调频发射机设计

合集下载

调频发射机电路设计

调频发射机电路设计

调频发射机电路设计
调频发射机电路设计是一项关键性的工程任务,它涉及到无线通讯系统中发射
机的设计和构建。

在调频(Frequency Modulation,FM)通信中,确保发射机电路
的正常运行和高质量的信号传输至关重要。

为了实现调频发射机的设计,首先需要确定合适的调频器件。

调频电路中最重
要的组件是电感、电容和晶体管。

电感和电容用于形成谐振电路,晶体管则负责信号放大与调制。

根据设计要求,选择适当的电感和电容值,并确保所选的晶体管具备足够的功率输出和频率响应。

在调频发射机电路的设计中,还需要考虑到整体电路的稳定性和抗干扰能力。

通过添加适当的滤波电路、功率放大器和限制器,可以有效提高电路的稳定性,并减少不必要的信号干扰。

另外,为了满足信号传输的要求,调频发射机电路还需要采用合适的调制技术。

调频通信系统常用的调制方式有直接频率调制和间接频率调制。

根据设计需求和系统性能要求,选择适当的调制方式,并确保调制电路的可靠性和精确性。

还有一点需要注意的是,调频发射机电路设计中必须遵循相应的通信法规和标准。

确保电路符合相关的无线电频率和功率规定,以及其他相关的技术标准,以保证系统的合法性和安全性。

总之,调频发射机电路设计是一项复杂而细致的工作。

通过合理选择电子元器件,设计滤波器和调制电路,并严格遵循通信法规和标准,可以实现高质量和高性能的调频发射机电路。

这将为无线通讯系统的稳定运行和高质量的信号传输提供坚实的基础。

无线调频发射机设计

无线调频发射机设计

目录1 绪论 (2)2总体设计框图 (2)2.1电路工作原理 (2)2.2元器件选择 (3)2.2.1三端稳压器7806的有关信息 (3)2.2.2 2SC3357三极管的有关信息 (3)2.3安装与调试 (4)3转印、腐蚀、焊接及调试 (4)3.1 转印腐蚀 (4)3.2焊接及调试 (4)3.3 焊接调试的注意事项: (4)3.4 整体调试中出现的问题 (5)4心得体会 (5)5设计总结 (6)5.1 经验总结 (6)5.2展望未来 (6)参考文献 (8)附录一 (9)附录二 (10)无线调频FM 发射器摘要 论文设计了一个FM 调频发射机,它由专用的高性能高频发射管D40,专用的88—108MHz 的调频发射皮天线(30cm ),配以必要的外围电路组成。

电路由音频信号处理、调频调制和功率放大发射三部分组成。

音频信号可以由麦克风或者音频线输入,经过音频信号处理电路的预加重、限幅、低通滤波和混合后,得到立体声复合信号。

复合信号经调频调制电路调制后,通过功率放大器放大,经发射电路,从天线发射出去。

关键词 调频发射,2SC3357三极管,专用调频发射天线1 绪论简单实用无线调频FM 发射器,电路取材容易,工作稳定可靠,发射距离远,安装调试方便,很适合广大城镇地区使用,也可用于通信、报警、防汛等。

