实验三 图像分割与边缘检测

合集下载

数字图像处理实验报告——图像分割实验

数字图像处理实验报告——图像分割实验

实验报告课程名称数字图像处理导论专业班级_______________姓名 _______________学号_______________电气与信息学院与谐勤奋求就是创新一.实验目得1.理解图像分割得基本概念;2.理解图像边缘提取得基本概念;3.掌握进行边缘提取得基本方法;4.掌握用阈值法进行图像分割得基本方法.二。

实验内容1.分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。

比较三种算子处理得不同之处;2.设计一个检测图1中边缘得程序,要求结果类似图2,并附原理说明。

3.任选一种阈值法进行图像分割、图1 图2三.实验具体实现1.分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。

比较三种算子处理得不同之处;I=imread(’mri、tif');imshow(I)BW1=edge(I,’roberts’);figure ,imshow(BW1),title(’用Roberts算子’)BW2=edge(I,’sobel’);figure,imshow(BW2),title(’用Sobel算子 ')BW3=edge(I,’log’);figure,imshow(BW3),title(’用拉普拉斯高斯算子’)比较提取边缘得效果可以瞧出,sober算子就是一种微分算子,对边缘得定位较精确,但就是会漏去一些边缘细节.而Laplacian—Gaussian算子就是一种二阶边缘检测方法,它通过寻找图象灰度值中二阶过零点来检测边缘并将边缘提取出来,边缘得细节比较丰富。

通过比较可以瞧出Laplacian-Gaussian算子比sober算子边缘更完整,效果更好。

2.设计一个检测图1中边缘得程序,要求结果类似图2,并附原理说明.i=imread('m83、tif’);subplot(1,2,1);imhist(i);title('原始图像直方图');thread=130/255;subplot(1,2,2);i3=im2bw(i,thread);imshow(i3);title('分割结果’);3.任选一种阈值法进行图像分割、i=imread('trees、tif’);subplot(1,2,1);imhist(i);title('原始图像直方图’);thread=100/255;subplot(1,2,2);i3=im2bw(i,thread);imshow(i3);title('分割结果’)1、分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。

图像分割 实验报告

图像分割 实验报告

图像分割实验报告图像分割实验报告一、引言图像分割是计算机视觉领域中的一个重要研究方向,它旨在将一幅图像分割成具有语义意义的不同区域。

图像分割在许多应用中发挥着关键作用,如目标检测、场景理解和医学图像处理等。

本实验旨在探索不同的图像分割方法,并对其进行比较和评估。

二、实验方法本实验选择了两种常用的图像分割方法:基于阈值的分割和基于边缘的分割。

首先,我们使用Python编程语言和OpenCV库加载图像,并对图像进行预处理,如灰度化和平滑处理。

接下来,我们将详细介绍这两种分割方法的实现步骤。

1. 基于阈值的分割基于阈值的分割是一种简单而常用的分割方法。

它通过将图像像素的灰度值与预先设定的阈值进行比较,将像素分为前景和背景两类。

具体步骤如下:(1)将彩色图像转换为灰度图像。

(2)选择一个适当的阈值,将图像中的像素分为两类。

(3)根据阈值将图像分割,并得到分割结果。

2. 基于边缘的分割基于边缘的分割方法是通过检测图像中的边缘来实现分割的。

边缘是图像中灰度变化剧烈的区域,通常表示物体的边界。

具体步骤如下:(1)将彩色图像转换为灰度图像。

(2)使用边缘检测算法(如Canny算法)检测图像中的边缘。

(3)根据边缘信息将图像分割,并得到分割结果。

三、实验结果与讨论我们选择了一张包含多个物体的彩色图像进行实验。

首先,我们使用基于阈值的分割方法对图像进行分割,选择了适当的阈值进行实验。

实验结果显示,基于阈值的分割方法能够将图像中的物体与背景分离,并得到较好的分割效果。

接下来,我们使用基于边缘的分割方法对同一张图像进行分割。

实验结果显示,基于边缘的分割方法能够准确地检测出图像中的边缘,并将图像分割成多个具有边界的区域。

与基于阈值的分割方法相比,基于边缘的分割方法能够更好地捕捉到物体的形状和边界信息。

通过对比两种分割方法的实验结果,我们发现基于边缘的分割方法相对于基于阈值的分割方法具有更好的效果。

基于边缘的分割方法能够提供更准确的物体边界信息,但也更加复杂和耗时。

数字图像处理实验报告(图像边缘检测)

数字图像处理实验报告(图像边缘检测)

