真空与真空镀膜技术简介

合集下载

真空技术——真空获得和真空镀膜

真空技术——真空获得和真空镀膜

(2)真空度的测量
真空度的测量可通过复合真空计来进 行。 复合真空计可分为热电偶真空计和电 离真空计两种。

①热偶真空计是用在低气压下气体的热导率 与气体压强间有依赖关系制成的。它通常用来测量 低真空,可测范围为13.33~0.1333Pa。其中有一根 细金属丝(铂丝或钨丝)以恒定功率加热,则丝的 温度取决于输入功率与散热的平衡关系,而散热取 决于气体的热导率。管内压强越低,即气体分子越 稀薄,气体碰撞灯丝带走的热量就越少,则丝温越 高,从而热偶丝产生的电动势越大。经过校准定标 后,就可以通过测量热偶丝的电动势来指示真空度 了。
实验目的
(1)掌握真空获得和测量的方法. (2)掌握真空镀膜的方法。
实验原理
1.低真空的获得
获得低真空常采用机械泵,机械泵是运用机 械方法不断地改变泵内吸气空腔的体积,使被 抽容器内气体的体积不断膨胀,从而获得真空 的装置。它可以直接在大气压下开始工作,极 限真空度一般为1.33~1.33×10-2Pa,抽气速率 与转速及空腔体积V的大小有关,一般在每秒几 升到每秒几十升之间。
如果蒸发物质的分子在蒸发后立即离去, 并不回到原来的物质上,那么蒸发的速率可由朗 谬尔(Langmuir)导出的公式决定:

G 4.38 10 P
7
M -2 -1 (kg cm s ) T
式中M为待蒸发物质的摩尔质量,P为蒸气压, T为蒸发物质温度(K)。


在整个基片上获得厚度均匀的薄膜很重要, 薄膜厚度的均匀性同蒸发源的形状有很大的关系。 对于点蒸发源,基片平行放置在蒸发源的正上方, 则膜厚分布为:
(3)真空镀膜

一些光学零件的光学表面需要用物理方 法或化学方法镀上一层或多层薄膜,使得光 线经过该表面的反射光特性或透射光持性发 生变化,许多机械加工所采用的刀具表面也 需要沉积一层致密的、结合牢固的超硬镀层 而使其得以硬化,延长其使用寿命,改善被 加工部件的精度和光洁度。

真空溅射镀膜技术

真空溅射镀膜技术
溅射源:通常采用高压电场、激光、离子束等高能粒子源
溅射材料:通常采用金属、陶瓷、半导体等材料
溅射过程:高能粒子轰击固体表面,使固体表面的原子或分子获得足够的能量脱离表面,形成溅射现象
溅射镀膜的原理
原理:利用高能粒子轰击靶材,使其表面的原子或分子脱离靶材并沉积在基材上
溅射源:通常是金属或非金属材料,如铝、钛、铬等
脉冲溅射镀膜
原理:利用高压脉冲电源,使靶材表面产生脉冲电场,使靶材表面的原子或分子脱离靶材表面,沉积到基材上形成薄膜。
特点:沉积速率快,膜层致密,膜层厚度均匀,适用于大面积镀膜。
应用:广泛应用于太阳能电池、显示器、半导体等领域。
优点:可以提高膜层的附着力和耐腐蚀性,降低生产成本。
真空溅射镀膜技术的特点
半导体领域
半导体芯片制造:溅射镀膜技术用于制造半导体芯片,如集成电路、存储器等。
半导体封装:溅射镀膜技术用于半导体封装,如引线框架、导线架等。
半导体器件制造:溅射镀膜技术用于制造半导体器件,如晶体管、二极管等。
半导体材料研究:溅射镀膜技术用于研究半导体材料,如硅、锗、砷化镓等。
金属化领域
半导体制造:用于制造集成电路、传感器等电子设备
设备故障处理:遇到设备故障时,及时联系专业人员进行维修
设备维护周期:定期进行设备维护,确保设备正常运行
设备运行中的监控:注意观察设备运行状态,及时调整参数
设备停机后的清理:清理设备内部残留的镀膜材料和杂质
设备启动前的检查:确保电源、气源、水源等正常
设备启动顺序:按照说明书上的要求进行
真空溅射镀膜设备的常见问题及解决方案
原理:利用射频能量使靶材表面原子或分子获得足够的能量,从而被溅射出来
特点:沉积速率快,膜层致密,纯度高

