实验 四 图像分割与边缘检测

合集下载

图像处理实验报告

图像处理实验报告

图像处理实验报告图像处理实验报告一、引言图像处理是计算机科学与工程领域的一个重要研究方向,它涉及到对数字图像进行获取、处理、分析和显示等一系列操作。

本实验旨在通过使用图像处理技术,对一幅给定的数字图像进行处理和分析,以探索图像处理的原理和应用。

二、实验目的本实验有以下几个目的:1. 理解图像处理的基本概念和原理;2. 掌握图像处理的常用技术和方法;3. 熟悉图像处理软件的使用。

三、实验步骤1. 图像获取在本实验中,我们选择了一张风景图作为实验对象。

该图像是通过数码相机拍摄得到的,保存在计算机中的文件格式为JPEG。

我们使用图像处理软件将该图像导入到程序中,以便进行后续的处理和分析。

2. 图像预处理在进行图像处理之前,我们需要对图像进行预处理。

预处理的目的是去除图像中的噪声、平滑图像的边缘等。

我们使用了均值滤波和中值滤波两种常用的图像平滑方法。

通过对比两种方法的效果,我们可以选择合适的方法来进行图像预处理。

3. 图像增强图像增强是指通过一系列的操作,使得图像在视觉上更加鲜明、清晰、易于观察。

在本实验中,我们使用了直方图均衡化和灰度拉伸两种图像增强方法。

直方图均衡化通过对图像的像素值进行变换,使得图像的直方图更加均匀,从而增强图像的对比度。

灰度拉伸则是通过对图像的像素值进行线性变换,将图像的灰度范围拉伸到更广的范围内,从而增强图像的细节。

4. 图像分割图像分割是将图像分成若干个互不重叠的区域,每个区域具有一定的意义和特征。

在本实验中,我们使用了阈值分割和边缘检测两种图像分割方法。

阈值分割是指通过设置一个合适的阈值,将图像中的像素分为两个类别。

边缘检测则是通过检测图像中的边缘信息,将图像分割为不同的区域。

5. 图像特征提取图像特征提取是指从图像中提取出具有一定意义和特征的信息。

在本实验中,我们选择了纹理特征和颜色特征两种常用的图像特征提取方法。

纹理特征提取通过对图像的纹理进行分析,提取出图像的纹理特征。

图像分割 实验报告

图像分割 实验报告

图像分割实验报告图像分割实验报告一、引言图像分割是计算机视觉领域中的一个重要研究方向,它旨在将一幅图像分割成具有语义意义的不同区域。

图像分割在许多应用中发挥着关键作用,如目标检测、场景理解和医学图像处理等。

本实验旨在探索不同的图像分割方法,并对其进行比较和评估。

二、实验方法本实验选择了两种常用的图像分割方法:基于阈值的分割和基于边缘的分割。

首先,我们使用Python编程语言和OpenCV库加载图像,并对图像进行预处理,如灰度化和平滑处理。

接下来,我们将详细介绍这两种分割方法的实现步骤。

1. 基于阈值的分割基于阈值的分割是一种简单而常用的分割方法。

它通过将图像像素的灰度值与预先设定的阈值进行比较,将像素分为前景和背景两类。

具体步骤如下:(1)将彩色图像转换为灰度图像。

(2)选择一个适当的阈值,将图像中的像素分为两类。

(3)根据阈值将图像分割,并得到分割结果。