实验报告实验名称实验三图像边缘检测课程名称数字图像处理某成绩班级学号日期地点备注:1、实验目的(1)了解并掌握使用微分算子进行图像边缘检测的基本原理;(2)编写程序使用Laplacian 算子(二阶导数算子)实现图像锐化,进一步理解图像锐化的实质;(3)掌握使用不同梯度算子(一阶导数算子)进行图像边缘检测的原理、方法,根据实验结果分析各种算子的工作效果;(4)总结实验过程(实验报告,左侧装订):方案、编程、调试、结果、分析、结论。

2、实验环境(1)Windows XP/7(2)Matlab 7.1/7.143、实验方法本次实验要求对256×256大小,256级灰度的数字图像lena.img进行处理。

(1)对该图像进行锐化处理,要求采用Laplacian算子进行锐化,分α=1和α=2两种情况,按如下不同情况进行处理:①g1(m,n)=f(m,n)-α∇f②g2(m,n)=4αf(m,n)-α[f(m-1,n)+f(m+1,n)+f(m,n-1)+f(m,n+1)]I、要对图像进行处理,要先读取该图像,实验代码如下:close all;clear all;fid=fopen('lena.img','r');image=fread(fid,[256,256],'uint8');fclose(fid);II、读取图像后,对该图像的每一像素(不考虑图像的边界部分)进行遍历,根据公式①(公式①相当于做差分)对每一灰度进行计算,将所得的结果存入一矩阵g1中(矩阵g1初始化为该图像的矩阵),代码如下(仅以ɑ=1为例):g1=image;a=1;[x,y]=size(image);for i=2:(x-1)for j=2:(y-1) g1(i,j)=(1+4*a)*image(i,j)-a*(image(i+1,j)+image(i-1,j)+image(i,j+1)+image(i,j-1));endendIII、根据公式②对图像的每一个像素(不考虑图像的边界部分)进行计算,将所得之存入矩阵g2中(g2初始化值为该图像的矩阵值),具体方法与上一步类似,代码如下(仅以ɑ=1为例):g2=image;a=1;[x,y]=size(image);for i=2:(x-1)for j=2:(y-1)g2(i,j)=4*a*image(i,j)-a*(image(i+1,j)+image(i-1,j)+image(i,j+1)+image(i,j-1));endend(2)分别利用Roberts、Prewitt 和Sobel 边缘检测算子,对原图像进行边缘检测,显示处理前、后图像。

边缘检测与图像分割精品PPT课件

边缘检测与图像分割精品PPT课件

例1:检测不连续性
例2:检测相似性
7.2 阈值分割
7.2.1 阈值分割原理与分类
7.2.2 阈值选取方法
7.3 边缘检测
7.3.1 边缘检测概念
7.3.2 基于一阶导数法的边缘检测
基于二阶导数法的边缘检测
7.4 区域分割
7.4.1 区域生长法
7.4.2 分裂合并法
7.5 直线检测
阈值分割法的特点:
适用于物体与背景有较强对比的情况,重要的是背景或 物体的灰度比较单一。(可通过先求背景,然后求反得 到物体)
这种方法总可以得到封闭且连通区域的边界。
显然对于阈值分割方法,确定一个最优阈值是分割的关键问题, 现有的大部分算法都是集中在阈值确定的研究上。
常用的阈值分割就是图像的二值化,选择一阈值(?),将图像
图像分割及其基于分割的目标表达、特征提取和参数测量等将原 始图像转化为更抽象更紧凑的形式,使得更高层的图像分析和理解成 为可能。
图像分割多年来一直得到人们的高度重视,至今已提出了上千种 各种类型的分割算法,而且近年来每年都有上百篇相关研究报道发表 。
3.图像分割的基本策略(P187)
分割算法基于灰度值的两个基本特性:不连续性和相似性。 首先检测图像像素灰度级的不连续性,找到点、线(宽度为1)、 边(不定宽度)。先找边,后确定区域。 或者,检测图像区域像素的灰度值的相似性,通过选择阈值, 找到灰度值相似的区域,区域的外轮廓就是对象的边。
gx,
y
1 0
f x, y T f x, y T
一副含有一个与背景明显对比的物体图像具 有包含双峰的灰度直方图,如图3一3所示。 两个尖峰对应于物体内部和外部较多数目的 点。两峰间的谷对应于物体边缘附近相对较 少数目的点,在类似这样的情况下,通常采 用直方图来确定灰度阐值的值。

