线对称轴、最值、图象上点的坐标;(2)函数图象平移特点:点坐标的平移、两点间最短距离定抛物线性质探究:(1)求抛物线对称轴,最值,另一点横坐标;(2)求平移的最短距离点移动最小距离20212510(1)已知抛物线与x轴交点、与直线y=a的交点问题;(2)二次项系数a决定抛物线形状,最大值决定a<0,顶点式中k的值,顶点式求抛物线解析式;(3)抛物线与动线段交点问题定抛物线性质探究:(1)求点横坐标,画y轴,指出点所落的台阶(2)求抛物线解析式,求对称轴(3)求横坐标最大值与最小值的差点横坐标最大值与最小值的差20192612(1)平行于坐标轴的直线、抛物线与坐标轴的交点问题,抛物线对称轴与x轴交点坐标的关系;(2)直线下方的图象的函数值小于直线对应的函数值,二次函数性质求最大值;(3)平均数→中点,函数图象上点的性质;(4)直线与抛物线交点个数问题含参抛物线(y=-x2+bx)性质探究:(1)求直线、对称轴、交点坐标(2)求点与直线距离最大值(3)求两点间距离(4)求“美点”的个数美点的个数20162612(1)反比例函数k的几何意义;(2)抛物线与x轴交点坐标,对称轴;(3)二次函数性质求最值,分类讨论思想;(4)反比例函数图象与抛物线交点问题含参抛物线(y=-12(x-t)(x-t+4))性质探究:(1)求反比例函数k的值(2)求两点间距离,两直线间距离(3)求最高点坐标(4)求参数取值范围抛物线与双曲线交点问题20152511(1)求抛物线解析式、对称轴、顶点坐标;(2)抛物线与y轴交点坐标,二次函数性质求最值,二次函数增减性;(3)抛物线与线段交点问题(x轴),分类讨论思想含参抛物线(y=-(x-h)2+1)性质探究:(1)求抛物线解析式、对称轴、顶点坐标(2)求点纵坐标最大值,比较两点纵坐标大小(3)求参数h值抛物线与线段交点问题典例精讲例(2022河北定制卷改编)如图,抛物线y=x2+bx+c与直线y=x+2交于A、B两点,其中点A在y轴上,点B的横坐标是4,点P为抛物线上一动点,过点P作PC⊥x轴交AB于点C,设点P的横坐标为m.例题图(1)求抛物线的解析式;(2)若点P在直线AB下方的抛物线上,求出线段PC的最大值及此时点P的坐标;(3)若将原抛物线沿x轴平移,得到新抛物线y=(x+n)2+b(x+n)+c,要使新抛物线与线段AB 恰好有一个交点,求n的取值范围.(4)若原抛物线沿y轴平移,平移后的抛物线顶点恰好落在直线AB上,且交另一点为F,求平移的距离,点F的坐标.选题依据:此题考查学生对二次函数图象、对称轴、顶点坐标,平移,抛物线与直线交点问题,同时考查学生分类讨论和数形结合思想方法总结知识点:待定系数法求解析式、二次函数取值范围、图象开口、增减性、对称轴、顶点坐标、平移后的二次函数解析式解题方法:对称轴:①解析式已知,直接代入x=-2;②已知抛物线与x轴两交点,直接代入x=x+y2顶点坐标:①一般式:代入顶点坐标公式;②顶点式:直接得到顶点坐标;③交点式:化为顶点式求点与点、点与直线、直线与直线之间距离,先求得点坐标或直线解析式,通过横坐标或纵坐标间距离求得1.平移的特点:①二次函数图象的平移不改变开口大小(形状);②实质是图象上点的平移,可根据图象上任意一对对应点,即可确定平移方式,通常通过顶点来确定;2.抛物线中交点问题通常有:判断交点个数,通过交点个数求参数,抛物线与线段交点问题等,通常都是联立函数关系式,求二元一次方程组的解得以解决,在此类问题中通常会融合“整点”问题,选择满足“整点”的点即可;3.判断点是否在抛物线内问题:主要是利用极限思想,分类讨论思想,选择取值范围的两端点的x值分别代入求解即可.练习(2022河北预测卷)如图,抛物线y=-12x2+kx+4(k为常数)与x轴和y轴的正半轴分别交于点A和B.练习题图(1)当k=-1时.①直接写出抛物线的对称轴和顶点坐标;②当-2≤x≤1时,求抛物线的最大值与最小值的差;(2)直线L:y=6交y轴于点C,交抛物线于点M,N(M在N的左侧).当x≤12k时,抛物线的最高点到直线L的距离为2,请直接写出此时k的值.练习1(2022河北原创卷)如图所示为从游乐场的过山车抽象出来的函数图象,线段AB是一段平行于x轴的水平滑道,OA=3,滑道B-C-D可以看作一段抛物线,最低点为C(4,2),且D(6,3).滑道D-E-F是与滑道B-C-D的形状完全相同,开口方向相反的一段抛物线,其最高点为E,点F在x轴上,FO=12.