第26讲 最小公倍数(一)
小学数学奥数解题技巧 第26讲 设数法

小学数学奥数解题技巧
第二十六讲 设数法
同步教材视频
1
小升初数学解题技巧 第26讲 设数法
当应用题中没有解题必需的具体的数量,并且已有数量间的 关系很抽象时,如果假设题中有个具体的数量,或假设题中 某个未知数的数量是单位1,题中数量之间的关系就会变得清 晰明确,从而便于找到解答问题的方法,我们把这种解答应 用题的方法叫做设数法。 实际上设数法是假设法中的一种方法,因为它的应用比较多, 所以我们把它单列为一种解题方法。 在用设数法解答应用题设具体数量时,要注意两点:一是所 设数量要尽量小一些;二是所设的数量要便于分析数量关系 和计算。 (一)设具体数量
解法(2):假设两个班的总人数是30人,则苹果的总个数 是:6×30=180(个)
大班人数是:180÷10=18(人) 小班人数是:30-18=12(人) 小班每人可分得苹果 第26讲 设数法
【例题】一艘轮船从甲港开往乙港,去时顺水,每小时行驶30千米; 返回时逆水,每小时行驶20千米。求这艘轮船往返的平均速度。
【点拔】 甲、乙两港之间的路程没有给,要求往返的平均速度就比较困难。 我们可以设甲、乙两港之间的路程为60千米(60是轮船往返速度30和20 的最小公倍数)。 这样去时用的时间是:60÷30=2(小时) 返回时用的时间是:60÷20=3(小时) 往返一共用的时间是:3+2=5(小时) 往返的平均速度是:60×2÷5=24(千米/小时) 综合算式:60×2÷(60÷30+60÷20)
4
小升初数学解题技巧 第26讲 设数法
【例题】有一堆苹果,如果平均分给大、小两个班的小朋友,每人 可得6个;如果只分给大班,每人可得10个。如果只分给小班,每人可 得几个?
高中数学竞赛专题精讲26整除(含答案)

26整除整除是整数的一个重要内容,这里仅介绍其中的几个方面:整数的整除性、最大公约数、最小公倍数、方幂问题.Ⅰ. 整数的整除性初等数论的基本研究对象是自然数集合及整数集合. 我们知道,整数集合中可以作加、减、乘法运算,并且这些运算满足一些规律(即加法和乘法的结合律和交换律,加法与乘法的分配律),但一般不能做除法,即,如是整除,,则不一定是整数. 由此引出初等数论中第一个基本概念:整数的整除性.定义一:(带余除法)对于任一整数和任一整数,必有惟一的一对整数,使得,,并且整数和由上述条件惟一确定,则称为除的不完全商,称为除的余数.若,则称整除,或被整除,或称的倍数,或称的约数(又叫因子),记为.否则,| .任何的非的约数,叫做的真约数.0是任何整数的倍数,1是任何整数的约数.任一非零的整数是其本身的约数,也是其本身的倍数.由整除的定义,不难得出整除的如下性质:(1)若(2)若(3)若,则反之,亦成立.(4)若.因此,若.(5)、互质,若(6)为质数,若则必能整除中的某一个. 特别地,若为质数, (7)如在等式中除开某一项外,其余各项都是的倍数,则这一项也是的倍数.(8)n 个连续整数中有且只有一个是n 的倍数.b a ,0≠b b a a b q r r bq a +=b r <≤0q r q b a r b a 0=r b a a b b a 是a b 是a b |b a a 1,±±a a .|,|,|c a c b b a 则.,,2,1,,|,|1n i Z c b c a b a i n i ii i =∈∑=其中则c a |.|cb ab ||||,|b a b a ≤则b a a b b a ±=则又,|,|a b .|,|,|c ab c b c a 则p ,|21n a a a p ⋅⋅⋅ p n a a a ,,,21 p .|,|a p a p n则∑∑===m k k n i ib a 11c c(9)任何n 个连续整数之积一定是n 的倍数.本讲开始在整除的定义同时给出了约数的概念,又由上一讲的算术基本定理,我们就可以讨论整数的约数的个数了.Ⅱ. 最大公约数和最小公倍数定义二:设、是两个不全为0的整数.若整数c 满足:,则称的公约数,的所有公约数中的最大者称为的最大公约数,记为.如果=1,则称互质或互素.定义三:如果、的倍数,则称、的公倍数. 的公倍数中最小的正数称为的最小公倍数,记为.最大公约数和最小公倍数的概念可以推广到有限多个整数的情形,并用表示的最大公约数,表示的最小公倍数.若,则称互质,若中任何两个都互质,则称它们是两两互质的.注意,n 个整数互质与n 个整数两两互质是不同的概念,前者成立时后者不一定成立(例如,3,15,8互质,但不两两互质);显然后者成立时,前者必成立.因为任何正数都不是0的倍数,所以在讨论最小公倍数时,一般都假定这些整数不为0.同时,由于有相同的公约数,且(有限多个亦成立),因此,我们总限于在自然数集合内来讨论数的最大公约数和最小公倍数.Ⅲ.方幂问题一个正整数能否表成个整数的次方和的问题称为方幂和问题.特别地,当时称为次方问题,当时,称为平方和问题.能表为某整数的平方的数称为完全平方数.