运算放大器稳定性分析(一)
消除放大器输出震荡运放稳定研究

三、实验仪器
台式计算机,示波器,信号发生器, 直流稳压电源,万用表,面包板等。
四、实验内容及步骤
R2 10k
V2 15
4 V-
OP1 uA741
R1 10k
2
-
VF1
6
3 ++
7
Vin
V+
C1 1u R3 100k
+
VG1
V1 15
图1 运放接容性负载
四、实验内容及步骤
C2 220p R2 70k
实验二
运算放大器输出稳定性研究
一、实验目的
分析运算放大器输出不稳定的原因 利用TINA-TI研究如何提高运算放大器
输出稳定性的方法。
二、实验原理
在运算放大器的很多应用场合,要驱动 较大的容性负载,对于理想运放来说, 其输出阻抗为0,所以输出不会出现震 荡的现象,但是实际运放器存在输出阻 抗,该电阻与容性负载耦合,往往会在 运放的单位增益带宽内产生新的极点, 这将导致运放输出的不稳定。
按照图2,在面包板上连接电路,观察输出结 果,记录输出波形,及过冲幅度,稳定时间。 从而验证使运放输出稳定的方法。
五、思考题
减小图2中的R2,观察能使运放输出 稳定的R2最小值。
研究其他能够使运放输出稳定的方法。
R1 10k
Vin VG1
+
7
4 V-
V2 15
OP1 uA741
2
-
6
3 ++
V+
V1 15
C1 1u R3 100k
VF1
图2 提高闭环增益和加入Cf
四、实验内容及步骤
典型的两级运放环路稳定性分析

典型的两级运算放大器环路稳定性分析典型的两级运放如图所示,负载电容CL=50fF。
首先建立静态工作点。
加偏置电流I0=4uA,加共模输入电平1.25V。
仿真后得到结果如下,静态工作点是合适的。
1.开环分析米勒补偿前做开环分析如下,显然,这是不合适的。
加米勒补偿电容Cc=200fF,做开环分析如下,显然,这也是不合适的。
这是由于电路中存在零点造成的。
加入调零电阻Rz=40K,,仿真结果如下。
可以看出,,,相位裕度为40度,不够。
可通过加大补偿电容来进一步分裂p1,p2主次极点。
(已尝试过加米勒补偿电容Cc=300fF可以得到大于60度的相位裕度)。
但是本次设计的运放用在负反馈环路中,故只需要负反馈环路是稳定的就达到设计标准。
理论计算。
查看各管子的静态工作点。
,,,即。
,,,即。
,。
理论值与仿真结果非常接近。
,理论值与仿真结果非常接近。
,,理论值与仿真结果非常接近。
,,理论值与仿真结果40度偏差较大。
2.在负反馈环路中做环路稳定性分析:从上图可以看出,加入反馈电阻网络R1,R2后就打破了原有的静态工作点:主要是反馈电阻网络R1,R2中的电流由M7管提供,所以M7管的静态工作点打破了,即运放的第二级跨导GmⅡ,输出电阻R2都变了。
从波特图中可以看出相位裕度为77度,满足设计标准。
理论计算:查看各管子的静态工作点。
,,,即。
,,,即。
,。
理论值与仿真结果非常接近。
,理论值与仿真结果非常接近。
,理论值与仿真结果非常接近。
,,理论值与仿真结果77度偏差较大。
此结果可能是由于gm7变大,原来的调零电阻RZ过大造成的。
现在改变调零电阻Rz=25K,,仿真结果如下:此时,相位裕度为63度,满足设计标准。
3.改用大电感大电容仿真环路增益:仿真方法如上图所示,将环路断开,加入大电感L0=1GH通直流以建立直流工作点,并且断开交流通路,加入大电容C3=1GF通交流小信号V8。
从仿真结果图中可以看出相位裕度为70度。
不同的仿真方式所得到的结果略有误差。
放大器的精度和稳定性

电路结构建议采用典型电路形式和厂商提供的电路,许多电路结构都是经过很多工程师们反复实验和验证过的。
采用OP构成的放大器电路的精度主要与外部元器件参数有关,例如放大倍数与外接的电阻有关。
解决放大器的稳定性就比较复杂了,涉及到放大器的电路结构、PCB布局、电源供给、以及放大器所在的系统环境等等、等等。
一些建议如下:与分立器件相比,现代集成运算放大器(op amp)和仪表放大器(in-amp)为设计工程师带来了许多好处。
虽然提供了许多巧妙、有用并且吸引人的电路。
往往都是这样,由于仓促地组装电路而会忽视了一些非常基本的问题,从而导致电路不能实现预期功能——或者可能根本不工作放大器电路设计:如何避免常见问题。
(1)最常遇到的一个应用问题是在交流(AC)耦合运算放大器或仪表放大器电路中没有提供偏置电流的直流(DC)回路。
在图1中,一只电容器与运算放大器的同相输入端串联以实现AC耦合,这是一种隔离输入电压(VIN)的DC分量的简单方法。
这在高增益应用中尤其有用,在那些应用中哪怕运算放大器输入端很小的直流电压都会限制动态范围,甚至导致输出饱和。
然而,在高阻抗输入端加电容耦合,而不为同相输入端的电流提供DC通路,会出现问题。
图1 运算放大器AC耦合输入错误的连接形式(2)在仪表放大器的输出端和ADC的输入端之间通常接一个简单的RC低通抗混叠滤波器以减少带外噪声。
RC低通滤波器的典型值:R = 50Ω~ 200Ω,C = 1/(2πR F),按电路的-3 dB带宽设置C的取值。
(3)当从电源电压利用分压器为放大器提供参考电压时应保证PSR性能一个经常忽视的问题是电源电压VS的任何噪声、瞬变或漂移都会通过参考输入按照分压比经过衰减后直接加在输出端。
实际的解决方案包括旁路滤波以及甚至使用精密参考电压IC 产生的参考电压,例如ADR121,代替Vs分压。
当设计带有仪表放大器和运算放大器的电路时,这方面的考虑很重要。
电源电压抑制技术用来隔离放大器免受其电源电压中的交流声、噪声和任何瞬态电压变化的影响。
TI经典资料 精选