练习题图(1)求抛物线B-C-D的解析式及线段AB的长;(2)求抛物线D-E-F的解析式,当小车(看成点)沿滑道从A运动到F的过程中,小车距离x 轴的垂直距离为2.5时,它到出发点A的水平距离是多少?(3)现在需要对滑道E-F部分进行加固,过E作支架EK⊥x轴于点K,然后建造如图所示的水平支架PS和竖直支架PM.求所有支架(虚线部分)长度之和L的最大值及此时点M的坐标.练习2(2022河北逆袭诊断卷)如图,在平面直角坐标系中,直线l1∶y=-12x+2与坐标轴交于A,B两点,与抛物线l2∶y=x2-2mx+m2-2交于C,D,过抛物线的顶点P向x轴作垂线,交直线l1于点Q.(1)当m=1时,求抛物线的解析式及点P的坐标;(2)若点Q的横、纵坐标都不小于0,当线段PQ取得最小值时,求△PCD的面积;(3)当抛物线与线段AB只有一个公共点时,直接写出m的取值范围.练习2题图答案典例精讲例解:(1)∵直线y=x+2经过点A,且点A在y轴上,∴点A横坐标为0,将x=0代入解析式y=x+2中,解得y=2,∴点A的坐标为(0,2),∵直线y=x+2经过点B,点B的横坐标是4,∴将x=4代入解析式y=x+2中,得y=6,∴点B的坐标为(4,6).∴将点A(0,2),点B(4,6)代入抛物线y=x2+bx+c中,得=2,16+4+=6,得=-3,=2,∴抛物线的解析式为y=x2-3x+2;(2)由(1)得抛物线的解析式为y=x2-3x+2,∴点P坐标为(m,m2-3m+2),∵PC⊥x轴交AB于点C,∴点C的坐标为(m,m+2),∴PC=m+2-(m2-3m+2)=-m2+4m=-(m-2)2+4,∵-1<0,0<m<4,∴当m=2时,PC有最大值,最大值为4,此时点P坐标为(2,0);(3)由(1)得,抛物线解析式为y=x2-3x+2=(x-32)2-14,∵将抛物线沿x轴平移n个单位长度,得到抛物线y=(x+n)2+b(x+n)+c,∴可设抛物线解析式为y=(x+n)2-3(x+n)+2=(x-32+n)2-14,通过图象可知,①当抛物线经过点A时,与线段AB恰有一个交点,将点A(0,2)代入抛物线解析式,得(-32+n)2-14=2,解得n1=3,n2=0(舍去),∴n的取值范围为0<n≤3;②当抛物线恰好经过点B时,与线段AB恰有一个交点,将B (4,6)代入抛物线解析式,得(52+n )2-14=6,解得n 1=-5,n 2=0(舍去),∴n 的取值范围为-5≤n <0.∴n 的取值范围为-5≤n <0或0<n ≤3.(4)由(1)得,抛物线解析式为y =x 2-3x +2=(x -32)2-14∵顶点坐标为(32,-14),32代入直线解析式y =32+2=72,顶点坐标为(32,72),∴平移距离=14+72=154,∴平移后抛物线y =(x -32)2+72,联立=(-32)2+72=+2,解得x =52x =32当=32时,交点为平移后抛物线顶点坐标(32,72)当=52时,交点F 坐标为(32,92).课堂练兵解:(1)①对称轴为直线x =-1,顶点坐标为(-1,92);【解法提示】∵k =-1,∴y =-12x 2-x +4=-12(x +1)2+92x =-1,顶点坐标为(-1,92).②由①得,抛物线y =-12x 2-x +4的对称轴为直线x =-1,12<0,∴当-2≤x ≤-1时,y 随x 的增大而增大,当-1<x ≤1时,y 随x 的增大而减小,∴当x =-1时,抛物线有最大值为92,∵-1-(-2)=1,1-(-1)=2,∴当x =1时,抛物线有最小值,最小值为52,∴当-2≤x ≤1时,抛物线的最大值为92,最小值为52,9-5=2;(2)k的值为-22或436.【解法提示】设直线x=12k交抛物线于点P,抛物线的顶点为R,∵y=-12x2+kx+4=-12(x-k)2+12k2+4,∴抛物线的对称轴为直线x=k,顶点R的坐标为(k,12k2+4),当x=12k时,y=-12×(12k)2+k×12k+4=38k2+4,∴P(12k,38k2+4).当k<0时,如解图①,当x≤12k时,最高点为R(k,12k2+4),∵抛物线的最高点到直线L的距离为2,12k2+4-6=2,解得k=-22或k=22(舍去);当k≥0时,如解图②,当x≤12k时,抛物线的最高点为P(12k,38k2+4),∵抛物线的最高点到直线L的距离为2,38k2+4-6=2,解得k=436或k=-436(不符合题意,舍去).