真空镀膜技术

真空镀膜技术

真空镀膜技术一、概述真空镀膜技术是一种利用真空条件下的物理或化学反应,将金属或非金属材料沉积在基材表面形成一层薄膜的技术。

该技术具有广泛的应用领域,包括光学、电子、医疗、环保等。

二、原理真空镀膜技术利用真空条件下的物理或化学反应,将金属或非金属材料沉积在基材表面形成一层薄膜。

其主要原理包括:1. 离子镀膜:利用离子轰击基材表面使其表面活性增强,然后通过离子束轰击目标材料产生离子和原子,最终在基材表面形成一层薄膜。

2. 蒸发镀膜:将目标材料加热至其沸点以上,在真空环境中使其升华并沉积在基材表面形成一层薄膜。

3. 磁控溅射镀膜:利用高能量离子轰击靶材产生靶材原子,并通过磁场控制靶材原子沉积在基材表面形成一层薄膜。

三、设备真空镀膜技术需要使用专门的设备,主要包括:1. 真空镀膜机:包括离子镀膜机、蒸发镀膜机和磁控溅射镀膜机等。

2. 真空泵:用于将反应室内的气体抽出,使其达到真空状态。

3. 控制系统:用于控制反应室内的温度、压力、离子束能量等参数。

四、应用真空镀膜技术具有广泛的应用领域,包括:1. 光学:利用金属或非金属材料在基材表面形成一层反射或透过特定波长光线的薄膜,制作光学器件如反射镜、滤光片等。

2. 电子:利用金属或非金属材料在基材表面形成一层导电或绝缘的薄膜,制作电子元器件如晶体管、集成电路等。

3. 医疗:利用金属或非金属材料在基材表面形成一层生物相容性好的涂层,制作医疗器械如人工关节、心脏起搏器等。

4. 环保:利用金属或非金属材料在基材表面形成一层具有催化作用的薄膜,制作环保设备如汽车尾气净化器、工业废气处理设备等。

五、优势真空镀膜技术具有以下优势:1. 薄膜厚度可控:通过控制反应条件和时间,可以精确控制薄膜的厚度。

2. 薄膜质量高:在真空环境中进行反应,可以避免杂质和气体的污染,从而保证薄膜质量高。

3. 应用广泛:真空镀膜技术可以应用于多种材料和领域,具有广泛的应用前景。

六、挑战真空镀膜技术面临以下挑战:1. 成本高:真空镀膜设备和耗材成本较高,限制了其在大规模生产中的应用。

真空镀膜技术

真空镀膜技术

真空镀膜技术真空镀膜技术是一种先进的表面处理技术,它可以在各种材料表面上形成一层薄膜,从而改变其物理、化学和光学性质。

这种技术已经广泛应用于电子、光学、航空航天、汽车、医疗和建筑等领域,成为现代工业中不可或缺的一部分。

真空镀膜技术的原理是利用真空环境下的物理和化学反应,将金属、合金、陶瓷、聚合物等材料蒸发或溅射到基材表面上,形成一层薄膜。

这种薄膜可以具有不同的功能,如增强材料的硬度、耐磨性、耐腐蚀性、导电性、光学透明性等。

真空镀膜技术可以通过控制薄膜的厚度、成分和结构来实现不同的功能。

真空镀膜技术的应用非常广泛。

在电子领域,它可以用于制造集成电路、显示器、太阳能电池等。

在光学领域,它可以用于制造反射镜、透镜、滤光片等。

在航空航天领域,它可以用于制造发动机叶片、航空仪表等。

在汽车领域,它可以用于制造车灯、镜面等。

在医疗领域,它可以用于制造人工关节、牙科修复材料等。