2. 基于边缘的分割基于边缘的分割方法是通过检测图像中的边缘来实现分割的。

边缘是图像中灰度变化剧烈的区域,通常表示物体的边界。

具体步骤如下:(1)将彩色图像转换为灰度图像。

(2)使用边缘检测算法(如Canny算法)检测图像中的边缘。

(3)根据边缘信息将图像分割,并得到分割结果。

三、实验结果与讨论我们选择了一张包含多个物体的彩色图像进行实验。

首先,我们使用基于阈值的分割方法对图像进行分割,选择了适当的阈值进行实验。

实验结果显示,基于阈值的分割方法能够将图像中的物体与背景分离,并得到较好的分割效果。

接下来,我们使用基于边缘的分割方法对同一张图像进行分割。

实验结果显示,基于边缘的分割方法能够准确地检测出图像中的边缘,并将图像分割成多个具有边界的区域。

与基于阈值的分割方法相比,基于边缘的分割方法能够更好地捕捉到物体的形状和边界信息。

通过对比两种分割方法的实验结果,我们发现基于边缘的分割方法相对于基于阈值的分割方法具有更好的效果。

基于边缘的分割方法能够提供更准确的物体边界信息,但也更加复杂和耗时。

实验四 图像的边缘检测

实验四  图像的边缘检测

实验四图像的边缘检测一、实验目的与要求1、了解图像边缘提取的基本概念;2、了解进行边缘提取的基本方法;3、编程实现对所给图像的边缘进行提取。

二、知识点1、边缘检测的思想和原理图像理解是图像处理的一个重要分支,研究为完成某一任务需要从图像中提取哪些有用的信息,以及如何利用这些信息解释图像。

边缘检测技术对于处理数字图像非常重要,因为边缘是所要提取目标和背景的分界线,提取出边缘才能将目标和背景区分开来。

在图像中,边界表明一个特征区域的终结和另一个特征区域的开始,边界所分开区域的内部特征或属性是一致的,而不同的区域内部的特征或属性是不同的,边缘检测正是利用物体和背景在某种图像特性上的差异来实现的,这些差异包括灰度,颜色或者纹理特征。

边缘检测实际上就是检测图像特征发生变化的位置。

由于噪声和模糊的存在,检测到的边界可能会变宽或在某些点处发生间断,因此,边界检测包括两个基本内容:首先抽取出反映灰度变化的边缘点,然后剔除某些边界点或填补边界间断点,并将这些边缘连接成完整的线。

边缘检测的方法大多数是基于方向导数掩模求卷积的方法。

导数算子具有突出灰度变化的作用,对图像运用导数算子,灰度变化较大的点处算得的值比较高,因此可将这些导数值作为相应点的边界强度,通过设置门限的方法,提取边界点集。

一阶导数是最简单的导数算子,它们分别求出了灰度在x和y方向上的变化率,而方向上的灰度变化率可以用相应公式进行计算;对于数字图像,应该采用差分运算代替求导,差分公式参考相关教材。

2、常用的梯度算子(1)Roberts Cross算子,它的2个2 X2模板如图3所示。

图3 Robert Cross算子模板(2)Prewitt 算子,它的2个3×3模板如图4所示。

图4 Prewitt算子模板(3)Sobel 算子,它的2图3 Sobel算子模板3、高斯拉普拉斯(Log)算法高斯拉普拉斯(Log)算法是一种二阶边缘检测方法。