综上所述,k的值为-22或436.解图②解图①课堂小练练习1解:(1)∵抛物线B-C-D的顶点为C(4,2),∴设抛物线B-C-D的解析式为y=a(x-4)2+2(a≠0),代入点D(6,3)得3=a(6-4)2+2,解得a=14,∴抛物线B-C-D的解析式为y=14(x-4)2+2.∵AB∥x轴,且OA=3,∴点B的纵坐标为3,令1(x-4)2+2=3,解得x1=2,x2=6,∵点D(6,3),∴点B的坐标为(2,3),∵点A在y轴上,∴AB=2;(2)∵抛物线D-E-F与抛物线B-C-D的形状完全相同,由(1)得抛物线B-C-D的解析式为y=14(x-4)2+2,∴设抛物线D-E-F的解析式为y=-14(x-h)2+k,∵FO=12,∴F(12,0),-14(6-ℎ)2+=3ℎ=8=4.将点D(6,3),F(12,0)代入,可得-14(12-ℎ)2+=0,解得∴抛物线D-E-F的解析式为y=-14(x-8)2+4.当小车距离x轴的垂直距离是2.5时,则2.5=14(x-4)2+2,解得x=4±2,或2.5=-14(x-8)2+4,解得x1=8+6,x2=8-6(不合题意,舍去),∴小车到出发点A的水平距离为4+2或4-2或8+6;(3)由抛物线y=-14(x-8)2+4,可得E(8,4),∴EK=4,K(8,0),设M(d,0)(8<d<12),∴点P(d,-14(d-8)2+4),则S P=d-8,PM=-14(d-8)2+4,∴所有支架的长度和L=d-8+[-14(d-8)2+4]+4,化简得L=-14(d-10)2+9,∵8<d<1214<0,∴当d=10时,L有最大值,最大值为9.此时点M的坐标为(10,0)练习2解:(1)∵m=1,y=x2-2mx+m2-2,∴将m=1代入y=x2-2mx+m2-2,得到抛物线的解析式为y=x2-2x-1=(x-1)2-2,∵点P为抛物线的顶点,∴点P的坐标为(1,-2);(2)∵抛物线y=x2-2mx+m2-2=(x-m)2-2,∴顶点P在直线y=-2上,∵点Q 的横、纵坐标都不小于0,∴点Q 在线段AB 上,如解图,当点Q 与点B 重合时,线段PQ 的值最小,过点C ,D 分别作PQ 所在直线的垂线,垂足分别为E ,F ,∵点B 的坐标为(4,0),∴x =--2m 2=m =4,∴抛物线的解析式为y =x 2-8x +14,=x 2-8x +14=-12x +2,可得x 2-8x +14=-12x +2,解得x 1=15+334,x 2=15-334,∴CE +DF =x 1-x 2=332,∴S △PCD =S △PBC +S △PBD=12PB ·CE +12PB ·DF =12PB ·(CE +DF )=12×2×332=332;解图(3)m 的取值范围为-2≤m <2或4-2<m ≤4+2.【解法提示】分两种情况讨论:①当抛物线过点A时,可得m2-2=2,解得m=2或m=-2,当m=2时,抛物线的解析式为y=x2-4x+2,=x2-4x+2=-12x+2,可得x2-4x+2=-12x+2,解得x1=0或x2=72,∵x2=72<4,∴两交点都在线段AB上,∴-2≤m<2;②当抛物线过点B时,可得(4-m)2-2=0,解得m=4+2或m=4-2,∴4-2<m≤4+ 2.。
二次函数复习ppt课件

3.求下列二次函数的开口方向,对称轴,顶点坐标.
y=x2 - 2x + 3 y= -2x2 - 4x - 6
解:y=x2-2x+1+2 =(x-1)2+2
y
o
x
a <0,b 0<,c 0. =
y
5.抛物线y=ax2+bx+c(a≠0)的图象经过原点,
且它的顶点在第三象限,则a、b、c满足
的条件是:a >0,b 0>,c 0. =
o
x
6.二次函数y=ax2+bx+c中,如果a>0,b<0,c<0,
那么这个二次函数图象的顶点必在第 四象限
y 先根据题目的要求画出函数的草图,再根据 图象以及性质确定结果(数形结合的思想)
二次函数复习
6.二次函数的应用
1. 如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有 二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。
(1)求S与x的函数关系式及自变量的取值范围; (2)当x取何值时所围成的花圃面积最大,最大值是多少?