医学图像处理实验报告 ----图像分割

医学图像处理实验报告 ----图像分割

医学图像处理实验报告 ----图像分割医学图像处理实验报告----图像分割一.实验目的:掌握基本的图像分割方法,观察图像分割的结果,加深对边缘检测、模板匹配、区域生长的理解。

二.实验内容:边缘检测、模板匹配、区域生长。

三.实验方法:1.边缘检测:图象Blood边缘检测方法Sobel打开Toolboxes\Image Processing项选Edge Detection并运行选图象Blood边缘检测方法Sobel如图1所示按Apply键观察检测到的边界从上面四幅图像的对比来看,阈值逐渐变大,而满足要求的像素点也逐渐变少,使得图像的边缘提取的效果也越来越差,图像轮廓变得不清楚了。

以下为采用Prewitt方法的边缘提取效果:以下为Roberts方法边缘提取的效果:以下为Laplacian of Gaussian方法边缘提取的效果:以上的各种方法的理论算法有所不同,但总体效果基本一致。

以下是选其他图像重做上面的实验(适当简化)2.模板匹配:在Photoshop中打开一黑白灰度图象文件在滤镜菜单其他子菜单中选自定项在自定界面中输入点模板按好键观察处理后图象。

原始图像:点模板滤镜后的图像:0 0 00 1 00 0 0点模板: -1 -1 -1 -1 8 -1-1 -1 -1线模板: -1 -1 -1 2 2 2-1 -1 -1线模板: -1 2 -1 -1 2 -1-1 2 -1线模板: 2 -1 -1 -1 2 -1-1 -1 2线模板: -1 -1 2 -1 2 -12 -1 -1从上面的四种线模板得比较中可以发现:第一种对检测横向图像更为有效,第二种为竖向,后两种为135和45度。

这是与模板的构成有关的。

方向模板:-1 1 1-1 -2 1-1 1 1可以看出这个方向模板较多地体现出东方向的像素。

方向模板:1 1 -11 -2 -11 1 -1可以看出这个模板较多地体现出西方向的情况。

方向模板:-1 -1 -11 -2 11 1 1这个模板较多地体现了南向的情况。

医学图像处理中的边缘检测与分割算法

医学图像处理中的边缘检测与分割算法

医学图像处理中的边缘检测与分割算法边缘检测与分割是医学图像处理中的重要部分,被广泛应用于疾病诊断、医学影像分析和手术辅助等领域。

边缘检测算法用于提取图像中的边缘信息,而分割算法则可以将图像划分为不同的区域,有助于医生对图像进行进一步分析和诊断。

一、边缘检测算法在医学图像处理中,常用的边缘检测算法包括基于梯度的方法、基于模型的方法和基于机器学习的方法。

1. 基于梯度的方法基于梯度的边缘检测算法通过计算图像中像素点的梯度值来确定边缘位置。

常用的算法包括Sobel算子、Prewitt算子和Canny算子。

Sobel算子是一种常用的离散微分算子,通过在图像中对每个像素点应用Sobel算子矩阵,可以得到图像的x方向和y方向的梯度图像。

通过计算梯度幅值和方向,可以得到边缘的位置和方向。

Prewitt算子与Sobel算子类似,也是一种基于梯度的边缘检测算子。

它通过将图像中的每个像素点与Prewitt算子矩阵进行卷积运算,得到图像的x方向和y方向的梯度图像。

进一步计算梯度幅值和方向,可以确定边缘的位置和方向。

Canny算子是一种经典的边缘检测算法,它采用多步骤的方法来检测边缘。

首先,对图像进行高斯滤波来减少噪声。

然后,计算图像的梯度幅值和方向,进一步剔除非最大值的梯度。

最后,通过设置双阈值来确定真正的边缘。

2. 基于模型的方法基于模型的边缘检测算法借助数学模型来描述边缘的形状和特征。

常用的算法包括基于边缘模型的Snake算法和基于边缘模型的Active Contour算法。

Snake算法(也称为活动轮廓模型)是一种基于曲线的边缘检测算法。

它通过将一条初始曲线沿着图像中的边缘移动,使得曲线更好地贴合真实边缘。

Snake算法考虑了边缘的连续性、平滑性和能量最小化,可以获得较为准确的边缘。

Active Contour算法是Snake算法的进一步发展,引入了图像能量函数。

通过最小化能量函数,可以得到最佳的边缘位置。

Active Contour算法可以自动调整曲线的形状和位置,适应复杂的图像边缘。

实验三图像分割

实验三图像分割

实验三图像分割一、实验目的1、了解图像分割的基本概念;2、掌握阈值分割、边缘检测的基本分割方法;3、对检测的目标图像分析其目标特征二、实验内容1、实验原理阈值分割利用图像中要提取的目标物与其背景在灰度特性上的差异,把图像视为具有不同灰度级的两类区域的组合,选择一个合适的阈值,以确定图像中每个像素点应该属于目标区域还是背景区域,从而产生二值图像。

