正余弦定理与三角形面积公式备课讲稿

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正余弦定理与三角形面积公式(2009-7-7 16:45:00)

【收藏】【评论】【打印】【关闭】

这两天在看代码时发现关于三角形的这些基本定理和公式很有用,所以从网上搜了下,主要有三角形的正弦定理,余弦定理,以及三角形面积公式(包括海伦公式)。

正弦定理(引自百度百科)

Sine theorem

在一个三角形中,各边和它所对角的正弦的比相等。

即a/sinA=b/sinB=c/sinC=2R(2R在同一个三角形中是恒量,是此三角形外接圆的半径的两倍)

这一定理对于任意三角形ABC,都有

a/sinA=b/sinB=c/sinC=2R

R为三角形外接圆半径

证明

步骤1.

在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H

CH=a·sinB

CH=b·sinA

∴a·sinB=b·sinA

得到

a/sinA=b/sinB

同理,在△ABC中,

b/sinB=c/sinC

步骤2.

证明a/sinA=b/sinB=c/sinC=2R:

如图,任意三角形ABC,作ABC的外接圆O.

作直径BD交⊙O于D.

连接DA.

因为直径所对的圆周角是直角,所以∠DAB=90度

因为同弧所对的圆周角相等,所以∠D等于∠C.

所以c/sinC=c/sinD=BD=2R

类似可证其余两个等式。

意义

正弦定理指出了任意三角形中三条边与对应角的正弦之间的一个关系式,又由正弦函数在区间上的单

调性可知,正弦定理非常好的描述了任意三角形中边与角的一种数量关系。

余弦定理

余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。

对于任意三角形三边为a,b,c 三角为A,B,C 满足性质

(注:a*b、a*c就是a乘b、a乘c 。a^2、b^2、c^2就是a的平方,b的平方,c的平方。)

a^2=b^2+c^2-2*b*c*Cos A

b^2=a^2+c^2-2*a*c*Cos B

c^2=a^2+b^2-2*a*b*Cos C

Cos C=(a^2+b^2-c^2)/2ab

Cos B=(a^2+c^2-b^2)/2ac

Cos A=(c^2+b^2-a^2)/2bc

证明:

∵如图,有a→+b→=c→

∴c·c=(a+b)·(a+b)

∴c^2=a·a+2a·b+b·b∴c^2=a^2+b^2+2|a||b|Cos(π-θ)

整理得到c^2=a^2+b^2-2|a||b|Cosθ(注意:这里用到了三角函数公式)

再拆开,得c^2=a^2+b^2-2*a*b*Cos C

同理可证其他,而下面的Cos C=(c^2-b^2-a^2)/2ab就是将Cos C移到左边表示一下。

---------------------------------------------------------------------------------------------------------------

平面几何证法:

在任意△ABC中

做AD⊥BC.

∠C所对的边为c,∠B所对的边为b,∠A所对的边为a

则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c

根据勾股定理可得:

AC^2=AD^2+DC^2

b^2=(sinB*c)^2+(a-cosB*c)^2

b^2=sin^2B*c^2+a^2+cos^2B*c^2-2ac*cosB

b^2=(sin^2B+cos^2B)*c^2-2ac*cosB+a^2

b^2=c^2+a^2-2ac*cosB

cosB=(c^2+a^2-b^2)/2ac

从余弦定理和余弦函数的性质可以看出,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角一定是直角,如果小于第三边的平方,那么第三边所对的角是钝角,如果大于第三边的平方,那么第三边所对的角是锐角。即,利用余弦定理,可以判断三角形形状。同时,还可以用余弦定理求三角形边长取值范围。

海伦公式

海伦公式又译作希伦公式、海龙公式、希罗公式、海伦-秦九韶公式,传说是古代的叙拉古国王希伦(Heron,也称海龙)二世发现的公式,利用三角形的三条边长来求取三角形面积。但根据Morris Kline在1908年出版的著作考证,这条公式其实是阿基米德所发现,以托希伦二世的名发表(未查证)。我国宋代的数学家秦九韶也提出了“三斜求积术”,它与海伦公式基本一样。

假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:

S=%√[p(p-a)(p-b)(p-c)]

而公式里的p为半周长:

p=(a+b+c)/2

——————————————————————————————————————————————

注1:"Metrica"(《度量论》)手抄本中用s作为半周长,所以

S=√[p(p-a)(p-b)(p-c)] 和S=√[s(s-a)(s-b)(s-c)]两种写法都是可以的,但多用p作为半周长。

——————————————————————————————————————————————

由于任何n边的多边形都可以分割成n-2个三角形,所以海伦公式可以用作求多边形面积的公式。比如说测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案。

证明(1):

与海伦在他的著作"Metrica"(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为

cosC = (a^2+b^2-c^2)/2ab

S=1/2*ab*sinC

=1/2*ab*√(1-cos^2 C)

=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]

=1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]

=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]

=1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]

=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]

设p=(a+b+c)/2

则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2,

上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]

=√[p(p-a)(p-b)(p-c)]

所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)]

证明(2):

我国宋代的数学家秦九韶也提出了“三斜求积术”。它与海伦公式基本一样,其实在《九章算术》中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,由于土地的面积并不是的三角形,要找出它来并非易事。所以他们想到了三角形的三条边。如果这样做求三角形的面积也就方便多了。但是怎样根据三边的长度来求三角形的面积?直到南宋,我国著名的数学家九韶提出了“三斜求积术”。

秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。“术”即方法。三斜求积术就是用小斜平方加上大斜平方,送到斜平方,取相减后余数的一半,自乘而得一个数小斜平方乘以大斜平方,送到上面得到的那个。相减后余数被4除冯所得的数作为“实”,作1作为“隅”,开平方后即得面积。

所谓“实”、“隅”指的是,在方程px 2=qk,p为“隅”,Q为“实”。以△、a,b,c表示三角形面积、大斜、中斜、小斜,所以

q=1/4[c 2a 2-(c%| 2+a 2-b 2/2) 2]

当P=1时,△ 2=q,

S△=√{1/4[c 2a 2-(c 2+a 2-b 2/2) 2]}

因式分解得

1/16[(c+a) 2-b 2][b62-(c-a) 2]

=1/16(c+a+b)(c+a-b)(b+c-a)(b-c+a)

=1/8S(c+a+b-2b)(b+c+a-2a)(b+a+c-2c)

=p(p-a)(p-b)(p-c)

由此可得:

S△=√[p(p-a)(p-b)(p-c)]

其中p=1/2(a+b+c)

这与海伦公式完全一致,所以这一公式也被称为“海伦-秦九韶公式”。

S=c/2*根号下a^-{(a^-b^+c^)/2c}^ .其中c>b>a.

根据海伦公式,我们可以将其继续推广至四边形的面积运算。如下题:

已知四边形ABCD为圆的内接四边形,且AB=BC=4,CD=2,DA=6,求四边形ABCD的面积

这里用海伦公式的推广

相关文档
最新文档