在建筑领域,它可以用于制造玻璃幕墙、防紫外线涂料等。

真空镀膜技术的优点是显而易见的。

首先,它可以在不改变基材性质的情况下,改变其表面性质,从而实现不同的功能。

其次,它可以制造出高质量、高精度的薄膜,具有良好的光学、电学和机械性能。

再次,它可以在大面积、复杂形状的基材上进行镀膜,具有很高的生产效率。

最后,它可以使用多种材料进行镀膜,具有很高的灵活性和适应性。

当然,真空镀膜技术也存在一些挑战和限制。

首先,它需要高昂的设备和技术投入,成本较高。

其次,它对基材表面的处理要求较高,需要进行清洗、抛光等处理,否则会影响薄膜的质量。

再次,它对环境的要求较高,需要在无尘、无湿、无氧的环境下进行。

最后,它的应用范围受到材料的限制,某些材料不适合进行真空镀膜。

总的来说,真空镀膜技术是一种非常重要的表面处理技术,具有广泛的应用前景。

随着科技的不断进步和应用领域的不断扩展,真空镀膜技术将会得到更加广泛的应用和发展。

培训系列之真空镀膜技术基础

培训系列之真空镀膜技术基础

真空镀膜技术的材料
金属材料:如金、银、铜等,具有良好的导电性和反射性
非金属材料:如碳、氮、氧等,可以用于制造各种薄膜
陶瓷材料:如氧化铝、氧化硅等,具有较高的硬度和耐腐蚀性
玻璃材料:如硼硅酸盐玻璃、石英玻璃等,具有较好的透过性和化学 稳定性
高分子材料:如聚乙烯、聚四氟乙烯等,具有较好的柔韧性和耐候性
真空镀膜技术的基本原理是利用 物理或化学方法,将材料从蒸发 源或溅射源中蒸发或溅射出来, 然后在真空中沉积到基底表面。
空镀膜技术的应用领域
光学应用:提高光学元件的 透过率和反射率
电子应用:提高电子元件的 导电性和绝缘性
装饰应用:为金属表面赋予 美丽的外观和耐腐蚀性
机械应用:提高机械零件的 硬度和耐磨性
薄膜质量高:真空镀膜技术可以获得高质量的薄膜,具有高纯度、高密度和良好的 均匀性。
适用范围广:真空镀膜技术可以应用于各种材料表面,如金属、陶瓷、玻璃等,并 且可以制备多种功能的薄膜,如金属膜、介质膜、半导体膜等。
操作简便:真空镀膜技术操作简单,易于控制,可以连续稳定地生产高质量的薄膜。
环保性好:真空镀膜技术是一种环保型的生产技术,不会产生有害物质,对环境和 人体健康没有负面影响。
真空技术:真空镀膜技 术的基本原理是利用真 空技术,在真空环境下 进行薄膜的沉积。
薄膜沉积:在真空环境 下,通过蒸发、溅射、 化学气相沉积等方法, 将材料沉积在基底表面 形成薄膜。
物理过程:薄膜的 沉积过程涉及物理 和化学过程,如分 子运动、表面吸附、 化学反应等。
薄膜特性:真空镀膜技 术可以制备出具有优异 性能的薄膜,如高硬度、 高耐磨性、高耐腐蚀性 等。
YOUR LOGO
真空镀膜技术基 础
,a click to unlimited possibilities

PVD真空镀膜简介

PVD真空镀膜简介

PVD真空镀膜简介PVD真空镀膜(Physical Vapor Deposition)是一种通过高真空条件下,将固态材料蒸发、溅射或离子束照射等方式沉积到基材表面形成功能薄膜的工艺技术。