边缘检测是利用边缘灰度变化的一阶或二阶导数的特点,可以将边缘点检测出来。

常用梯度、roberts、sobel、prewitt等算子进行检测。

图1 两种边缘点附近灰度方向导数变化规律2、MATLAB实现(1)在处理图像直方图的工具箱中,核心函数为imhist,其语法为:imhist(f,n)——直接显示f为输入图像,h为其直方图,n是形成直方图的灰度级个数(默认256)。

(2)阈值分割BW=im2bw( I,level) ——将灰度图像、RGB图像转换为二值图像Level为阈值(0~1),当输入图像的亮度小于level时,输出0,大于时输出1。

或不用函数。

直接编程实现。

(3)边缘检测函数edge提供了几个导数估计器。

该函数基本语法为:[g,t]=edge(f,‘method’,parameters)f——输入图像,g——输出图像,t——阈值。

‘method’是具体用到的检测方法(sobel、prewitt、roberts、log、zerocross、canny),parameters对应不同检测方法的参数。

sobel边缘检测器[g,t] = edge(f,'sobel',T,'dir')T:指定阈值,dir:检测边缘首选方向(horizontal、vertical、both)g:检测到的逻辑图像,边缘位置为1,其余位置为0。

t可选,输出参数edge函数所用阈值T。

(一般t和T参数可以不用,dir默认为both)prewitt边缘检测器[g,t] = edge(f,'prewitt',T,'dir')该函数参数与sobel相同。

图像处理中的边缘检测和图像分割

图像处理中的边缘检测和图像分割

图像处理中的边缘检测和图像分割在计算机视觉领域中,图像处理是一项非常重要的技术。

其中,边缘检测和图像分割是两个关键环节。

本文将从边缘检测和图像分割的基本概念入手,详细介绍它们的原理和应用。

一、边缘检测1、基本概念边缘是指图像中亮度、颜色等性质发生突然变化的地方。

边缘检测就是在图像中寻找这些突然变化的地方,并将它们标记出来。

在实际应用中,边缘检测可以用于目标跟踪、物体检测等方面。

2、常见方法常见的边缘检测算法有Canny、Sobel、Laplacian等。

其中,Canny算法是一种广泛使用的边缘检测算法,其基本原理是通过计算图像中每个像素点的梯度值和方向,来判断该点是否为边缘。

Sobel算法则是利用了图像卷积的思想,先对图像进行卷积操作,再计算得到每个像素点的梯度值。

Laplacian算法则是通过计算图像中每个像素点的二阶导数,来寻找亮度突变的地方。

3、应用场景边缘检测常用于在图像中寻找物体的轮廓线,或者分离图像中的前景和背景等方面。

例如在计算机视觉中的人脸识别中,边缘检测可以用于提取人脸的轮廓线,以便于后续的特征提取和匹配。

二、图像分割1、基本概念图像分割是把图像中的像素点分成不同的区域,以便于更好地理解和处理图像。

分割的结果通常是一个二值图像,其中每个像素点被标记为前景或者背景。

在实际应用中,图像分割可以用于目标检测、图像识别等方面。

2、常见方法常见的图像分割算法有阈值分割、聚类分割、边缘分割等。

其中,阈值分割是一种较为简单且常用的分割算法,其原理是为图像中每个像素点设置一个阈值,大于阈值的像素点被标记为前景,小于阈值的则为背景。

聚类分割算法则是通过对图像中像素点进行聚类操作,来划分不同的区域。

边缘分割则是利用边缘检测的结果,将图像分成前景和背景两个部分。

3、应用场景图像分割可以应用于诸如目标检测、图像识别、医学图像分析等方面。

例如在医学图像分析中,图像分割可以用于将CT或MRI图像中的组织分割成肝、肿瘤等不同的部分,以便于医生更好地进行预测和治疗决策。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字图像处理实验报告学生姓名王真颖学生学号L**********指导教师梁毅雄专业班级计算机科学与技术1501 完成日期2017年11月06日计算机科学与技术系信息科学与工程学院目录实验一 ............................................................................................................... 错误!未定义书签。