解:(1) ∵ AB为x米、篱笆长为24米
x
7.已知二次函数的图像如图所示,下列结论: ⑴a+b+c=0 ⑵a-b+c﹥0 ⑶abc ﹥0 ⑷ b=2a 其中正确的结论的个数是( D) A 1个 B 2个 C 3个 D 4个
y
-1 0 1
x
要点:寻求思路时,要着重观察抛物线的开口方 向,对称轴,顶点的位置,抛物线与x轴、y轴的 交点的位置,注意运用数形结合的思想。
二十二-二次函数复习课PPT课件

一般式: 解: 设所求的二次函数为 y=a(x+1)(x-1)
y=ax2+bx+c
由条件得:
y
两根式: y=a(x-x1)(x-x2)
点M( 0,1 )在抛物线上
所以:a(0+1)(0-1)=1
x o
顶点式: y=a(x-h)2+k
得: a=-1 故所求的抛物线解析式为 y=- (x+1)(x-1)
.
23
4.求抛物线解析式的三种方法
例题精讲
例1.已知一个二次函数的图象过点(-1,10)、
(1,4)、(2,7)三点,求这个函数的解析式?
一般式: 解: 设所求的二次函数为 y=ax2+bx+c
y=ax2+bx+c
两根式: y=a(x-x1)(x-x2)
由条件得: a-b+c=10 a+b+c=4 4a+2b+c=7
有两个相等的
解
x1=x2=
b 2a
没有实数根
O
x
19
基础练习:
1.不与x轴相交的抛物线是(D )
A y=2x2 – 3
B y= - 2 x2 + 3
C y= - x2 – 3x D y=-2(x+1)2 - 3
2.若抛物线y=ax2+bx+c,当 a>0,c<0时,图象与x
轴交点情况是( C )
(1)抛物线经过(2,0)(0,-2)(-1,0)三
点。
yx2 x2
(2)抛物线的顶点坐标是(6,-2),且与X轴
的一个交点的横坐标是8。
y1(x6 )221x26x 1 6
二次函数复习全部讲义(完整资料).doc

【最新整理,下载后即可编辑】二次函数性质二次函数的图象与性质的是二次函数重点内容,而与二次函数的图象与性质密切相关,是图象的开口方向、对称轴、顶点坐标、增减范围、对称性。
这些内容是中考二次函数重点考查内容,关于这些知识点的考查常以下面的题型出现。
一、确定抛物线的开口方向、顶点坐标例1、对于抛物线21(5)33y x =--+,下列说法正确的是( ) A .开口向下,顶点坐标(53),B .开口向上,顶点坐标(53), C .开口向下,顶点坐标(53)-,D .开口向上,顶点坐标(53)-,二、求抛物线的对称轴例2、二次函数322-+=x x y 的图象的对称轴是直线 。
三、求二次函数的最值例3、若一次函数(1)y m x m =++的图像过第一、三、四象限,则函数2y mx mx =-( ) A.有最大值4m B.有最大值4m - C.有最小值4m D.有最小值4m- 四、根据图象判断系数的符号例4、已知函数c bx ax y ++=2的图象如图所示,则下列结论正确的是( )A .a >0,c >0B .a <0,c <0C .a <0,c >0D .a >0,c <0五、比较函数值的大小例5、若A (1,413y -),B (2,45y -),C (3,41y )为二次函数245y x x =+- 的图象上的三点,则1,y 2,y 3y 的大小关系是( )A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y << 六、二次函数的平移例6、把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为( )A. 2(1)3y x =---B. 2(1)3y x =-+-C. 2(1)3y x =--+D. 2(1)3y x =-++例7将抛物线23x y =绕原点按顺时针方向旋转180°后,再分别向下、向右平移1个单位,此时该抛物线的解析式为( )A.1)1(32---=x yB. 1)1(32-+-=x yC.1)1(32+--=x yD. 1)1(32++-=x y例8在直角坐标平面内,二次函数图象的顶点为A(1,-4)且过B(3,0).(1) 求该二次函数解析式;(2) 将该函数向右平移几个单位,可使得平移后所得图象经过原点,并直接写出平移后所得图象与x 轴的另一个交点的坐标.(1)把二次函数2339424y x x =-++代成2()y a x h k =-+的形式. (2)写出抛物线2339424y x x =-++的顶点坐标和对称轴,并说明该抛物线是由哪一条形如2y ax =的抛物线经过怎样的变换得到的?(3)如果抛物线2339424y x x =-++中,x 的取值范围是03x ≤≤,请画出图象,并试着给该抛物线编一个具有实际意义的情境(如喷水、掷物、投篮等).七、求代数式的值例9、已知抛物线21y x x =--与x 轴的一个交点为(0)m ,,则代数式22008m m -+的值为( )A .2006 B .2007C .2008D .2009八、求与坐标轴的交点坐标例10、抛物线 y=x 2+x-4与y 轴的交点坐标为 . 例11、如图是二次函数2)1(2++=x a y 图像的一部分,该图在y 轴右侧与x 轴交点的坐标是 。