PVD镀膜技术具有优异的性能和广泛的应用领域,被广泛应用于光学薄膜、装饰薄膜、耐磨薄膜、防腐蚀薄膜和导电薄膜等领域。

PVD真空镀膜技术主要分为蒸发镀膜、溅射镀膜和离子束沉积等几种方式。

蒸发镀膜是将固态材料加热到一定温度,使其蒸发成气体,然后沉积在基材表面形成薄膜。

溅射镀膜是将固态目标材料置于高真空室中,利用离子束轰击目标表面,使其材料释放出来,并沉积在基材上。

离子束沉积则是利用离子束轰击固态材料,产生的离子和中性粒子在基材上形成薄膜。

PVD镀膜技术具有许多重要优势。

首先,PVD薄膜具有极高的附着力,因为在真空环境下,薄膜材料可以直接与基材表面发生物理化学反应,形成致密的结构。

其次,PVD技术可以在低温下进行,减少了对基材的热损伤,特别适用于易受热的塑料和有机材料。

此外,PVD薄膜具有良好的化学稳定性、机械硬度和耐磨性,能够有效提高基材的耐腐蚀性、硬度和耐磨性。

另外,PVD镀膜技术还可以控制膜层的成分和结构,可以产生金属薄膜、合金薄膜、氮化物薄膜、硼化物薄膜等多种高性能薄膜。

PVD真空镀膜技术在许多领域中得到广泛应用。

在光学领域,它可以用于制备高反射膜、透明导电膜、滤光膜等。

在电子领域,PVD技术可以制备导电薄膜用于集成电路、光伏电池和显示器件等。

在汽车和航空航天领域,PVD薄膜可以用于制备具有高耐磨性和耐腐蚀性的装饰膜。

在工具领域,PVD技术可以制备高硬度、高耐磨的刀具涂层和模具涂层等。

在材料领域,PVD薄膜可以制备各种功能性薄膜,如防刮伤膜、防指纹膜、防眩光膜等。

然而,PVD镀膜技术也存在一些问题。

首先,设备和工艺的成本相对较高,需要投入较大的资金和技术支持。

其次,PVD薄膜的厚度较薄,通常在几纳米到几十微米之间,因此只能应用于薄层镀膜。

真空镀膜(PVD 技术)

真空镀膜(PVD 技术)

真空镀膜(PVD 技术)1. 真空涂层技术的发展真空涂层技术起步时间不长,国际上在上世纪六十年代才出现将CVD(化学气相沉积)技术应用于硬质合金刀具上。

由于该技术需在高温下进行(工艺温度高于1000ºC),涂层种类单一,局限性很大,起初并未得到推广。

到了上世纪七十年代末,开始出现PVD(物理气相沉积)技术,之后在短短的二、三十年间PVD 涂层技术得到迅猛发展,究其原因:(1)其在真空密封的腔体内成膜,几乎无任何环境污染问题,有利于环保;(2)其能得到光亮、华贵的表面,在颜色上,成熟的有七彩色、银色、透明色、金黄色、黑色、以及由金黄色到黑色之间的任何一种颜色,能够满足装饰性的各种需要;(3)可以轻松得到其他方法难以获得的高硬度、高耐磨性的陶瓷涂层、复合涂层,应用在工装、模具上面,可以使寿命成倍提高,较好地实现了低成本、高收益的效果;(4)此外,PVD 涂层技术具有低温、高能两个特点,几乎可以在任何基材上成膜,因此,应用范围十分广阔,其发展神速也就不足为奇。