简称平方数,关于平方数,明显有如下一些简单的性质和结论:(1)平方数的个位数字只可能是0,1,4,5,6,9.(2)偶数的平方数是4的倍数,奇数的平方数被8除余1,即任何平方数被4除的余数只能是0或1.(3)奇数平方的十位数字是偶数.(4)十位数字是奇数的平方数的个位数一定是6.(5)不能被3整除的数的平方被3除余1,能被3整除的数的平方能被3整除.因而,平方数被9除的余数为0,1,4,7,且此平方数的各位数字的和被9除的余数也只能为0,1,4,7.(6)平方数的约数的个数为奇数.(7)任何四个连续整数的乘积加1,必定是一个平方数.例题讲解a b b c a c |,|b a c ,为b a 与b a 与),(b a ),(b a b a 与a d 是b a d 是b b a 与b a 与],[b a ),,,(21n a a a n a a a ,,,21 ],,,[21n a a a n a a a ,,,21 1),,,(21=n a a a n a a a a ,,,,321 n a a a ,,,21 |||,|,b a b a 与|)||,(|),(b a b a =n m k 1=m k 2=k1.证明:对于任何自然数和,数都不能分解成若干个连续的正整数之积.2.设和均为自然数,使得证明:可被1979整除.3.对于整数与,定义求证:可整除4.求一对整数,满足:(1)不能被7整除;(2)能被77整除.5.求设和是两个正整数,为大于或等于3的质数,),试证:(1);(2)或6.盒子中各若干个球,每一次在其中个盒中加一球.求证:不论开始的分布情况如何,总可按上述方法进行有限次加球后使各盒中球数相等的充要条件是7.求所有这样的自然数,使得是一个自然数的平方.课后练习1. 选择题n k 1042),(3++=k k n nk n f p q .131911318131211+--+-= q p p n k ,),(112∑=-=n r k rk n F )1,(n F ).,(k n F b a ,)(b a ab +777)(b a b a --+a b p b a ,1),(=ba b a b a c pp +++=,(1),(=a c 1=c .p c =m )(m n n <.1),(=n m n n222118++(1)若数n=20·30·40·50·60·70·80·90·100·110·120·130,则不是n 的因数的最小质数是().(A)19 (B)17 (C)13 (D)非上述答案(2)在整数0、1、2…、8、9中质数有x个,偶数有y个,完全平方数有z个,则x+y+z等于().(A)14 (B)13 (C)12 (D)11 (E)10(3)可除尽311+518的最小整数是().(A)2 (B)3 (C)5 (D)311+518(E)以上都不是2.填空题(1)把100000表示为两个整数的乘积,使其中没有一个是10的整倍数的表达式为__________.(2)一个自然数与3的和是5的倍数,与3的差是6的倍数,这样的自然数中最小的是_________.(3)在十进制中,各位数码是0或1,并且能被225整除的最小自然数是________.3.求使为整数的最小自然数a的值.4.证明:对一切整数n,n2+2n+12不是121的倍数.5.设是一个四位正整数,已知三位正整数与246的和是一位正整数d的111倍,又是18的倍数.求出这个四位数,并写出推理运算过程.6.能否有正整数m、n满足方程m2+1954=n2.7.证明:(1)133|(11n+2+12n+1),其中n为非负整数.(2)若将(1)中的11改为任意一个正整数a,则(1)中的12,133将作何改动?证明改动后的结论.8.设a、b、c是三个互不相等的正整数.求证:在a3b-ab3,b3c-bc3,c3a-ca3三个数中,至少有一个能被10整除.9. 100个正整数之和为101101,则它们的最大公约数的最大可能值是多少?证明你的结论.课后练习答案1.B.B.A2.(1)25·55.(2)27.3.由2000a为一整数平方可推出a=5.4.反证法.若是121的倍数,设n2+2n+12=121k(n+1)2=11(11k-1).∵11是素数且除尽(+1)2,∴11除尽n+1112除尽(n+1)2或11|11k-1,不可能.5.由是d的111倍,可能是198,309,420,531,642,753;又是18的倍数,∴只能是198.而198+246=444,∴d=4,是1984.7.(1)11n+2+122n+1=121×11n+12×144n=121×11n+12×11n-12×11n+12×144n=…=133×11n+12×(144n-11n).第一项可被133整除.又144-11|144n-11n,∴133|11n+2+122n+1.(2)11改为a.12改为a+1,133改为a(a+1)+1.改动后命题为a(a+1)+1|an+2+(a+1)2n+1,可仿上证明.8.∵a3b-ab3=ab(a2-b2);同理有b(b2-c2);ca(c2-a2).若a、b、c中有偶数或均为奇数,以上三数总能被2整除.