一、实验目的............................................................................................... 错误!未定义书签。

二、实验基本原理....................................................................................... 错误!未定义书签。

三、实验内容与要求................................................................................... 错误!未定义书签。

四、实验结果与分析................................................................................... 错误!未定义书签。

实验总结 ........................................................................................................... 错误!未定义书签。

参考资料 (3)实验一图像分割与边缘检测一.实验目的1. 理解图像分割的基本概念;2. 理解图像边缘提取的基本概念;3. 掌握进行边缘提取的基本方法;4. 掌握用阈值法进行图像分割的基本方法。

二.实验基本原理●图象边缘检测图像理解是图像处理的一个重要分支,研究为完成某一任务需要从图像中提取哪些有用的信息,以及如何利用这些信息解释图像。

边缘检测技术对于处理数字图像非常重要,因为边缘是所要提取目标和背景的分界线,提取出边缘才能将目标和背景区分开来。

在图像中,边界表明一个特征区域的终结和另一个特征区域的开始,边界所分开区域的内部特征或属性是一致的,而不同的区域内部的特征或属性是不同的,边缘检测正是利用物体和背景在某种图像特性上的差异来实现的,这些差异包括灰度,颜色或者纹理特征。

边缘检测实际上就是检测图像特征发生变化的位置。

图象边缘检测必须满足两个条件:一能有效地抑制噪声;二必须尽量精确确定边缘的位置由于噪声和模糊的存在,检测到的边界可能会变宽或在某些点处发生间断,因此,边界检测包括两个基本内容:首先抽取出反映灰度变化的边缘点,然后剔除某些边界点或填补边界间断点,并将这些边缘连接成完整的线。

边缘检测的方法大多数是基于方向导数掩模求卷积的方法。

导数算子具有突出灰度变化的作用,对图像运用导数算子,灰度变化较大的点处算得的值比较高,因此可将这些导数值作为相应点的边界强度,通过设置门限的方法,提取边界点集。

一阶导数与是最简单的导数算子,它们分别求出了灰度在x 和y 方向上的变化率,而方向α上的灰度变化率可以用相应公式进行计算;对于数字图像,应该采用差分运算代替求导。

一幅数字图像的一阶导数是基于各种二维梯度的近似值。

图像f(x,y)在位置(x,y)的梯度定义为下列向量:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂∂∂∂=y f x f y x f G )],([ (3-4)在边缘检测中,一般用这个向量的大小,用f ∇表示2/122][Gy Gx f +=∇ (3-5)函数f 在某点的方向导数取得最大值的方向是,方向导数的最大值是称为梯度模。

利用梯度模算子来检测边缘是一种很好的方法,它不仅具有位移不变性,还具有各向同性。

为了运算简便,实际中采用梯度模的近似形式。

||||f Gx Gy ∇≈+ 或者 max(||,||)f Gx Gy ∇≈传统的边缘检测算法通过梯度算子来实现的,在求边缘的梯度时,需要对每个象素位置计算。

在实际中常用小区域模板卷积来近似快速计算,简单有效,即梯度算子一般采用滤波算子的形式来完成,因此应用很广泛。

模板是N*N 的权值方阵,经典的梯度算子模板有:Sobel 模板、Prewitt 模板、Roberts 模板、Laplacian 模板等。

具体模板请见书。

拉普拉斯高斯(LoG )算法是一种二阶边缘检测方法。

它通过寻找图像灰度值中二阶微分中的过零点(Zero Crossing )来检测边缘点。

其原理为,灰度级变形成的边缘经过微风算子形成一个单峰函数,峰值位置对应边缘点;对单峰函数进行微分,则峰值处的微分值为0,峰值两侧符号相反,而原先的极值点对应二阶微分中的过零点,通过检测过零点即可将图像的边缘提取出来。

(a)原图 (b)边缘检测后的图 (c) 阈值处理后的图图3-1 检测具有-45度边缘的图例●图象分割图像分割是将图像划分成若干个互不相交的小区域的过程, 小区域是某种意义下具有共同属性的像素的连通集合。