工作频率为88—108MHz 。

2总体设计框图图 1 总体设计框图2.1电路工作原理无线调频FM 发射机的电路,如附录图1所示。

电路由稳压电路、音频放大电路和高频振荡电路三部分组成。

三极管V2为高性能高频发射专用管。

三极管V1等组成共射极音频放大器,在其输入端可连接话筒、音响等,也可以输入警报信号。

放大后的音频信号输送至由V2组成的高频振荡电路,警告频调制后的FM 信号,在经天线W 向天空中发射出去,有远方的FM 收音机接收,并释放出音频信号。

为了使电路工作稳定,电路中设臵了稳压电路,使整机工作电压保持在6V 。

调频(fm)发射机课程设计

调频(fm)发射机课程设计

调频(fm)发射机课程设计一、教学目标本课程的教学目标是使学生掌握调频(FM)发射机的基本原理、工作方式和应用场景。

通过本课程的学习,学生将能够:1.描述调频(FM)发射机的基本原理和工作方式。

2.分析并解决调频(FM)发射机在实际应用中可能遇到的问题。

3.设计和搭建简单的调频(FM)发射机电路。

4.了解调频(FM)发射机在我国无线电通信领域的应用和发展趋势。

二、教学内容本课程的教学内容主要包括以下几个部分:1.调频(FM)发射机的基本原理:介绍调频(FM)发射机的工作原理、调频信号的产生和调频解调的基本概念。

2.调频(FM)发射机的组成及功能:讲解调频(FM)发射机的各个组成部分,如射频振荡器、调制器、功率放大器等,以及它们的功能和作用。

3.调频(FM)发射机的应用场景:介绍调频(FM)发射机在无线电通信、广播、导航等领域的应用实例。

4.调频(FM)发射机的调试与维护:讲解调频(FM)发射机的调试方法、注意事项以及日常维护保养。

三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式进行教学:1.讲授法:通过讲解调频(FM)发射机的基本原理、组成及应用等内容,使学生掌握相关知识。

2.案例分析法:通过分析实际案例,使学生了解调频(FM)发射机在实际应用中的工作原理和操作方法。

3.实验法:学生进行调频(FM)发射机的搭建和调试实验,培养学生动手能力和实际操作技能。

四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:选用国内权威出版的《调频(FM)发射机原理与应用》作为主要教材。

2.参考书:提供相关领域的经典著作和论文,供学生深入学习和研究。

3.多媒体资料:制作课件、教学视频等,以形象、生动的方式展示调频(FM)发射机的相关知识。

4.实验设备:准备调频(FM)发射机实验套件,供学生进行实验操作。

五、教学评估本课程的教学评估将采用多元化的评价方式,全面客观地评价学生的学习成果。

《调频发射机设计》word文档

《调频发射机设计》word文档

实习报告课程:课题:调频发射机设计专业:班级:座号:姓名:指导老师:2011年1月18日目录前言一、设计内容 (3)1.1进程安排 (3)1.2设计目的 (3)1.3设计要求 (4)二、发射机原理 (4)2.1 设计整体思路 (4)2.2 基本原理 (4)2.3 调频发射机的原理图 (8)2.4、各个元器件说明 (8)三、模块说明 (9)3.1 输入信号模块 (9)3.2 振荡模块 (9)3.3 放大和发射模块 (9)3.4 调频发射机的主要技术指标 (10)四、PCB板的制作 (10)五、电路的调试及调试结果结果 (11)5.1 电路的调试 (11)5.2 调试结果 (11)六、实验总结及心得体会 (12)元器件清单附页前言调频发射机作为一种简单的通信工具,由于它不需要中转站和地面交换机站支持,就可以进行有效的移动通信,因此深受人们的欢迎。

目前它广泛的用于生产、保安、野外工程等领域的小范围移动通信工程中。

本课题重点在于设计能给发射机电路提供稳定频率的振荡调制电路。

课题首先用两级电压并联负反馈放大电路,适当放大语音信号,以配合调制级工作;然后用石英晶体构成振荡电路为发射机提供稳定的基准频率载波,接着通过变容二极管完成语音信号对载波信号的频率调制,并通过LC并联谐振网络选出三倍频信号;最终利用两级功率放大,使已调制信号功率大大提高,经过串联滤波网络滤除高次谐波,最后通过拉杆天线发射出去。