又∵在a、b、c中若有一个是5的倍数,则题中结论必成立.若均不能被5整除,则a2,b2,c2个位数只能是1,4,6,9,从而a2-b2,b2-c2,c2-a2的个位数是从1,4,6,9中,任取三个两两之差,其中必有0或±5,故题中三式表示的数至少有一个被5整除,又2、5互质.9.设100个正整数为a1,a2,…,a100,最大公约数为d,并令则a1+a2+…+a100=d(a1′+a2′+…+a′100)=101101=101×1001,故知a1′,a2′,a′100不可能都是1,从而a′1+a′2+…+a′100≥1×99+2=101,d≤1001;若取a1=a2=a99=1001,a100=2002,则满足a1+a2+…+a100=1001×101=101101,且d=1001,故d的最大可能值为1001例题答案:1. 证明:由性质9知,只需证明数不能被一个很小的自然数整除.因3 1,故3 ,因而不能分解成三个或三个以上的连续自然数的积.再证不能分解成两个连续正整数的积. 由上知,,因而只需证方程:无正整数解.而这一点可分别具体验算时,均不是形的数来说明. 故对任何正整数、都不能分解成若干个连续正整数之积.2. 证明: = = =1979× 两端同乘以1319!得1319! 此式说明1979|1319!×由于1979为质数,且1979 1319!,故1979|【评述】把1979换成形如的质数,1319换成,命题仍成立. 牛顿二项式定理和为偶数), 为奇数)在整除问题中经常用到.3.证明:当时,),(k n f n ,1)1)(1()3(31033),(333++--++=++-+=k k k k k k k k k n n n n n n n n n k n f ),1)(1(|3),3(3|33+-++k k k k k n n n n n ),(k n f ),(k n f ),(k n f )(13),(N q q k n f ∈+=)1(13+=+x x q 234,134,3++=r x )1(+x x 13+q ),(k n f n k )131814121(2)1319131211(+++-+++= q p )6591211()1319131211(+++-++++ )99019891()131816611()131916601(++++++ )99098911318661113196601(⨯++⨯+⨯ *).(1979N m m q p ∈⨯=⨯.p .p 23+k *)(12N k k ∈+n b a b a b a b a n n n n (|)(,|)(-+--n b a b a n n (|)(-+m n 2=,)12()1,2(21∑=+==mr m m r m F由于[…]能被整除,所以能被整除,另一方面,上式中[…]能被整除,所以也能被整除.因与2+1互质,所以能被(2+1)(即)整除.类似可证当时,F (2+1,)能被F (2+1,1)整除. 故能被整除.4. ==根据题设要求(1)(2)知,即 令即即,则故可令即合要求.5. 由已知得,两式相乘得 于是故(1)现用反证法来证明.若令是的一个质因子,则有因,则,从而于是是、的一个公约数,这与=1矛盾,故.∑∑+=-=-+=m m r k m r k rrk m F 2112112),2(],)12([)12(12112112112-=-=-=--++=-++=∑∑∑k m r k m r k m r k r m r r m r12)12(+=-++m r m r ),2(k m F 12+m =),2(k m F ,)2(])2([1212121112----=-++-+∑k k k m r k m m r m rm r m r 2)2(=-+),2(k m F m m m ),2(k m F m m )1,(m F 12+=m n m k m ),(k n F )1,(n F 777)(b a b a --+)](5)(3)[(7223355b a b a b a ab b a ab +++++.))((7222ab b a b a ab +++|,)(|72226ab b a ++.|7223ab b a ++,7322=++ab b a ,343)(2=-+ab b a 19=+b a .343192-=ab 1,18==b a ),(,N s t cs ba b a ct b a pp ∈=++=+,)(1112ct pa t pac t c a ct a b a st c p p p p p p p p p ---++-=-+=+= ,12211-----++-=p p p p p pa t pac t c cs .|1-p pa c 1),(=a c ,1),(>=k a c q k .|,|a q c q b a c +|b a q +|.|b q q a b ),(b a 1),(=a c(2)因为所以而为质数且,故或6. 证明:设,则有使得,此式说明:对盒子连续加球次,可使个盒子各增加了个,一个增加个.