二次函数复习讲义

AB F ED C二次函数复习讲义一、知识框架二、具体问题讲解(一)解析式的获取问题 1. 列取例1:正方形ABCD 的边长为4,E 为BC 上一点,F 是CD 上一点,且AE=AF ,设⊿AEF 的面积为y ,EC 的长为x ,求y 与x 的函数关系式,写出自变量的取值范围。
例2:某种品牌的服装进价为每件150元,当售价为每件210元时,每天可售出20件。
现需降价处理,经过市场调查:每件服装每降价2元,每天可多售出1件。
在确保盈利的前提下,若设每件服装降价x 元,每天售出服装的利润为y 元,确定y 与x 之间的函数关系式,并确定自变量的取值范围。
例3:如图,在⊿ABC 中,∠B=900,AB=12cm ,BC=24cm ,动点P 从点A 开始沿着AB 向B 以2cm/s 的速度移动(不与点B 重合),动点Q 从点B 开始沿着BC 向C 以4cm/s 的速度移动(不与点C 重合)。
假设P 、O 分别从A 、B 同时出发,设运动的时间为x s ,四边形APQC 的面积为ycm 2. ⑴求y 与x 之间的关系式,并确定自变量的取值范围;⑵四边形APQC 面积能否成为172cm 2?若能,求出运动的时间;若不能,说明理由。
练:1.在半径为4米的圆中,挖一个半径为xcm 的圆,剩下的圆环面积为ycm 2,则y 与x 的函数关系式为 2.国家决定对某种药品价格分两次降价,若设平均每次的降价率为x ,该药品的原价为18元,降价后的药价为y 元,则y 与x 的函数关系式为 。
3.如图,一矩形场地,两边长分别是80m 、60m ,先欲在场地内修两条宽为xm 的小路,剩余局部的面积为ym 2,则y 与x 之间的关系式为 。
4.某市园丁居民小区要在一块一边靠墙(墙长为15m )的空地上修建一个矩形花园ABCD 。
花园的一边靠墙,另三边用总长为40m 的栅栏围成。
如下列图,若设花园BC 边的边长为xm ,花园的面积为Sm 2.则S 与x 的函数关系式为 ;自变量的取值范围为 。
二次函数阶段专题复习课件

二次函数阶段专题复习课件xx年xx月xx日•二次函数的概念与性质•二次函数的图像与变换•二次函数的应用与综合•二次函数的解析方法与技巧目•二次函数阶段测试题及解析•二次函数阶段复习总结与展望录01二次函数的概念与性质二次函数是指形如`y = ax^2 + bx + c`(其中a、b、c为常数,且a≠0)的函数。
总结词二次函数的一般形式是`y = ax^2 + bx + c`,其中a、b、c为常数,且a≠0。
a称为二次项系数,b称为一次项系数,c为常数项。
详细描述定义与表达式总结词二次函数的开口方向由a决定,顶点坐标由公式`(-b/2a, (4ac - b^2) / 4a)`获得。
详细描述a>0时,开口向上;a<0时,开口向下。
顶点坐标为二次函数的对称轴与y轴的交点,可以通过公式`(-b/2a, (4ac - b^2) / 4a)`获得。
开口方向与顶点坐标总结词二次函数具有轴对称性,其对称轴为x = -b/2a,且在对称轴两侧存在最值。
详细描述二次函数y=ax^2+bx+c的对称轴为x=-b/2a。
当a>0时,函数在x=-b/2a处取得最小值;当a<0时,函数在x=-b/2a处取得最大值。
轴对称与最值02二次函数的图像与变换总结词了解图像形状与特征详细描述通过观察二次函数的图像,可以发现它具有一些特殊的形状和特征。
例如,开口方向、对称轴、顶点等。
这些特征可以用来判断函数的性质和解决问题。
图像的绘制与特征总结词掌握平移与伸缩变换规律详细描述通过平移和伸缩二次函数的图像,可以得到更多具有不同形状和特征的函数图像。
平移主要通过改变函数的解析式实现,而伸缩则可以通过改变函数中的系数实现。
图像的平移与伸缩变换总结词理解对称与旋转变换概念详细描述二次函数的图像具有一些对称性和旋转性质。
例如,对于一些函数,通过沿坐标轴对折或者旋转一定角度,可以得到其他函数的图像。
这些变换可以帮助我们发现函数之间的联系和规律。
二次函数复习讲义

二次函数复习讲义一、基本概念1. 二次函数的定义二次函数是指一个变量的二次多项式方程所定义的函数。
其一般形式可表示为:f(x) = ax^2 + bx + c其中,a、b、c为常数,且a不等于0。