如不同目标物体所占的图像区域、 前景所占的图像区域等。

连通是指集合中任意两个点之间都存在着完全属于该集合的连通路径。

1.双峰法先给出原图的直方图,再定出阈值(门限)T ,一般取两个峰值间的谷值。

2.P 参数法这种方法用于目标所占图像面积已知的情况。

设目标在最简单图像f(i , j) 中所占的面积s0与图像面积s 之比为P = s0/ s ,则背景所占面积比为1-P = (s - s0) / s 。

一般来说,低灰度值为背景,高灰度值为目标。

如果统计图像f(i , j)灰度值不大于某一灰度t 的像元数和图像总像元数之比为1-p 时,则以t 为阈值。

3.自适应全局阈值(单阈值)算法步骤如下:1、 初始化阈值T (一般为原图像所有像素平均值)。

2、 用T 分割图像成两个集合:G 1 和G 2,其中G 1包含所有灰度值小于T 的像素,G 2包含所有灰度值大于T 的像素。

3、 计算G 1中像素的平均值m 1及G 2中像素的平均值m 2。

4、 计算新的阈值:T = (m 1+m 2)/2 。

5、 如果新阈值跟原阈值之间的差值小于一个预先设定的范围,停止循环,否则继续2-4步。

全局单阈值分割只适用于很少的图像。

对一般图像采用局部阈值法或多阈值法会得到更好的效果4. 最大类间方差法 (OTSU)设有M-1个阈值:0≤k1<k2<…<KM-1≤L-1。

将图像分割成M 个灰度值的类Cj , (Cj ∈[kj-1+1, …, kj ];j=1, 2, …, M ; k0=0, kM=L ),则各类Cj 的发生概率ωj 和平均值μj 为)()(1--=j j j k k ωωω (3-1))()()()(11----=j j j j j k k k k ωωμμμ (3-2)式中, ω(0)=0,μ(0)=0。

由此可得各类的类间方差为∑=--*Mj r j j M k k k 121212)(),,,(μμωσ (3-3)将使上式的σ2值为最大的阈值组(k1, k2, …, kM -1), 作为M 值化的最佳阈值组。

若取M 为2,即分割成2类,则可用上述方法求出二值化的阈值。

三.三.实验内容与要求1.分别用Roberts,Sobel 和拉普拉斯高斯算子对图像进行边缘检测。

比较三种算子处理的不同之处;2.设计一个检测图3-2中边缘的程序,要求结果类似图3-3,并附原理说明。

3.任选一种阈值法进行图像分割.4.检测出3.3图像的线条,要求完成的结果为二值图像;四.实验结果与分析1.分别用Roberts,Sobel 和拉普拉斯高斯算子对图像进行边缘检测。

比较三种算子处理的不同之处; 代码:I=imread('eight.tif'); imshow(I)BW1=edge(I,'roberts');figure ,imshow(BW1),title('用Roberts 算子') BW2=edge(I,'sobel');figure,imshow(BW2),title('用Sobel 算子 ') BW3=edge(I,'log');figure,imshow(BW3),title('用拉普拉斯高斯算子')比较提取边缘的效果可以看出,sober算子是一种微分算子,对边缘的定位比较精确,但是会漏去一些边缘细节,而拉普拉斯算子是一种二阶边缘检测算法,他通过寻找图像灰度值中二阶过零点来检测边缘并将边缘提取出来,边缘的细节比较丰富。

通过比较可以看出,拉普拉斯算子比sober算子边缘更完整,效果更好。

2.设计一个检测图3-2中边缘的程序,要求结果类似图3-3,并附原理说明。

代码:I=imread('lines.png');F=rgb2gray(I);subplot(2,2,1);imshow(I);title('原始图像');thread=130/255;subplot(2,2,2);imhist(F);title('直方图');subplot(2,2,3);J2=im2bw(F,thread);imshow(J2);title('分割结果');实验结果:(3)原理说明:根据图像的直方图,发现背景和目标的分割值在135左右,将此作为分割值,将图像转换为二值图像。

3.任选一种阈值法进行图像分割.(1)选取阈值为180进行分割:I=imread('lines.png');F=rgb2gray(I);subplot(2,2,1);imshow(I);title('原始图像');thread=180/255; %阈值为180进行分割subplot(2,2,2);imhist(F);title('直方图');subplot(2,2,3);J2=im2bw(F,thread);imshow(J2);title('分割结果');实验结果:将阈值调节到180,明显的看到线条的边缘变得模糊,而背景的线条被消除。

4.检测出3.3图像的线条,要求完成的结果为二值图像:代码:I=imread('line2.png');F=rgb2gray(I);subplot(2,2,1);imshow(I);title('原始图像');thread=120/255;subplot(2,2,2);imhist(F);title('直方图');subplot(2,2,3);J2=im2bw(F,thread);imshow(J2);title('分割结果');实验结果:。

相关文档
最新文档