它通过寻找图像灰度值中二阶微分中的过零点(Zero Crossing)来检测边缘点。

医学图像处理中的边缘检测与分割算法

医学图像处理中的边缘检测与分割算法

医学图像处理中的边缘检测与分割算法边缘检测与分割是医学图像处理中的重要部分,被广泛应用于疾病诊断、医学影像分析和手术辅助等领域。

边缘检测算法用于提取图像中的边缘信息,而分割算法则可以将图像划分为不同的区域,有助于医生对图像进行进一步分析和诊断。

一、边缘检测算法在医学图像处理中,常用的边缘检测算法包括基于梯度的方法、基于模型的方法和基于机器学习的方法。

1. 基于梯度的方法基于梯度的边缘检测算法通过计算图像中像素点的梯度值来确定边缘位置。

常用的算法包括Sobel算子、Prewitt算子和Canny算子。

Sobel算子是一种常用的离散微分算子,通过在图像中对每个像素点应用Sobel算子矩阵,可以得到图像的x方向和y方向的梯度图像。

通过计算梯度幅值和方向,可以得到边缘的位置和方向。

Prewitt算子与Sobel算子类似,也是一种基于梯度的边缘检测算子。

它通过将图像中的每个像素点与Prewitt算子矩阵进行卷积运算,得到图像的x方向和y方向的梯度图像。

进一步计算梯度幅值和方向,可以确定边缘的位置和方向。

Canny算子是一种经典的边缘检测算法,它采用多步骤的方法来检测边缘。

首先,对图像进行高斯滤波来减少噪声。

然后,计算图像的梯度幅值和方向,进一步剔除非最大值的梯度。

最后,通过设置双阈值来确定真正的边缘。

2. 基于模型的方法基于模型的边缘检测算法借助数学模型来描述边缘的形状和特征。

常用的算法包括基于边缘模型的Snake算法和基于边缘模型的Active Contour算法。

Snake算法(也称为活动轮廓模型)是一种基于曲线的边缘检测算法。

它通过将一条初始曲线沿着图像中的边缘移动,使得曲线更好地贴合真实边缘。

Snake算法考虑了边缘的连续性、平滑性和能量最小化,可以获得较为准确的边缘。

Active Contour算法是Snake算法的进一步发展,引入了图像能量函数。

通过最小化能量函数,可以得到最佳的边缘位置。

Active Contour算法可以自动调整曲线的形状和位置,适应复杂的图像边缘。

实验 四 图像分割与边缘检测

实验 四 图像分割与边缘检测

实验四图像分割与边缘检测一.实验目的及要求1.利用MATLAB研究图像分割与边缘检测的常用算法原理;2.掌握MATLAB图像域值分割与边缘检测函数的使用方法;3.了解边缘检测的算法和用途,比较Sobel、Prewitt、Canny等算子边缘检测的差异。

二、实验内容(一)研究以下程序,分析程序功能;输入执行各命令行,认真观察命令执行的结果。

熟悉程序中所使用函数的调用方法,改变有关参数,观察试验结果。

1.图像阈值分割clear all, close all;I = imread('cameraman.tif');figure (1),imshow(I)figure(2); imhist(I)T=120/255;Ibw1 = im2bw(I,T);figure(3);subplot(1,2,1), imshow(Ibw1);T=graythresh(I);L = uint8(T*255)Ibw2 = im2bw(I,T);subplot(1,2,2), imshow(Ibw2);help im2bw;help graythresh;clear all, close all;I = imread('cameraman.tif');figure (1),imshow(I)figure(2); imhist(I)T=240/255;Ibw1 = im2bw(I,T); figure(3);subplot(1,2,1), imshow(Ibw1); T=graythresh(I);L = uint8(T*255)Ibw2 = im2bw(I,T);subplot(1,2,2), imshow(Ibw2); help im2bw;help graythresh;clear all, close all;I = imread('cameraman.tif');figure (1),imshow(I)figure(2); imhist(I)T=120/255;Ibw1 = im2bw(I,T);figure(3);subplot(1,2,1), imshow(Ibw1);T=graythresh(I);L = uint8(T*255)Ibw2 = im2bw(I,T);subplot(1,2,2), imshow(Ibw2);help im2bw;help graythresh;2.边缘检测clear all, close all;I = imread('moon.tif');BW1 = edge(I,'sobel');BW2 = edge(I,'canny');BW3 = edge(I,'prewitt');BW4 = edge(I,'roberts');BW5 = edge(I,'log');figure(1), imshow(I), title('Original Image');figure(2), imshow(BW1), title('sobel');figure(3), imshow(BW2), title('canny');figure(4), imshow(BW3), title('prewitt');figure(5), imshow(BW4), title('roberts');figure(6), imshow(BW5), title('log');help edgeedgedemo(二)利用MATLAB熟悉并验证其它图像分割方法灰度阈值分割:I=imread('C:\Users\Administrator\Desktop\rice.jpg'); I=rgb2gray(I);I2=im2bw(I);figure,imshow(I2);I2=im2bw(I,140/255);figure,imshow(I2)区域分割法:I=imread('eight.tif'); imshow(I)c=[222 272 300 270 221 194]; r=[212175121 12175];BW=roipoly(I,c,r);figure,imshow(BW)H=fspecial('unsharp');J1=roifilt2(H,I,BW);figure,imshow(J1)J2=roifill(I,c,r);figure,imshow(J2)分水岭分割法:f=imread('C:\Users\Administrator\Desktop\cell.jpg');imshow(f);g=im2bw(f, graythresh(f));figure,imshow(g);gc=~g;D=bwdist(gc);L=watershed(-D);w=L==0;g2=g&~w;figure,imshow(g2)(三)采用MATLAB编程实现自动全局阈值算法,对图像'rice.tif'进行二值化分割算法步骤:1)选取一个的初始估计值T;2)用T分割图像。