2. 二次函数的图像二次函数的图像是一条开口向上或向下的抛物线。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
抛物线的顶点坐标为(-b/2a, f(-b/2a))。
3. 二次函数的对称轴和顶点二次函数的对称轴是与抛物线对称的直线,由x = -b/2a表示。
抛物线的顶点坐标即为对称轴的交点。
二、性质与变换1. 平移变换二次函数可通过平移变换进行移动。
设二次函数为f(x),平移的规则如下:a)水平平移:f(x + h)表示将抛物线沿x轴正方向移动h个单位;b)垂直平移:f(x) + k将抛物线沿y轴正方向移动k个单位。
2. 拉伸与压缩变换二次函数可通过拉伸或压缩变换进行缩放。
设二次函数为f(x),变换的规则如下:a)水平拉伸或压缩:f(mx)表示将抛物线的横坐标压缩到原来的1/m倍;b)垂直拉伸或压缩:m*f(x)表示将抛物线的纵坐标拉伸到原来的m 倍。
3. 顶点形式与标准形式的转换二次函数可以通过顶点形式和标准形式之间的转换来说明抛物线的性质。
顶点形式可表示为:f(x) = a(x - h)^2 + k其中,(h, k)为抛物线的顶点坐标。
标准形式可表示为:f(x) = ax^2 + bx + c其中,(h, k)为对称轴的交点。
三、特殊二次函数1. 平方函数平方函数是一种特殊的二次函数,其形式为:f(x) = x^2平方函数的图像是一条开口向上的抛物线,其顶点在(0, 0)处。
2. 平移后的二次函数对于二次函数f(x) = ax^2 + bx + c,进行平移变换可以得到新的二次函数g(x) = a(x - h)^2 + k。
3. 开口向上与开口向下的二次函数当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。
二次函数(复习课)课件

伸缩变换包括横向伸缩和纵向伸缩。横向伸缩是指将图像在x轴方向上进行放大或缩小,纵向伸缩是指将图像在y轴方向上进行放大或缩小。具体来说,对于函数y=ax^2+bx+c,若图像在x轴方向上放大k倍,则新的函数为y=a(kx)^2+b(kx)+c;若图像在y轴方向上放大k倍,则新的函数为y=a(x)+b(x)/k+ck。通过这两种伸缩变换,我们可以得到原函数的放缩版函数。
02
二次函数的解析式
总结词
二次函数的一般形式是 $y = ax^2 + bx + c$,其中 $a neq 0$。
详细描述
一般式是二次函数的基本形式,它包含了二次函数的最高次项、一次项和常数项。通过一般式可以明确地看出函数的开口方向和开口大小,由系数 $a$ 决定。
VS
二次函数的顶点形式是 $y = a(x - h)^2 + k$,其中 $(h, k)$ 是函数的顶点坐标。
总结词
实际应用问题
总结词
与其他函数的综合
总结词
与几何图形的结合
01
02
03
04
05
06
总结词
详细描述
总结词与图像关系
这类问题需要探讨二次函数的系数与图像之间的关系,如开口大小、对称轴位置等。
一题多解法
这类问题通常有多种解法,需要灵活运用二次函数的性质和图像,寻找最简便的解法。
详细描述
二次函数具有对称性,其对称轴为直线$x = -frac{b}{2a}$。此外,二次函数的开口方向由系数$a$决定,当$a > 0$时,开口向上;当$a < 0$时,开口向下。顶点坐标为$left(-frac{b}{2a}, fleft(-frac{b}{2a}right)right)$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1-3讲 二次函数全章综合提高【知识清单】 ※一、网络框架※二、清单梳理1、一般的,形如2(0,,,)y ax bx c a a b c =++≠是常数的函数叫二次函数。
例如222212,26,4,5963y x y x y x x y x x =-=+=--=-+-等都是二次函数。
注意:系数a不能为零,,b c 可以为零。
2、二次函数的三种解析式(表达式)2(0)0=00=0000000y ax a y a y a y a x y x x y x a x y x x y x ⎧=≠⎧⎪⎪⎪><⎨⎪><>⎧⎪⎨⎪<<>⎩⎩最小值最大值概念:形如的函数简单二次函数图像:是过(0,0)的一条抛物线对称轴:轴性质最值:当时,;当时,当时,在对称轴左边(即),随的增大而减小。
在对称轴右边(即),随的增大而增大。
增减性当时,在对称轴左边(即),随的增大而增大。
在对称轴右边(即),随的增大而减小。