通过后续的电路仿真和部分电路的调试,可以证明本课题的电路基本成熟,基本能完成语音信号的电压放大、频率调制和功率放大,达到发射距离的要求。

发射机的主要任务是完成有用的低频信号对高频载波的调制,将其变为在某一中心频率上具有一定带宽、适合通过天线发射的电磁波。

通常,发射机包括三个部分:高频部分,低频部分,和电源部分。

高频部分一般包括主振荡器、缓冲放大、倍频器、中间放大、功放推动级与末级功放。

主振器的作用是产生频率稳定的载波。

小功率调频发射机的设计

小功率调频发射机的设计

小功率调频发射机的设计一、设计原理1.调频器:负责将音频信号转换成频率调制信号。

在调频器中,我们可以使用电容或电感进行频率调制。

2.放大器:负责将调频器输出的调制信号放大到适合无线传输的功率水平。

放大器主要使用晶体管、场效应管或管子放大器等器件。

3.混频器:负责将振荡器产生的射频信号与调制信号进行混频,形成调频发射信号。

4.振荡器:用于产生稳定的射频信号,其频率由调频电路控制。

5.滤波器:用于滤除混频后产生的杂散分量,只保留感兴趣的射频信号。

6.功率放大器:负责将滤波器输出的射频信号放大到更高的功率水平,使其能够被天线辐射出去。

二、设计步骤1.确定应用场景和需求:首先需要确定该小功率调频发射机的应用场景和需求,包括工作频率范围、传输距离、功率要求等。

2.确定天线类型和参数:根据应用场景的不同,选择适合的天线类型和参数,如定向天线、全向天线、增益、方向性等。

3.确定调制方式:根据应用需求,选择合适的调制方式,如频率调制、相位调制、脉冲调制等。

4.按照电路图设计电路:根据设计需求,绘制出整个调频发射机的电路图。

根据电路图,选择合适的器件和数值进行电路设计。

5.PCB设计和制作:将电路图转化为PCB图,设计并制作出电路板。

在设计电路板时,需要注意布局合理性和信号线的走向,以避免干扰和噪声。

6.组件的选择和安装:根据设计需求,选择合适的器件和元件,并进行焊接和安装。

7.调试和测试:将制作完成的发射机进行调试和测试,确保其可以正常工作并满足设计需求。

8.优化和改进:根据测试结果,对发射机进行优化和改进,提高其性能和稳定性。

小功率调频发射机的设计需要一定的电子技术和通信原理的基础,对器件的选择和电路设计也需要一定的经验和专业知识。

在设计过程中,需要考虑信号传输的稳定性、抗干扰性和功率效率等因素,以保证发射机的性能和可靠性。

总结:小功率调频发射机的设计是一个综合性较强的工程项目,它需要掌握多种电子技术和通信原理知识,并进行电路设计、PCB制作和调试等工作。

调频发射机电路设计

调频发射机电路设计

调频发射机电路设计首先是音频放大模块。

音频放大模块用于放大音频信号,使其达到适合调频发射机工作的电平。

一般采用放大器电路实现,常用的放大器有运放放大器和晶体管放大器。

运放放大器具有高输入阻抗、低输出阻抗、高增益和低噪声等特点,适合用于音频放大。

晶体管放大器具有宽带特性和较高的功率放大能力,适合用于调频发射机的音频放大部分。

接下来是频率调制模块。

频率调制模块将音频信号转换为无线电信号,一般采用频率调制技术,如调频(FM)和调幅(AM)等。

其中,调频技术是调频发射机最常用的调制方式。

调频技术通过改变载波信号的频率来携带音频信号,常用的调频电路包括震荡器和相移调制器等。

震荡器产生频率稳定的载波信号,相移调制器将音频信号转换为频率变化,从而实现调频。

接着是射频功率放大模块。

射频功率放大模块将调频信号放大到足够的功率,以便能够远距离传输。

射频功率放大器一般采用晶体管放大器或功率放大管实现。

晶体管放大器具有较高的功率放大能力和宽带特性,适合用于调频发射机的射频功率放大。

功率放大管功率更大,适用于大功率调频发射机。

最后是天线驱动模块。

天线驱动模块将射频信号传输到天线上,以便进行无线传输。

天线驱动模块一般采用驱动器电路实现,其中常用的驱动器电路包括匹配网络、功率放大器和驱动放大器等。

匹配网络用于匹配射频源和天线阻抗,以提高功率传输效率。

功率放大器和驱动放大器用于将低功率的射频信号放大至足够的功率,以满足天线传输的需求。

综上所述,调频发射机的电路设计主要包括音频放大、频率调制、射频功率放大和天线驱动等多个模块。

这些模块通过相应的电路设计,协同工作实现无线信号的传输。

在实际设计中,还需要考虑电路参数的调整与匹配,以及抗干扰和抗干扰等性能的优化,以确保调频发射机的正常工作与稳定传输。

调频发射机的设计要点

调频发射机的设计要点

本科毕业论文院系:信息工程学院专业:电子信息科学与技术班级: 11电信本作者:张振祥指导教师:杭联茂完成时间: 2015 年 4 月调频发射机的设计摘要发射机的主要功能是将低频信号通过调制器发射机对高频信号的调制,而使低频信号变成一个可以在某个参数情况的中心频率校通过天线发射的电磁载波。