这样可将多增加了一个球的盒子选择为原来球数最少的那个,于是经过次加球之后,原来球数最多的盒子中的球与球数最少的盒子中的球数之差减少1,因此,经过有限次加球后,各盒球数差为0,达到各盒中的球数相等.用反证法证明必要性.若,则只要在个盒中放个球,则不管加球多少次,例如,加球次,则这时个盒中共有球(个),因为所以不可能是的倍数,更不是的倍数,各盒中的球决不能一样多,因此,必须.7. 证明:(1)当时,,因(…)为奇数,所以要使N 为平方数,必为偶数.逐一验证知,N 都不是平方数.(2)当时,不是平方数. (3)当时,,要N 为平方数,应为奇数的平方,不妨假设=,则由于和是一奇一偶,左边为2的幂,因而只能=1,于是得,由知为所求.,1),(,|1=-a c pa c p .|p c p 3≥p 1=c .p c =1),(=n m Z v u ∈,)1()1(1++-=+=v m v vm un u 1-m v )1(+v u 1),(>=d n m m 1+m k m kn m ++1,1,|,|>d n d m d kn m ++1d m 1),(=n m 8≤n )122(222118118++⋅++=--n n n N n 8,6,4,2=n 9=n 11222289118⨯=++=N 10≥n )29(288-+=n N 829-+n 829-+n 2)12(+k ).2()1(210+⨯-=-k k n 1-k 2+k 1-k 2=k 21022=-n 12=n。
北师大版数学五年级上册第三单元《倍数与因数》说课稿

北师大版数学五年级上册第三单元《倍数与因数》说课稿一. 教材分析北师大版数学五年级上册第三单元《倍数与因数》是本册教材中的一个重要单元,主要内容包括:因数与倍数的定义、求一个数的因数和倍数的方法、最大公因数和最小公倍数的求法等。
这些内容对于学生理解和掌握数学的基本概念、培养逻辑思维能力具有重要意义。
本单元的内容与学生的生活实际紧密相连,便于学生理解和运用。
通过本单元的学习,学生能够掌握因数与倍数的基本概念,能够运用求因数和倍数的方法解决实际问题,提高学生的数学应用能力。
二. 学情分析五年级的学生已经具备了一定的数学基础,对数学概念有一定的理解能力。
但是,对于倍数与因数这一单元的内容,由于涉及到较为抽象的概念,学生可能存在一定的理解难度。
因此,在教学过程中,需要教师针对学生的实际情况进行引导,帮助学生理解和掌握相关概念。
三. 说教学目标1.知识与技能目标:学生能够理解和掌握因数与倍数的基本概念,能够运用求因数和倍数的方法解决实际问题。
2.过程与方法目标:通过自主探究、合作交流的学习过程,培养学生的逻辑思维能力和问题解决能力。
3.情感态度与价值观目标:学生能够积极参与数学学习,体验数学学习的乐趣,提高对数学的兴趣。
四. 说教学重难点1.教学重点:因数与倍数的基本概念、求一个数的因数和倍数的方法。
2.教学难点:最大公因数和最小公倍数的求法。
五. 说教学方法与手段1.教学方法:采用自主探究、合作交流、教师引导相结合的教学方法,引导学生主动参与学习过程,提高学生的学习兴趣和积极性。
2.教学手段:利用多媒体课件、实物模型等教学辅助手段,帮助学生形象直观地理解因数与倍数的概念。
六. 说教学过程1.导入:通过复习相关知识,引导学生回顾已有知识,为新课的学习做好铺垫。
2.探究因数与倍数:教师引导学生通过自主探究、合作交流的方式,探讨并理解因数与倍数的概念。
3.求一个数的因数和倍数:教师引导学生学习求一个数的因数和倍数的方法,并通过实例进行讲解和练习。
公倍数和公因数

泛美国际教育2015年五年级春季班讲义公倍数和公因数【知识要点】1、熟练运用短除法求两个数的最大公因数、最小公倍数;2、会用短除法求三个数的最小公倍数;3、理解公倍数和公因数的关系,运用公倍数和公因数的关系解决实际问题。
【题型精讲】重难点一:求两个数的最小公倍数例1求9和12的最小公倍数求6和14的最小公倍数(用短除法)9 12例2求下面各组数的最小公倍数12和16 20和3 24和12 10和21 7和9 6、12和15巩固拓展1、学校运来一批树苗,如果每行栽8棵或每行栽10棵,都恰好能栽成整行数,这批树苗至少有多少棵?2、1路和2路公共汽车早上七点同时从起始站出发,1路车每7分钟发一辆车,2路车每8分钟发一辆车,列表找出这两路车同时发车的时间,最近的一次是什么时候?3、某公共汽车站有三条线路的公共汽车,第一条线路每隔5分钟发一次车,第二条线路每隔10分钟发一次车,第三条线路每隔8分钟发一次车,下次三条线路同时发车是多少分钟之后?4、有一堆水果,按4个一堆分少一个,按5个一堆分也少一个,按6个一堆分还少一个,这堆水果至少有多少个?5、有一堆糖果,5个一堆分多4个,6个一堆分多5个,7个一堆分多6个,这堆糖果至少有多少个?重难点二:求两个数的最大公因数例3求18和12的最大公倍数求26和52的最大公倍数(用短除法)18 12例4求下列两个数的最大公倍数3和14 22和66 42和63 18和27 27和54 25和40巩固拓展6、有三根铁丝,分别长16m、24 m、32 m,要把这三根铁丝截成同样长的若干小段,三根铁丝都不许有剩余,每小段最长多少米?