二次函数2222(0)004242440=0=440y ax bx c a a a b ac b a a b x a ac b ac b a y a y a a a ⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩=++≠⎧><⎪⎪-⎪⎨⎪⎪=⎪⎩--><>最小值最大值概念:形如的函数,注意还有顶点式、交点式以及它们之间的转换。
开口方向:,开口向上;,开口向下。
图像:是一条抛物线顶点坐标:(-,)对称轴:-最值:当时,,当时,一般二次函数性质:当时,在对称轴左增减性:22022b b x y x x y x a a b b a x y x x y x a a ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎪⎪⎧⎪<>⎨⎪⎪⎪⎪⎪⎨⎪⎪⎪<<>⎪⎪⎪⎩⎩⎪⎧⎪⎪⎪⎨⎪⎪⎪⎩⎩边(即-),随的增大而减小。
在对称轴右边(即-),随的增大而增大。
当时,在对称轴左边(即-),随的增大而增大。
在对称轴右边(即-),随的增大而减小。
待定系数法求解析式应用与一元二次方程和不等式的关系建立函数模型解决实际问题⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩①一般式:2(0,,,)y ax bx c a a b c =++≠是常数②顶点式:2()(,,0)y a x h k a h k a =-+≠为常数,且,顶点坐标为(,)h k③交点式:1212()()(0,,)y a x x x x a x x x =--≠其中是抛物线与轴的交点的横坐标 3、二次函数的图像位置与系数,,a b c 之间的关系 ①a :决定抛物线的开口方向及开口的大小。
当0a>时,开口方向向上;当0a <时,开口方向向下。
||a 决定开口大小,当||a 越大,则抛物线的开口越小;当||a 越小,则抛物线的开口越大。
反之,也成立。
②c :决定抛物线与y 轴交点的位置。
当0c >时,抛物线与y 轴交点在y 轴正半轴(即x轴上方);当0c <时,抛物线与y 轴交点在y 轴负半轴(即x 轴下方);当0c =时,抛物线过原点。
反之,也成立。
③ a b 和:共同决定抛物线对称轴的位置。
当02b a ->时,对称轴在y 轴右边;当02ba-<时,对称轴在y 轴左边;当02ba-=(即当0b =时)对称轴为y 轴。
反之,也成立。
④特别:当1x=时,有y a b c =++;当1x =-时,有y a b c =-+。
反之也成立。
4、二次函数2()y a x h k =-+的图像可由抛物线2y ax =向上(向下),向左(向右)平移而得到。
具体为:当0h >时,抛物线2y ax =向右平移h 个单位;当0h <时,抛物线2y ax =向左平移h -个单位,得到2()y a x h =-;当0k >时,抛物线2()y a x h =-再向上平移k 个单位,当0k <时,抛物线2()y a x h =-再向下平移k -个单位,而得到2()y a x h k =-+的图像。
5、抛物线2(0)y ax bx c a =++≠与一元二次方程20(0)ax bx c a ++=≠的关系:①若抛物线2(0)y ax bx c a =++≠与x轴有两个交点,则一元二次方程20(0)ax bx c a ++=≠有两个不相等的实根。
②若抛物线2(0)y ax bx c a =++≠与x轴有一个交点,则一元二次方程20(0)ax bx c a ++=≠有两个相等的实根(即一根)。
③若抛物线2(0)y ax bx c a =++≠与x轴无交点,则一元二次方程20(0)ax bx c a ++=≠没有实根。
6、二次函数2(0,,,)y ax bx c a a b c =++≠是常数的图像与性质【考点解析】考点一:二次函数的概念【例1】下列函数中是二次函数的是( )2.81A y x =+ .81B y x =-- 8.C y x =23.4D y x=- 【解析】根据二次函数的定义即可做出判断,A 中281y x =+符合2(0)y ax bx c a =++≠的形式,所以是二次函数,,B C 分别是一次函数和反比例函数,D 中右边234x-不是整式,显然不是二次函数。
【答案】A【例2】已知函数2234(2)3(1)m m y mm x mx m -+=--++是二次函数,则m =_____。
【解析】根据二次函数的定义,只需满足两个条件即可“二次项系数不为零,且x 的最高次数为2”。
故有2220342m m m m ⎧-≠⎪⎨-+=⎪⎩,解得0212m m m m ≠≠⎧⎨==⎩且或,综上所述,m 取1。
【答案】1 【针对训练】 1、若函数22(2)m y m x mx -=-+是二次函数,则该函数的表达式为__________y =。