调频发射机的设计可以给振荡电路提供一个相对比较稳定的频率。

主要体现在,第一为了能够匹配调制级的工作而将语音信号的适度放大;第二为发射机提供基准频率采用载波电容三点式,然后在改变语音信号的大小,完成对载波信号的频率调制,第三利用丙类功率放大器,从而大大地提高调制信号的功率,然后通过滤波网络将高次谐波过滤掉,之后在通过拉杆天线将其发射出去。

第四后续电路的调试,通过实验证明本课题设计的电路基本达到预期目标,基本上可以实现一些语音信号的电压放大、频率调制和功率放大,并且也能够达到一定的覆盖范围。

关键字:调频发射机低频信号功率放大器 LC振荡电路目录第一章引言 (1)第二章设计行程 (2)2.1 设计内容 (2)2.2 设计目的与要求 (2)2.3 报告任务与要求 (2)第三章发射机原理及模块说明 (4)3.1 发射机原理 (4)3.1.1 设计整体思路 (4)3.1.2 基本原理 (4)3.1.3 调频发射机的基本原理图 (6)3.1.4 各个元器件说明 (7)3.2 模块说明 (7)3.2.1 输入信号模块 (7)3.2.2 振荡模块 (7)3.2.3 放大和发射模块 (7)3.2.4 调频发射机的主要技术指标 (8)第四章 PCB板模块的设计与制作 (9)第五章电路的调试及调试结果 (10)第六章实习总结 (11)结束语 (12)元器件清单 (13)参考文献 (14)致谢 (15)第一章引言通信系统,特别是无线通信系统,它已广泛应用到国民经济,国防建设和人民日常生活的各个领域,通信的目的与任务是传递信息.无线通信系统的一个重要特点是利用高频信号来传递消息.通信中传递的消息的类型很多,传输消息的方法也很多.现代通信大多以电或光信号的形式出现,因此,通常被称作电信.传输电信号的媒介或介质可以是可以是有线的,也可以是无线的,而无线的形式最能体现高频电路的应用.尽管各种无线通信系统在所传递消息的形式,工作方式以及设备体制组成等方面有很大的差异,但设备中产生的,接受和检测高频信号的基本电路大都是相同的.。