一共可以截成多少段?7、学校买来160枝圆珠笔,128册故事书和96本练习本?在每份奖品中,圆珠笔、故事书和练习本各多少?8、现有100枝玫瑰花,80枝康乃馨和60枝苍兰,要配成同样的花束,最多可以配多少束?每束中三种花各有几枝?9、张老师把35枝铅笔盒40本练习本分别平均奖给若干个三好学生,结果练习本差2本,铅笔正好,你知道三好学生最多有几人吗?命题:泛美国际教育数学教研组命题:泛美国际教育数学教研组24分米33分米重难点三:最小公倍数和最大公因数的关系例 5 求12和18的最小公倍数和最大公因数,观察最小公倍数和最大公因数的关系; 12和18的最小公倍数: 12和18的最大公倍数:巩固拓展 10、 两个自然数的最大公因数是14,最小公倍数是84,已知其中一个数是28,另一个数是多少?11、 已知两个数的乘积是11532,它们的最大公因数是31,它们的最小公倍数是多少? 12、 两个数的最大公因数是15,最小公倍数是225,其中的一个数是45,另一个数是多少?13、 已知两个数的乘积是11532,它们的最大公因数是31,求这两个数;14、 两个数的最大公因数是15,最小公倍数是225,这两个数分别是多少? 15、 两个数的和是52,它们的最大公因数是4,最小公倍数是144,这两个数各是多少?重难点四:用最小公倍数和最大公因数解决实际问题例 6 父子两人在雪地里散步,父亲在前,每步80厘米,儿子在后,每步60厘米,在120米内一共留下多少个脚印?例 7 园林工人在一段公路的两边每隔4米栽一棵树,一共栽了74棵,现在要改成每隔6米载一棵树,那么不用移动的树共有多少棵?(每边两头都载)16、 两根长绳,一根长18米,另一根长26米,要截成长度一样且没有剩余的跳绳(每根跳绳的长度的米数都是整米数),每根跳绳最长是多少米? 17、小红家的厨房要铺方砖(如下图),有两种规格的方砖:一种边长为3分米,另一种边长为4分米,铺哪种规格的方砖最合适,既没浪费,也没破损?18、一个长方形的宽是13与52的最大公因数(单位:厘米),长是6与8的最小公倍数(单位:厘米),这个长方形的面积是多少平方厘米?19、把47个苹果和39个橘子分别平均分给学校绘画小组的同学,结果苹果剩2个,橘子剩4个,绘画小组最多有多少位同学?20、 小明原有故事书的本数是小华的6倍,两人又各买2本以后,小明故事书的本数是小华的4倍,两人原来各有故事书多少本?。
人教版小学数学六年级教案第26讲同余有余 (2)

第二十六讲同余有余精锐宝典在整数的除法中,只有能整除与不能整除两种情况。
当不能整除时,就产生余数,所以余数问题在小学数学中非常重要。
余数有如下一些重要性质(a,b,c均为自然数):(1)余数小于除数。
(2)被除数=除数×商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数。
(3)如果a,b除以c的余数相同,那么a与b的差能被c整除。
(4)a与b的和除以c的余数,等于a,b分别除以c的余数之和(或这个和除以c的余数)。
(5)a与b的乘积除以c的余数,等于a,b分别除以c的余数之积(或这个积除以c的余数)。
同余这个概念最初是由伟大的德国数学家高斯发现的。
同余的定义是这样的:两个整数a,b,如果它们除以同一自然数m所得的余数想同,则称a,b对于模m同余。
记作:a ≡b(mod m)。
读做:a同余于b模m。
比如,12除以5,47除以5,它们有相同的余数2,这时我们就说,对于除数5,12和47同余,记做12≡47(mod5)。
同余的性质比较多,主要有以下一些:性质(1):对于同一个出书,两个数之和(或差)与它们的余数之和(或差)同余。
比如:32除以5余数是2,19除以5余数是4,两个余数的和是2+4=6。
“32+19”除以5的余数就恰好等于它们的余数和6除以5的余数。
也就是说,对于除数5,“32+19”与它们的余数和“2+4”同余,用符号表示就是:32≡2(mod5),19≡4(mod5),32+19≡2+4≡1(mod5)性质(2):对于同一个除数,两个数的乘积与它们余数的乘积同余。
性质(3):对于同一个除数,如果有两个整数同余,那么它们的差就一定能被这个除数整除。
性质(4):对于同一个除数,如果两个整数同余,那么它们的乘方仍然同余。
应用同余性质解题的关键是要在正确理解的基础上灵活运用同余性质。
把求一个较大的数除以某数的余数问题转化为求一个较小的数除以这个数的余数,使复杂的题变简单,使困难的题变容易。
最小公倍数

(1)6和15
(2)16和20
(3)18和12
(4) 22和33
注意:(任选其二)
例1
例2
例3
闯关
退出
例
求出下面每组数的最小公倍数
(1)4 和 8 的最小公倍数是( 2×2×1×2=8 )。
3
(2)4 和 5 的最小公倍数是( 1 × 4 × 5 = 20 )。
哇! 我发现了!