图像处理中的边缘检测和图像分割

图像处理中的边缘检测和图像分割

图像处理中的边缘检测和图像分割在计算机视觉领域中,图像处理是一项非常重要的技术。

其中,边缘检测和图像分割是两个关键环节。

本文将从边缘检测和图像分割的基本概念入手,详细介绍它们的原理和应用。

一、边缘检测1、基本概念边缘是指图像中亮度、颜色等性质发生突然变化的地方。

边缘检测就是在图像中寻找这些突然变化的地方,并将它们标记出来。

在实际应用中,边缘检测可以用于目标跟踪、物体检测等方面。

2、常见方法常见的边缘检测算法有Canny、Sobel、Laplacian等。

其中,Canny算法是一种广泛使用的边缘检测算法,其基本原理是通过计算图像中每个像素点的梯度值和方向,来判断该点是否为边缘。

Sobel算法则是利用了图像卷积的思想,先对图像进行卷积操作,再计算得到每个像素点的梯度值。

Laplacian算法则是通过计算图像中每个像素点的二阶导数,来寻找亮度突变的地方。

3、应用场景边缘检测常用于在图像中寻找物体的轮廓线,或者分离图像中的前景和背景等方面。

例如在计算机视觉中的人脸识别中,边缘检测可以用于提取人脸的轮廓线,以便于后续的特征提取和匹配。

二、图像分割1、基本概念图像分割是把图像中的像素点分成不同的区域,以便于更好地理解和处理图像。

分割的结果通常是一个二值图像,其中每个像素点被标记为前景或者背景。

在实际应用中,图像分割可以用于目标检测、图像识别等方面。

2、常见方法常见的图像分割算法有阈值分割、聚类分割、边缘分割等。

其中,阈值分割是一种较为简单且常用的分割算法,其原理是为图像中每个像素点设置一个阈值,大于阈值的像素点被标记为前景,小于阈值的则为背景。

聚类分割算法则是通过对图像中像素点进行聚类操作,来划分不同的区域。

边缘分割则是利用边缘检测的结果,将图像分成前景和背景两个部分。

3、应用场景图像分割可以应用于诸如目标检测、图像识别、医学图像分析等方面。

例如在医学图像分析中,图像分割可以用于将CT或MRI图像中的组织分割成肝、肿瘤等不同的部分,以便于医生更好地进行预测和治疗决策。

基于最大方差法的图像分割与边缘检测

基于最大方差法的图像分割与边缘检测
z= / t i o l 斗 z 2 f 4 1
g c ,
二 : ; ; ;

G ㈣= ( 孚_ 2 ] e X p ( 一 等]
c s
f i 。 ∑ i = 0 昔 ,
( \ 2 ) ,
以 及
l . 置 0 十 I 。

整 幅 图 的 平 均 灰 度 , l = ∑ ( × 上 )1 l
X方向算子 Y 方 向算子 ( 2 ) L O G算子 。拉普拉斯高斯( L O G ) 算法是一种二 阶边缘检测方 法 。主要是对像素灰度进行二 阶求导 , 将二 阶导数为零 的点认 为是 实际上单靠视觉观察图像直方 图的峰谷来 对图像进行分割 , 特 检测 出来的边缘点。其原理为 , 灰 度缓变形成的边缘经过微分算子 别是 当直方 图中没有 明显的波谷 出现 时 , 此种分割并不能得到较好 形成一个单 峰函数 , 峰值的位置就是边缘 点 ; 然后对 峰值 函数 进行 的分割效果 。为 了解决这个 问题 , 本文主要采用最大方差法对显微 求导 , 这样峰值处的导数值为 0 , 而峰值两侧 的符号应该 是相反 的。 图像 进行 门限 的 自动选择 , 实验表 明 , 该方 法计算 量小 , 实 时性较 所 以通过检测过零点 即可将图像的边缘提取 出来 。 强, 分割精度较大 , 在对 显微 图像分割 中是非常有效 的分割方法。 设 L O G算 子的表达式为 灰度直方图中两波峰区域间的阈值为 t ,则被 t 分离后 的区域 1 、 区 域 2在图像 中占的 比例分别为 : ( 3 )C a n n y算子。C a n n y 边缘 检侧是利用高斯 函数 的一阶微分 , 在边缘 检测 和噪声抑制之间找到一个 比较好的平衡 , 是一种 比较新 1 。 G — l 的边缘检测 算子 , C nn a y算子实 际上是用若 干方 向的模板 分别对 图像进行卷积 , 再取最可能 的方 向。 设 图像 x , v ) 维高斯 函数 1 H 1