FM调频发射机1系统设计

FM调频发射机1系统设计

FM调频发射机1系统设计一、硬件设计1. 主控芯片选择:选择一款适用于FM调频发射机的主控芯片,例如ATmega328P。

该芯片具有丰富的IO口和通用定时器,可以实现各种功能。

2.音频输入电路:设计一个音频输入电路,用于接收音频信号。

该电路应具有低噪声、高增益和宽频带。

3.调频电路:设计一个调频电路来调制音频信号。

该电路应该能够将音频信号从低频率转换成高频率。

4.功放电路:设计一个功放电路,将调制后的信号放大到合适的功率水平。

该电路应该有足够的输出功率,以便信号传播到远处。

5.天线设计:选择合适的天线,以便信号能够有效传播。

天线的设计应该考虑到频段,并具有一定的增益。

二、软件设计1.音频采样:通过主控芯片的ADC模块,将音频信号进行采样,然后将其保存到缓冲区中。

2.调频信号生成:通过主控芯片的定时器和PWM功能,生成调频信号。

根据音频信号的幅度和频率,调整PWM的占空比和频率,以实现FM调制。

3.功放控制:通过主控芯片的PWM功能和GPIO口,控制功放电路的开关,并调整其幅度,以控制输出功率。

4.显示和操作界面:设计一个人机界面,通过LCD显示屏和按钮,实现对FM调频发射机的设置和操作。

5.保护和报警机制:设计一套保护和报警机制,以防止发射机出现过载、过热等故障。

例如,设置过载检测电路和温度传感器,并通过主控芯片实时监测和处理。

6.通信接口:设计一个通信接口,使得FM调频发射机可以和计算机或其他设备进行数据通信。

这样可以实现对发射机的远程控制和监控。

以上是一个FM调频发射机系统的基本设计思路。

当然,在实际设计过程中,还需要对各个电路进行详细的设计和优化,并进行测试和调试。

同时,还需要考虑其他因素,如电源设计、防电磁干扰设计等。

最终设计出一个性能稳定、功能完善的FM调频发射机系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

淮海工学院课程设计报告书课程名称:通信电子线路课程设计题目:调频发射机设计学院:电子工程学院学期:2013-2014-1专业班级:通信工程112 *名:***学号: **********调频发射机的设计1 引言随着科的发展和人民生活水平的提高,调频发射机也在快速发展,并且在用,它用于演讲、教学、玩具、防盗监控等诸多领域。

在生活中人们通过无线电发射机可以把需要传播出的信息发射出去,接收者可以通过特制的接收机接受信息,最普通的模式是:广播电台通过无线电发射机发射出广播,收听者通过收音机即可接收到电台广播。

本设计为一简单功能的调频发射机,通过该发射机可以把声音转换为无线电信号发射出去,该信号频率可调,通过普通收音机接收,只要频率适合时即可收到发射器发送出的无线电信号,并通过扬声器转换出声音。

通过这次实验我们可以更好地巩固和加深对小功率调频发射机工作原理和非线性电子线路的进一步理解。

学会基本的实验技能,提高运用理论知识解决实际问题的能力。

2 设计目的电路设计反映学生理论知识的实际应用能力,扎实的电子线路理论是成功设计电路的基础。

所以其要求是:⑴功能和性能指标分析:对题目的各项要求进行分析,整理出系统和具体电路设计所需的更具体、更详细的功能要求和技术性指标数据,以求得设计的原始数据。

⑵选择元器件:很好地理解电路的工作原理,正确利用计算公式,选择合理的元件参数,且应降低成本,减少器件品种,减少元器件的功耗和体积。

⑶画出总体电路图初稿并审图,将错误降到最低程度,保证仿真顺利完成。

⑷仿真:通过仿真,检查各元器件的性能、参数、质量能否满足设计要求,检查各单元电路的功能和指标是否达到设计要求。

⑸画出总体电路图,要求按相关规定,布局合理,图面清晰,便于对图的理解和阅读,为印制电路板,并组装、调试和维修时做好准备。

3 设计内容及主要技术要求3.1课题选择本次课程设计选题主要从以下几个方面考虑: ⑴ 符合教学大纲要求;⑵ 题目应有一定深度与广度,照顾《高频电子线路》课程各章节内容; ⑶ 具有一定实用性。

3.2 通信电子线路的一般设计方法电子电路种类很多,千差万别,设计方法和步骤也因不同情况而异。

这里给出通信电路设计的一般步骤,以供参考,设计者应根据具体情况,灵活掌握。

⑴ 总体实现方案的选择:由课题要求实现的电路功能及性能指标,决定最终实现电路的构成。

应当针对关系到电路全局的问题,开动脑筋,多提些不同的方案深入分析比较;不要盲目热衷于数字化方案;既要考虑方案的可行性,还要考虑性能、可靠性、成本、功耗和体积等实际问题。