如果较大数是较小数的倍数,那
例1
例2
例3
闯关
退出
争 当 攻 关 勇 士
第三关:判断,并说出理由
(1) 两个数的最小公倍数一定能被这两个
数整除。(√ ) (2) 两个数的最小公倍数一定比这两个数 都大。( × ) (3) 两个数的积一定是这两个数的最小公
倍数。(× )
例1
例2
例3
闯关
退出ห้องสมุดไป่ตู้
退出
; 菲律宾华人论坛;
主讲: 陈文举
进入
顺次写出 4 的几个倍数和 6 的几个倍数。它们公
例
有的倍数是哪几个?其中最小的是多少?
16 17 18 18 19 20 20 21 22 23 24 24 25 26 27 28 29 30 30 31 0 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16
18和30的最小公倍数是 2 × 3 × 3 × 5 = 90
例1
例2
例3
闯关
退出
求 最 小 公 倍 数 的
求两个数的最小公倍数,先用
一 般 方 法
这两个数公有的质因数去除(一般
从最小开始),一直除到所得的商 是互质数为止,然后把所有的除数 和最后的两个商连乘起来。
小学五年级奥数第26讲 最小公倍数(一)(含答案分析)
第26讲最小公倍数(一)一、专题简析:1、几个数公有的倍数叫做这几个数的公倍数,其中最小的一个公倍数,叫做这几个数的最小公倍数。
自然数a、b的最小公倍数可以记作[a、b],当(a、b)=1时,[a、b]= a×b。
2、两个数的最大公约数和最小公倍数有着下列关系:最大公约数×最小公倍数=两数的乘积即(a、b)×[a、b]= a×b要解答求最小公倍数的问题,关键要根据题目中的已知条件,对问题作全面的分析,若要求的数对已知条件来说,是处于被除数的地位,通过就是求最小公倍数,解题时要避免和最大公约数问题混淆。
二、精讲精练例题1 两个数的最大公约数是15,最小公倍数是90,求这两个数分别是多少?练习一1、两个数的最大公约数是9,最小公倍数是90,求这两个数分别是多少?2、两个数的最大公约数是12,最小公倍数是60,求这两个数的和是多少?例题2 两个自然数的积是360,最小公倍数是120,这两个数各是多少?练习二1、求36和24的最大公约数和最小公倍数的乘积。
2、已知两个数的积是3072,最大公约数是16,求这两个数。
例题3 甲、乙、丙三人是朋友,他们每隔不同天数到图书馆去一次。
甲3天去一次,乙4天去一次,丙5天去一次。
有一天,他们三人恰好在图书馆相会,问至少再过多少天他们三人又在图书馆相会?练习三1、1路、2路和5路车都从东站发车,1路车每隔10分钟发一辆,2路车每隔15分钟发一辆,而5路车每隔20分钟发一辆。
当这三种路线的车同时发车后,至少要过多少分钟又这三种路线的车同时发车?2、甲、乙、丙从同一起点出发沿同一方向在圆形跑道上跑步,甲跑一圈用120秒,乙跑一圈用80秒,丙跑一圈用100秒。
问:再过多少时间三人第二次同时从起点出发?例题4 一块砖长20厘米,宽12厘米,厚6厘米。
要堆成正方体至少需要这样的砖头多少块?练习四1.用长9厘米、宽6厘米、高7厘米的长方体木块叠成一个正方体,至少需要用这样的长方体多少块?2、有200块长6厘米、宽4厘米、高3厘米的长方体木块,要把这些木块堆成一个尽可能大的正方体,这个正方体的体积是多少立方厘米?例题5 甲每秒跑3米,乙每秒跑4米,丙每秒跑2米,三人沿600米的环形跑道从同一地点同时同方向跑步,经过多少时间三人又同时从出发点出发?练习五1、有一条长400米的环形跑道,甲、乙二人同时同地出发,反向而行,1分钟后第一次相遇;若二人同时同地出发,同向而行,则10分钟后第一次相遇。
最新小学五年级奥数全册讲义(1-30讲)(含详解)【值得拥有】
小学五年级奥数全册讲义第1讲数字迷(一)第2讲数字谜(二)第3讲定义新运算(一)第4讲定义新运算(二)第5讲数的整除性(一)第6讲数的整除性(二)第7讲奇偶性(一)第8讲奇偶性(二)第9讲奇偶性(三)第10讲质数与合数第11讲分解质因数第12讲最大公约数与最小公倍数(一)第13讲最大公约数与最小公倍数(二)第14讲余数问题第15讲孙子问题与逐步约束法第16讲巧算24第17讲位置原则第18讲最大最小第19讲图形的分割与拼接第20讲多边形的面积第21讲用等量代换求面积第22 用割补法求面积第23讲列方程解应用题第24讲行程问题(一)第25讲行程问题(二)第26讲行程问题(三)第27讲逻辑问题(一)第28讲逻辑问题(二)第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲数字谜(一)数字谜的内容在三年级和四年级都讲过,同学们已经掌握了不少方法。