图像的边缘检测实验报告

图像的边缘检测实验报告

图像的边缘检测实验报告
《图像的边缘检测实验报告》
图像的边缘检测是计算机视觉领域中的重要技术之一,它可以帮助我们识别图
像中物体的边缘和轮廓,从而实现图像分割、特征提取和目标识别等应用。


本次实验中,我们将对几种常用的边缘检测算法进行比较和分析,以评估它们
在不同场景下的性能和适用性。

首先,我们使用了Sobel算子进行边缘检测。

Sobel算子是一种基于梯度的边缘检测方法,它通过对图像进行卷积操作来寻找像素值变化最大的地方,从而找
到图像中的边缘。

实验结果显示,Sobel算子在一些简单场景下表现良好,但
在复杂背景和噪声干扰较大的情况下效果不佳。

接着,我们尝试了Canny边缘检测算法。

Canny算法是一种多阶段的边缘检测
方法,它通过对图像进行高斯滤波、计算梯度、非极大值抑制和双阈值处理等
步骤来检测图像中的边缘。

实验结果显示,Canny算法在复杂场景下表现出色,能够有效地抑制噪声并找到图像中的真实边缘。

最后,我们还尝试了Laplacian算子和Prewitt算子等其他边缘检测算法,并对
它们的性能进行了比较和分析。

实验结果显示,不同的边缘检测算法在不同场
景下表现出各自的优势和劣势,需要根据具体的应用需求来选择合适的算法。

总的来说,本次实验对图像的边缘检测算法进行了全面的比较和分析,为我们
进一步深入理解和应用这些算法提供了重要的参考和指导。

希望通过这些实验
结果,我们能够更好地利用边缘检测技术来解决实际的图像处理问题,为计算
机视觉领域的发展做出更大的贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四图像分割与边缘检测
一.实验目的及要求
1.利用MATLAB研究图像分割与边缘检测的常用算法原理;
2.掌握MATLAB图像域值分割与边缘检测函数的使用方法;
3.了解边缘检测的算法和用途,比较Sobel、Prewitt、Canny等算子边缘检测的差异。