⑵ 单元电路的设计:根据课题要求实现的电路性能指标,确定总体实现方案中各单元电路的形式。

明确本单元电路的任务,与前后级电路的关系。

⑶ 电路参数的计算:根据所选单元电路的形式,对组成电路的各元器件的值进行计算。

⑷ 元器件的选择:元器件的选择,除了要考虑计算出的参数值外,还要遵从节约电路成本,元器件购买方便,以及尽量利用现有条件实现的原则。

⑸ 仿真与实验:检查各元器件的性能参数质量是否满足设计要求,检查各单元电路的功能和指标是否达到设计要求。

⑹ 电路图的绘制:布局合理、排列均匀、图面清晰,注意信号流向,图形符号要标准,连接线应为直线,交叉和折弯要最少。

以上各步骤之间不是绝对独立的,往往需要交叉进行,尤其是有时受到元器件选择的限制,常会推翻最初的设计方案,从头来做。

所以,在进行电路设计之初,要先把可能限制电路实现的因素考虑好,再着手设计,往往可以达到事半功倍的效果。

在完成电路设计之后,可以使用计算机辅助分析软件(例如 Protel )进行电路仿真,做初步调整,然后到实验室装调电路,在调试中分析和解决常见的电路故障。

3.3 调频发射机主要性能指标要求发射功率W 80m P A ≥,负载电阻Ω=75L R ,工作中心频率MHz f 5.60=,最大频偏kHz f m 75=∆,总效率%50>A η。

4幅发射机整体认识调频发射系统由调频振荡器、缓冲隔离器、倍频器、高频功率放大器等组成。

如果振荡器的振荡频率可以满足发射机载波频率的要求,就可以省去倍频级。

图1 直接调频发射机组成框图①调频振荡器本课题主要研究变容二极管调频电路。

如果课题要求的载波频率不高,则可以采用LC调频振荡器。

②缓冲隔离器将调频振荡与功放级隔离,以减小后级对振荡器频率稳定度及振荡波形的影响。

缓冲隔离级通常采用射极跟随器电路。

③末级功放要使负责天线上获得令人满意的发射功率,而且整机效率较高,应选择丙类功率放大器。

但末级功放的功率增益不能太高,否则电路性能不稳定。

因此要根据发射机各部分的作用,适当地分配功率增益。

5 调幅发射的各模块介绍及电路图5.1调频振荡器振荡电路主要是产生频率稳定且中心频率符合指标要求的正弦波信号。

由于是所产生的是固定的中心频率,因而采用频率稳定度较高的克拉拨振荡电路来作振荡级。

其电路原理图如图所示。

图1 LC振荡电路振荡电路仿真图如下:图2 振荡电路仿真图频率如下:图3 振荡频率5.2变容二极管调频所谓调频,就是把要传送的信息(例如语言、音乐)作为调制信号去控制载波(高频振荡信号)的瞬时频率,使其按调制信号的规律变化。

设调制信号:()tVtΩ=ΩΩcosυ,载波振荡电压为:()tAtaooωcos=根据定义,调频时载波的瞬时频率()t ω随()t Ωυ成线性变化,即()tt V K t o f o Ω∆+=Ω+=Ωcos cos ωωωω则调频波的数字表达式如下: ()⎪⎪⎭⎫⎝⎛ΩΩ+=Ωt V K t A t a f o o f sin cos ω 或()()t m t A t a f o o f Ω+=sin cos ω式中:Ω=∆V K f ω是调频波瞬时频率的最大偏移,简称频偏,它与调制信号的振幅成正比。

比例常数K f 亦称调制灵敏度,代表单位调制电压所产生的频偏。

式中:F f V K m f f ∆=Ω∆=Ω=Ωω称为调频指数,是调频瞬时相位的最大偏移,它的大小反映了调制深度。

由上公式可见,调频波是一等幅的疏密波,可以用示波器观察其波形。

如何产生调频信号。

最简便、最常用的方法是利用变容二极管的特性直接产生调频波,其原理电路如图4所示。

图4 变容二极管调频原理电路变容二极管Cj 通过耦合电容C 1并接在LC 回路的两端,形成振荡回路总容的一部分。

因而,振荡回路的总电容C 为:j N C C C += 振荡频率为:)(2121j N C C L LCf +==ππ加在变容二极管上的反向偏压为:()()()高频振荡,可忽略调制电压直流反偏O Q R V V υυ++=Ω变容二极管利用PN 结的结电容制成,在反偏电压作用下呈现一定的结电容(势垒电容),而且这个结电容能灵敏地随着反偏电压在一定范围内变化,其关系曲线称jC ~R υ曲线,如图5。