例如用猜想、拼凑、排除、枚举等方法解题。
数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。
这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小数的除法竖式问题。
例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。
分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。
当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。
(5÷13-7)×(17+9)。
当“÷”在第二或第四个○内时,运算结果不可能是整数。
当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。
例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。
短除法求最小公倍数(1)
填写时间
/08/08
学科
数学
年级/册
五年级下册
教材版本
人教版
课题名称
第四难点分析
从知识角度分析为什么难
知识点本身较难,虽然之前学过用短除法求最大公因数,可是这里的短除法求最小公倍数时需要将所有公因数与最后的两个商相乘,学生不理解求最小公倍数的算理。
小明和小红两人分别隔不同的时间到图书馆一次,小明6天一次,小红4天一次,从第一天开始,他们最少会在第几天相遇第几天相遇?
〔让学生自己读题,然后学会分析每句话的意思,会把句子变成我们学过的知识点,在分析问题让我们具体求什么,在解决问题时,时常还有别的方法。利用我们学过的最小公倍数可以更简单的计算出这道题的答案。
〔3〕求出下1和6的最小公倍数。你发现了什么?
1和6是倍数关系,所以它们的最小公倍数是较大的数6
1和6是互质数,所以它们的最小公倍数是1×6=6
小结
今天这节课我们主要研究了用短除法求两个数的最小公倍数,它是为以后学习通分做准备的,希望大家能熟练的掌握这局部知识.
×2×3=12,所以4和6的最小公倍数是12.
2、问:如果少一个或多一个质数行不行?
3、反应练习(1) 求18和30的最小公倍数
2 1 8 3 0用公有的因数2除
3 9 1 5用公有的因数3除
3 5除到两个商是互质数为止
4、总结方法:求两个数的最小公倍数,先用这两个数公有的因数连续去除〔一般从最小的开始〕,一直除到所得的商是互质数为止,然后把所有的除数和最后的两个商连乘起来即可。
课堂练习
〔难点稳固〕
〔2〕先观察找出以下每组数的最小公倍数。你发现了什么?
3和6 2和8 5和6 4和9
3和6的最小公倍数是6;
五年级奥数举一反三答案
五年级奥数举一反三答案【篇一:五年级奥数举一反三第22讲作图法解题】>专题简析:用作图的方法把应用题的数量关系提示出来,使题意形象具体,一目了然,以便较快地找到解题的途径,它对解答条件隐蔽、复杂疑难的应用题,能起化难为易的作用。
在解答已知一个数或者几个数的和差、倍差及相互之间的关系,求其中一个数或者几个数问题等应用题时,我们可以抓住题中给出的数量关系,借助线段图进行分析,从而列出算式。
例题1 五(1)班的男生人数和女生人数同样多。
抽去18名男生和26名女生参加合唱队后,剩下的男生人数是女生的3倍。
五(1)班原有男、女生各多少人?分析根据题意作出示意图:练习一1,两根电线一样长,第一根剪去50厘米,第二根剪去180厘米后,剩下部分,第一根是第二根长度的3倍。
这两根电线原来共长多少厘米?2,甲、乙两筐水果个数一样多,从第一筐中取出31个,第二筐中取出19个后,第二筐剩下的个数是第一筐的4倍。
原来两筐水果各有多少个?3,哥哥现存的钱是弟弟的5倍,如果哥哥再存20元,弟弟再存100元,二人的存款正好相等。
哥哥原来存有多少钱?例题2 同学们做纸花,做了36朵黄花,做的红花比黄花和紫花的总数还多12朵。
红花比紫花多几朵?分析通过线段图来观察:1 - -从图中可以看出:红花比紫花多的朵数由两部分组成,一部分是36朵,另一部分是12朵,所以,红花比紫花多36+12=48朵。
练习二1,奶奶家养了25只鸭子,养的鸡比鸭和鹅的总数还多10只。
奶奶家养的鸡比鹅多几只? 2,批发部运来一批水果,其中梨65筐,苹果比梨和香蕉的总数还多24筐。
运来的香蕉比苹果少多少筐?3,期末测试中,明明的语文得了90分。