考点二:待定系数法在求解二次函数解析式中的应用【例1】已知点()8,a 在二次函数2ax y =的图象上,则a 的值是()2.A 2.-B .C 2± 2.±D【解析】因为点()8,a 在二次函数2ax y =的图象上,所以将点()8,a 代入二次函数2ax y =中,可以得出3a 8=,则可得2=a ,【答案】.A【例2】(2011,泰安)若二次函数c bx ax y ++=2的x 与y 的部分对应值如下表,则当1-=x 时,y 的值为( )x7- 6- 5- 4- 3- 2-y27- 13- 3-3 535.A 3.-B 13.-C 27-【解析】设二次函数的解析式为()k h x a y +-=2,因为当4-=x 或2-时,3=y ,由抛物线的对称性可知3-=h ,5=h ,所以()532++=x a y ,把()3,2-代入得,2-=a ,所以二次函数的解析式为()5322++-=x y ,当3=x 时,27-=y 。
【答案】C 【针对训练】1、(2002年太原)过()0,1-,()0,3,()2,1三点的抛物线的顶点坐标是( ).A ()2,1 2.(1,)3B ()5,1.-C 14.(2,)3D2、无论m 为何实数,二次函数2x y =()m x m +--2的图象总是过定点( )()3,1.A ()0,1.B ()3,1.-C ()0,1-D【例3】(2010,石家庄一模)如图所示,在平面直角坐标系中,二次函数c bx ax y ++=2的图象顶点为()2,2.--A ,且过点()2,0B ,则y 与x 的函数关系式为( ).A 22+=x y .B ()222+-=x y .C ()222--=x y .D ()222-+=x y【解析】设这个二次函数的关系式为()222-+=x a y ,将()2,0B 代入得()22022-+=,解得:1=a ,故这个二次函数的关系式是()222-+=x y ,【答案】D【针对训练】考点三:二次函数的图像与性质的综合应用(与系数,,a b c 的关系)【例1】(2012,兰州)已知二次函数b x a y -+=2)1()0(≠a 有最小值1,则a 、b 的大小关系为( ).A b a > .B b a < .C b a = .D 不能确定【考点】涉及二次函数顶点坐标和最值【解析】因为二次函数b x a y -+=2)1()0(≠a 有最小值1,所以0>a,1=-b ,1-=b ,所以b a >。
【答案】.A 【针对训练】1、二次函数1422--=x x y 的最小值是 。
2、(2013,兰州)二次函数3)1(22+--=x y 的图象的顶点坐标是( ).A )31(, .B )31(,- .C )31(-, .D )31(--,3、抛物线)2(--=x x y 的顶点坐标是( ).A )11(--, .B )11(,- .C )11(, .D )11(-,【例2】(2012,兰州)抛物线3)2(2-+=x y 可以由抛物线2x y =平移得到,则下列平移过程正确的是( ).A 先向左平移2个单位,再向上平移3个单位 .B 先向左平移2个单位,再向下平移3个单位 .C 先向右平移2个单位,再向下平移3个单位 .D 先向右平移2个单位,再向上平移3个单位【考点】涉及函数平移问题【解析】抛物线2x y =向左平移2个单位可得到抛物线2)2(+=x y ,再向下平移3个单位可得到抛物线3)2(2-+=x y 。
【答案】.B【针对训练】1、(2012,南京)已知下列函数:(1)2x y =;(2)2x y -=;(3)2)1(2+-=x y 。
其中,图象通过平移可以得到函数322-+=x x y 的图象的有 (填写所有正确选项的序号)。
2、(2009,上海)将抛物线22-=x y 向上平移一个单位后,得到新的抛物线,那么新的抛物线的表达式是 。
3、将抛物线2x y -=向左平移2个单位后,得到的抛物线的解析式是( ).A 22+-=x y .B 2)2(+-=x y .C 2)2(--=x y .D 22--=x y4、将抛物线2(0)y ax bx c a =++≠向下平移3个单位,在向左平移4个单位得到抛物线2245y x x =--+,则原抛物线的顶点坐标是__________。
【例3】(2013,长沙)二次函数c bx ax y ++=2的图象如图所示,则下列关系式错误的是( ).A 0>a .B 0>c .C 042>-ac b .D 0>++c b a【考点】图像与系数的关系【解析】观察题中图象可知,抛物线的开口方向向上,抛物线与y 轴的交点在y 轴的正半轴上,与x 轴有两个交点,所以0>a ,0>c ,042>-ac b ,且当1=x 时,0<++=c b a y 。