图5jC ~R υ曲线由图5可见:未加调制电压时,直流反偏QV 所对应的结电容为Ωj C 。

当调制信号为正半周时,变容二极管负极电位升高,即反偏增加时,变容二极管的电容j C减小;当调制信号为负半周时,变容二极管负极电位降低,即反偏减小时,j C增大,其变化具有一定的非线性,当调制电压较小时,近似为工作在j C ~R υ曲线的线性段,j C调制电压线性变化,当调制电压较大时,曲线的非线性不可忽略,它将给调频带来一定的非线性失真。

我们再回到图4,并设调制电压很小,工作在Cj ~V R 曲线的线性段,暂不考虑高频电压对变容二极管作用。

用调制信号控制变容二极管结电容t V V Q Q R Ω+=cos υ由图4可见:变容二极管的电容随υR 变化。

即: t C C C m jQ j Ω-=cos可得出此时振荡回路的总电容为t C C C C C C m jQ N j N Ω-+=+='cos由此可得出振荡回路总电容的变化量为:()t C C C C C C m j jQ N Ω-=∆=+-'=∆cos由式可见:它随调制信号的变化规律而变化,式中m C的是变容二极管结电容变化的最大幅值。

我们知道:当回路电容有微量变化C ∆时,振荡频率也会产生f ∆的变化,其关系如下:C C f f ∆•≈∆210…式中,是0f 未调制时的载波频率;0C 是调制信号为零时的回路总电容,显然jQ N o C C C +=由公式可计算出中心频率0f :)(210jQ N C C L f +=π将代入式,可得:t f t C C f t f m Ω∆=Ω=∆cos cos )/(21)(00频偏: m C C f f )/(2100=∆振荡频率:()()tf f t f f t f o o Ω∆+=∆+=cos由此可见:振荡频率随调制电压线性变化,从而实现了调频。

其频偏f ∆与回路的中心频率f 0成正比,与结电容变化的最大值Cm 成正比,与回路的总电容C 0成反比。

图6 二极管调频电路图7 二极管调频电路仿真图5.3缓冲隔离器该电路将振荡级与功放级隔离,以减小功放级对振荡级的影响。

因为功放级输出信号较大,工作状态的变化(如谐振阻抗)会影响振荡级的频率稳定度,或波形失真或输出电压减小。

为减小级间相互影响,通常在中间插入缓冲隔离级。

缓冲隔离级常采用射极跟随器电路,如图8所示。

图8 缓冲级原理电路图9 缓冲级原理电路仿真图调节射极电阻2E R ,可以改变射极跟随器输入阻抗。

如果忽略晶体管基极电阻b`b r 的影响,则射极输入器的输入电阻 L BR R R ''=β/i 输出电阻,式中,0r 很小,所以可将射极输出器电路等效为一个恒压源。

电压放大倍数0210/)(r R R R E E += Lm Lm v R g R g A '+'=1 一般情况下,Lm R g '>>1,所以射极输出器具有输入阻抗高、输出阻抗低、电压放大倍数近似等于1的特点。

晶体管的静态工作点应位于交流负载线的中点,一般取2CC CEQ VV =,CQ I =(3-10)mA.若取CEQ V =6V,CQ I =4mA ,则Ω==+k I V R R CQCE E E 5.121取Ω=k R E 11电阻,Ω=k R E 12电位器。

5.4末级功放5.4.1谐振放大级电路由于对该级有一定增益要求,考虑到中心频率固定,因此可采用以LC 并联回路作负载的小信号谐振放大器电路。

对该级管子的要求是()(35)2BR CEO CC f f V V γ≥-≥至于谐振回路的计算,一般先根据0f 计算出LC 的乘积值,然后选择合适的 C 再求出L 、C 根据本课题的频率可取100pF —200pF 。

谐振放大级电路部分如图10所示图10 谐振放大级电路5.4.2 功放输出级电路设计中采用共发射极电路,为了获得较大的功率增益和较高的集电极功率,同时使其工作在丙类状态,组成丙类谐振功率放大器。

相关文档
最新文档