真空涂层技术发展到了今天还出现了PCVD(物理化学气相沉积)、MT-CVD (中温化学气相沉积)等新技术,各种涂层设备、各种涂层工艺层出不穷。

目前较为成熟的PVD 方法主要有多弧镀与磁控溅射镀两种方式。

多弧镀设备结构简单,容易操作。

多弧镀的不足之处是,在用传统的DC 电源做低温涂层条件下,当涂层厚度达到0.3 um 时,沉积率与反射率接近,成膜变得非常困难。

而且,薄膜表面开始变朦。

多弧镀另一个不足之处是,由于金属是熔后蒸发,因此沉积颗粒较大,致密度低,耐磨性比磁控溅射法成膜差。

可见,多弧镀膜与磁控溅射法镀膜各有优劣,为了尽可能地发挥它们各自的优越性,实现互补,将多弧技术与磁控技术合而为一的涂层机应运而生。

在工艺上出现了多弧镀打底,然后利用磁控溅射法增厚涂层,最后再利用多弧镀达到最终稳定的表面涂层颜色的新方法。

2. 技术原理PVD (Physical Vapor Deposition) 即物理气相沉积,分为:真空蒸发镀膜、真空溅射镀膜和真空离子镀膜。

《真空镀膜技术》课件

《真空镀膜技术》课件
镀膜时间
镀膜时间过长或过短都会影响薄膜的 质量和性能,需要根据工艺要求进行 选择。
04
真空镀膜技术的研究进展
高性能薄膜材料的制备与应用
高性能薄膜材料的制备
随着科技的发展,真空镀膜技术已经能够制备出具有优异性能的薄膜材料,如金刚石薄膜、类金刚石 薄膜、氮化钛薄膜等。这些高性能薄膜材料在刀具、模具、航空航天等领域具有广泛的应用前景。
详细描述
金属薄膜主要用于制造各种电子器件,如集 成电路、微电子器件、传感器等。通过在电 子器件表面镀制金属薄膜,可以起到导电、 导热、抗氧化等作用,提高电子器件的性能 和稳定性。此外,金属薄膜还可以用于制造
磁性材料,如磁记录介质、磁流体等。
功能薄膜的制备与应用
要点一
总结词
功能薄膜在真空镀膜技术中具有广泛的应用前景,可用于 制造各种新型材料和器件。
VS
面临的挑战
尽管真空镀膜技术具有广泛的应用前景和 巨大的发展潜力,但仍面临许多挑战和难 点。例如,如何提高薄膜的附着力和稳定 性、如何降低生产成本和提高生产效率等 。
05
真空镀膜技术的应用实例
光学薄膜的制备与应用
总结词
光学薄膜在真空镀膜技术中具有广泛应用, 主要用于提高光学器件的性能和降低光损失 。
光学领域
用于制造光学元件,如反射镜 、光学窗口等,提高其光学性 能和抗磨损能力。
建筑领域
用于建筑玻璃、陶瓷等材料的 表面装饰和防护,提高其美观 度和耐久性。
02
真空镀膜技术的基本原理
真空环境的形成与维持
真空环境的形成
通过机械泵、分子泵、离子泵等抽气 设备,将容器内的气体逐渐抽出,形 成真空状态。
关闭加热系统和真空泵, 完成镀膜过程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电离规管
电离计线路图
理论解释:
I kI p I kI p k I
e
x
e
xe
I k
k x p
I e
பைடு நூலகம்
p
当p较高时,kx / p << k,此时 I kp I
e
当p很低时,kx / p >> k,此时 I k
I
x
e
I 与压强无关
2.3 B—A真空计 (超高真空熱阴极电离计)
真空技术的应用
电子技术、航空航天技术、加速器、表面 物理、微电子、材料科学、医学、化工、工农 业生产、日常生活等各个领域。
二. 真空获得—真空泵
1654年,德国物理学家葛利克发明了抽气泵,做了著名 的马德堡半球试验。 原理:当泵工作后,形成压差,p1 >p2,实现了抽气。
真空泵的分类
气体传输泵: 是一种能将气体不断地吸入并排出泵外 以达到抽气目的的真空泵,例如旋片 机械泵、油扩散泵、涡轮分子泵。
2.1 热偶真空计(热传导真空计)
P Q T mV
测量范围:100— 10-1 Pa 测量下限:热丝温度较高,气体分子 热传导很小,热丝引线本身的热传导 和热辐射引起的热量减小占主导地位, 这两部分与压强无关。
热电偶规管及其电路原理
2.2 热阴极电离真空计
原理:电子与气体分子碰撞引起分子电离,形成电子和正离,电子 最终被加速极收集,正离子被收集极接收形成离子流:
气体捕集泵: 是一种使气体分子短期或永久吸附、凝 结在泵内表面的真空泵,例如分子筛 吸附泵、鈦升华泵、溅射离子泵、低温 泵和吸气剂泵。
真空泵的主要参数
抽气速率: 定义为在泵的进气口任意给定压强下, 单位时间内流入泵内的气体体积
或表示为:
V S
t PP1