数学比语文和作文的总分少70分。
明明的数学比作文高多少分?例题3 甲、乙、丙、丁四个小组的同学共植树45棵,如果甲组多植2棵,乙组少植2棵,丙组植的棵数扩大2倍,丁组植树棵数减少一半,那么四个组植的棵数正好相同。
原来四个小组各植树多少棵?分析图中实线表示四个小组实际植树的棵数:练习三1,甲、乙、丙、丁四个数的和是100,甲数加上4,乙数减去4,丙数乘以4,丁数除以4后,四个数就正好相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习奥数的优点
1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。
2、训练学生良好的数学思维习惯和思维品质。
要使经过奥数训练的学生,思维更敏捷,考虑问题比别人更深层次。
3、锻炼学生优良的意志品质。
可以培养持之以恒的耐心和克服困难的信心,
以及战胜难题的勇气。
可以养成坚韧不拔的毅力
4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。
第26讲最小公倍数(一)
一、专题简析:
1、几个数公有的倍数叫做这几个数的公倍数,其中最小的一个公倍数,叫做这几个数的最小公倍数。
自然数a、b的最小公倍数可以记作[a、b],当(a、b)=1时,[a、b]= a×b。
2、两个数的最大公约数和最小公倍数有着下列关系:
最大公约数×最小公倍数=两数的乘积
即(a、b)×[a、b]= a×b
要解答求最小公倍数的问题,关键要根据题目中的已知条件,对问题作全面的分析,若要求的数对已知条件来说,是处于被除数的地位,通过就是求最小公倍数,解题时要避免和最大公约数问题混淆。
二、精讲精练
例题1 两个数的最大公约数是15,最小公倍数是90,求这两个数分别是多少?
练习一
1、两个数的最大公约数是9,最小公倍数是90,求这两个数分别是多少?
2、两个数的最大公约数是12,最小公倍数是60,求这两个数的和是多少?例题2 两个自然数的积是360,最小公倍数是120,这两个数各是多少?
练习二
1、求36和24的最大公约数和最小公倍数的乘积。
2、已知两个数的积是3072,最大公约数是16,求这两个数。
例题3 甲、乙、丙三人是朋友,他们每隔不同天数到图书馆去一次。
甲3天去一次,乙4天去一次,丙5天去一次。
有一天,他们三人恰好在图书馆相会,问至少再过多少天他们三人又在图书馆相会?
练习三
1、1路、2路和5路车都从东站发车,1路车每隔10分钟发一辆,2路车每隔15分钟发一辆,而5路车每隔20分钟发一辆。
当这三种路线的车同时发车后,至少要过多少分钟又这三种路线的车同时发车?
2、甲、乙、丙从同一起点出发沿同一方向在圆形跑道上跑步,甲跑一圈用120秒,乙跑一圈用80秒,丙跑一圈用100秒。
问:再过多少时间三人第二次同时从起点出发?
例题4 一块砖长20厘米,宽12厘米,厚6厘米。
要堆成正方体至少需要这样的砖头多少块?
练习四
1.用长9厘米、宽6厘米、高7厘米的长方体木块叠成一个正方体,至少需要用这样的长方体多少块?
2、有200块长6厘米、宽4厘米、高3厘米的长方体木块,要把这些木块堆成一个尽可能大的正方体,这个正方体的体积是多少立方厘米?
例题5 甲每秒跑3米,乙每秒跑4米,丙每秒跑2米,三人沿600米的环形跑道从同一地点同时同方向跑步,经过多少时间三人又同时从出发点出发?
练习五
1、有一条长400米的环形跑道,甲、乙二人同时同地出发,反向而行,1分钟后第一次相遇;若二人同时同地出发,同向而行,则10分钟后第一次相遇。
已知甲比乙快,求二人的速度。
2、一环形跑道长240米,甲、乙、丙从同一处同方向骑车而行,甲每秒行8米,乙每秒行6米,丙每秒行5米。
至少经过几分钟,三人再次从原出发点同时出发?
三、课后作业
1、两个数的最大公约数是60,最小公倍数是720,其中一个数是180,另一个数是多少?
2、已知两个数的最大公约数是13,最小公倍数是78,求这两个数的差。
3、五年级一班的同学每周一都要去看军属张爷爷,二班的同学每6天去看一次,三班的同学每两周去看一次。
如果“六一”儿童节三个班的同学同一天去看张爷爷,那么,再过多少天他们三个班的同学再次同一天去张爷爷家?
4、一个长方体长2.7米、宽1.8分米、高1.5分米,要把它切成大小相等的正方体小块,不许有剩余,这些小正方体的棱长最多是多少分米?
5、甲、乙、丙三人在一条长240米的跑道上来回跑步,甲每秒跑4米,乙每秒
跑5米,丙每秒跑3米。
若三人同时从一端出发,再经过多少时间三人又从此处同时出发?。