二、实验内容
(一)研究以下程序,分析程序功能;输入执行各命令行,认真观察命令执行的结果。

熟悉程序中所使用函数的调用方法,改变有关参数,观察试验结果。

1.图像阈值分割
clear all, close all;
I = imread('cameraman.tif');
figure (1),imshow(I)
figure(2); imhist(I)
T=120/255;
Ibw1 = im2bw(I,T);
figure(3);
subplot(1,2,1), imshow(Ibw1);
T=graythresh(I);
L = uint8(T*255)
Ibw2 = im2bw(I,T);
subplot(1,2,2), imshow(Ibw2);
help im2bw;
help graythresh;
clear all, close all;
I = imread('cameraman.tif');
figure (1),imshow(I)
figure(2); imhist(I)
T=240/255;
Ibw1 = im2bw(I,T); figure(3);
subplot(1,2,1), imshow(Ibw1); T=graythresh(I);
L = uint8(T*255)
Ibw2 = im2bw(I,T);
subplot(1,2,2), imshow(Ibw2); help im2bw;
help graythresh;
clear all, close all;
I = imread('cameraman.tif');
figure (1),imshow(I)
figure(2); imhist(I)
T=120/255;
Ibw1 = im2bw(I,T);
figure(3);
subplot(1,2,1), imshow(Ibw1);
T=graythresh(I);
L = uint8(T*255)
Ibw2 = im2bw(I,T);
subplot(1,2,2), imshow(Ibw2);
help im2bw;
help graythresh;
2.边缘检测
clear all, close all;
I = imread('moon.tif');
BW1 = edge(I,'sobel');
BW2 = edge(I,'canny');
BW3 = edge(I,'prewitt');
BW4 = edge(I,'roberts');
BW5 = edge(I,'log');
figure(1), imshow(I), title('Original Image');
figure(2), imshow(BW1), title('sobel');
figure(3), imshow(BW2), title('canny');
figure(4), imshow(BW3), title('prewitt');
figure(5), imshow(BW4), title('roberts');
figure(6), imshow(BW5), title('log');
help edge
edgedemo
(二)利用MATLAB熟悉并验证其它图像分割方法
灰度阈值分割:
I=imread('C:\Users\Administrator\Desktop\rice.jpg'); I=rgb2gray(I);
I2=im2bw(I);
figure,imshow(I2);
I2=im2bw(I,140/255);
figure,imshow(I2)
区域分割法:
I=imread('eight.tif'); imshow(I)
c=[222 272 300 270 221 194]; r=[21
21
75
121 121
75];
BW=roipoly(I,c,r);
figure,imshow(BW)
H=fspecial('unsharp');
J1=roifilt2(H,I,BW);
figure,imshow(J1)
J2=roifill(I,c,r);
figure,imshow(J2)
分水岭分割法:
f=imread('C:\Users\Administrator\Desktop\cell.jpg');
imshow(f);
g=im2bw(f, graythresh(f));
figure,imshow(g);
gc=~g;
D=bwdist(gc);
L=watershed(-D);
w=L==0;
g2=g&~w;
figure,imshow(g2)
(三)采用MATLAB编程实现自动全局阈值算法,对图像'rice.tif'进行二值化分割
算法步骤:
1)选取一个的初始估计值T;
2)用T分割图像。

这样便会生成两组像素集合:G1由所有灰度值大于T 的像素组成,而G2由所有灰度值小于或等于T 的像素组成。

3)对G1和G2中所有像素计算平均灰度值μ1和μ2。

4)计算新的阈值:T =(μ1+μ2)/2
5)重复步骤(2)到(4),直到逐次迭代所得到的T 值之差小于一个事先定义的参数T o,即,如果|T n– T n-1|<T o ,则停止。

clc;clear all;
I=imread('C:\Users\Administrator\Desktop\rice.gif');
I=double(I)/255;
k1=(max(max(I))+min(min(I)))/2;
[rows cols]=size(I);
count1=0;
count2=0;
for i=1:rows
for j=1:cols
if I(i,j)<k1
count1=count1+1;
G1(count1).I=I(i,j);
else
count2=count2+1;
G2(count2).I=I(i,j);
end
end
end
k2=(mean(mean([G1.I]))+mean(mean([G2.I])))/2;
while(abs(k2-k1)>(5/255))
k1=k2;
count1=0;
count2=0;
for i=1:rows
for j=1:cols
if I(i,j)<k1
count1=count1+1;
G1(count1).I=I(i,j);
else
count2=count2+1;
G2(count2).I=I(i,j);
end
end
end
k2=(mean(mean([G1.I]))+mean(mean([G2.I])))/2;
end
figure(1);imshow(I);
figure(2);II=im2bw(I,k2);imshow(II);
三、实验设备
1.计算机;
2.MATLAB6.5;
四、实验总结
图像分割与边缘检测一直以来都是贯穿整本书的,当然也是重难点,在分割的时候,方法之多,步骤之繁琐也是可见一斑,所以在这次实验当中我只是用了区域分割和分水岭分割法,简单的处理了一下,当看到图像的变化的时候,觉得只有自己动手做才能真切的看到一份辛勤,一份收获!。

相关文档
最新文档