SQ P
其中,Q为单位时间内流入泵的气体量。 泵的抽气速率S并不是常数,随P而变。
I+ = kIep = cp 其中,k称为电离计的灵敏度,是单位电子电流、单位压强下的 离子流。
测量范围:1.33×10-1 ~1.33×10-5 Pa 测量下限:高速电子打到加速极G → G产生软x射线 →软x射线射
向收集极c → 收集极c产生光电发射 → 产生电子流Ix → Ix与I+ 方向相反,与压强无关。
优点:无油,洁净,启 动快,制动快,可忍受 大气冲击。
缺点:由于高速旋转, 不能在磁场中使用,否 则会产生涡流,导致叶 轮发热、变形等严重后 果,对氢气等轻质气体 抽速较小, 价格昂贵。
1. 动叶轮;2. 泵壳;3. 涡轮排; 4. 中频电动机;5. 底座;6. 出气口法兰;
7. 润滑油池;8. 静叶轮;9. 电机冷却水管.
钛离子泵可达 10 8 P a的真空度
三. 真空的测量—真空计
1. 绝对真空计
直接测量真空度的量具,如U型计、压缩真空计(麦克 劳真空计) 。
压缩型真空计 测量范围:103 ~ 10-3 Pa
U型计 测量范围:105 ~10 Pa
2. 相对真空计
直接测量与压强有关的物理量,再与绝对真空计相比较进行 标定的真空计。
扩散泵不能单独使用, 一般采用机械泵为前级 泵,以满足出口压强 (最大40Pa),如果出口 压强高于规定值,抽气 作用就会停止。
1. 水冷套; 2. 喷油嘴; 3. 导流管; 4. 泵壳; 5. 加热器
3.涡轮分子泵
工作过程是:高速旋转 叶片(30000转/分)—对气 体分子施以定向动量— 压缩—排气。
B-A真空规管 1. 离子收集极;2. 加速极(栅极)
3. 阴极灯丝;4. 外壳
50年代初,Bayard 和Alpert 经过改进电离规,减小光 电流,减小受照面积,制 成B-A规,收集极面积减小 了100—1000倍,测量下限 也降低100—1000倍。
几种常用真空泵的工作原理
1. 旋片机械泵
工作过程是: 吸 气—压缩—排气。
定子浸在油中起润 滑,密封和堵塞缝 隙的作用。
主要参量是: 抽速 和极限压强。
由于极限压强较高, 常用做前级泵(预抽 泵)。
旋片式机械泵
2. 油扩散泵
是:油蒸发—喷射—凝 结,重复循环
由于射流具有工作过程 高流速(约200米/秒)、 高密度、高分子量 (300—500),故能有效 地带走气体分子。
4、低温吸附泵
利用固体表面温度足够低时可吸附气体分 子的原理而制。
可达 7 10 2 Pa 的真空度
5、离子泵:
利用正离子对钯原子的轰击,钯原子在沉积至阳极的 过程中,将真空室内气体分子湮没的原理而制。
以磁控管型钛溅射离子泵为例,在钛阴极和不锈阳极间加一高 压、磁场。放电出的电子受磁场的约束在阳极筒内往复振荡, 使气体分子电离,所产生的正离子,高速飞向钛阴极,产生钛 原子的溅射,溅落的原子沉积在不锈刚阳极的内壁及钛阴极板 上,形成新鲜的原子层。吸附气体分子,并被随后溅落的钛原 子层所湮没。钛离子泵就是靠不断溅落的钛原子形成的钛膜的 吸附能力来维持抽气。
人为真空:用真空泵抽掉容器中的气体。
真空量度单位
1标准大气压=760mmHg=760(Torr) 1标准大气压=1.013x105 Pa 1Torr=133.3Pa
真空区域的划分
目前尚无统一规定,常见的划分为: 粗真空 105 103 pa(760 10Torr) 低真空 103 101 pa(10 103Torr ) 高真空 101 106 pa(103 108 Torr ) 超高真空 106 1010 pa(108 1012 Torr ) 极高真空 1010 pa( 1012 Torr )
极限压强
p u
(极限真空)
最高工作压强
p m
工作压强范围(p p ) 泵能正常工作的压强范围
u
m
几种常用真空泵的工作压强范围
旋片机械泵 105 102 pa
吸附泵 105 102 pa
扩散泵 100 105 pa
涡轮分子泵 101 108 pa
溅射离子泵 100 1010 pa
低温泵 101 1011 pa
真空的获得与测量
1、了解真空泵、真空计的工作原理。 2、掌握低真空、高真空的获得、测量的方法 3、了解真空泵的结构和操作方法
一. 真空技术入门
真空:低于一个大气压的气体状态。 1643年,意大利物理学家托里拆利(E.Torricelli) 首创著名的大气压实验,获得真空。
自然真空:气压随海拔高度增加而减小,存在于宇 宙空间。
相关文档
最新文档