【TI】经典不过时一直以来,TI的资料都大受欢迎,也都是很实用的资料,所以今日,小编就为大家整理一番。
请带好眼镜,清楚下大脑缓存,赶紧开始学习啦。
话说资料都是贵精不贵多,所以小编这次精选了17本资料为大家分享,都是好评超高的。
1.模拟电路葵花宝典: 运算放大器稳定性分析(TI)(强烈推荐)作者:Tim Green,TI公司Burr-Brown产品战略发展经理全书一共15部分,详细分析了运放的稳定性原理,是一本不可多得的好书2.绝对好东西,TI工程师关于运放噪声分析+滤波+测量作者:德州仪器公司高级应用工程师Art Kay我们可将噪声定义为电子系统中任何不需要的信号。
噪声会导致音频信号质量下降以及精确测量方面的错误。
板级与系统级电子设计工程师希望能确定其设计方案在最差条件下的噪声到底有多大,并找到降低噪声的方法以及准确确认其设计方案可行性的测量技术。
噪声包括固有噪声及外部噪声,这两种基本类型的噪声均会影响电子电路的性能。
外部噪声来自外部噪声源,典型例子包括数字交换、60Hz 噪声以及电源交换等。
固有噪声由电路元件本身生成,最常见的例子包括宽带噪声、热噪声以及闪烁噪声等。
本系列文章将介绍如何通过计算来预测电路的固有噪声大小,如何采用SPICE模拟技术,以及噪声测量技术等。
3.TI 电源开关设计秘笈30 例电源设计一直是工程师面对的一个难题,随着全球节能环保意识的提升,设计简捷、高效、轻巧的绿色电源成为工程师的首要任务,为了帮助工程师解决这方面的难题,现在特别隆重推出大量实用资料供工程师朋友下载,目前推出的一本电子书叫做《电源开关设计秘笈30 例》,对电源开关设计技巧做出了详细的说明,相信一定对工程师朋友们有很大帮助。
4.TI通用质量指南本通用质量指南(GQG) 适用于TI提供的有关材料、产品、服务、制造工艺、测试、控制、处置、贮存和运输措施的质量保证,以及TI所采用和/或应用的旨在确保TI部件与已公布和/或特别指明的规格相符合的管理流程。
理想运算放大器的分析与应用

运算放大器能够实现多种信号处理功能,如加减 运算、积分、微分、滤波等,广泛应用于模拟电 路中的信号处理环节。
电路平衡
运算放大器在电路中起到平衡作用,能够减小电 路中元件参数对输出信号的影响,提高电路的稳 定性。
信号放大与处理
电压放大
01
运算放大器能够将微弱的输入电压信号放大到所需的幅度,广
泛应用于传感器信号的放大和处理。
电流放大
02
运算放大器也可以将微弱的输入电流信号转换成电压信号,实
现电流的放大和处理。
滤波
03
通过在运算放大器电路中加入适当的RC或LC元件,可以实现低
通、高通、带通和带阻滤波器,对信号进行滤波处理。
信号源与比较器
信号源
运算放大器可以作为信号源使用,通 过反馈和正反馈电路,产生方波、三 角波、正弦波等波形。
音频信号放大
理想运算放大器具有高放大倍数和低失真特性,可用于放大微弱的 音频信号,如麦克风输入的信号。
音频信号滤波
理想运算放大器可以与RC电路配合使用,实现低通、高通、带通和 带阻滤波器,对音频信号进行滤波处理。
音频信号比较
理想运算放大器可以用于比较两个音频信号的幅度,例如用于音量控 制或音频切换。
当输入信号过大时,输出电压会达到电源电压, 导致输出信号失真。
截止失真
当输入信号过小或为零时,输出电压会接近零, 导致输出信号失真。
双向限幅失真
当输入信号在一定范围内变化时,输出电压会在 电源电压和零之间变化,导致输出信号失真。
频率响应分析
低频增益
低频增益是指运算放大器在低频时的电压增益。低频增益越高, 运算放大器的低频性能越好。
带宽增益乘积
带宽增益乘积是指运算放大器的带宽和增益的乘积。带宽增益乘积 越大,运算放大器的高频性能越好。
全差分运算放大器中共模稳定性的分析

Ab ta t Deinc n ieain r rs ne rsa i zn ec mmo — d e b c ( MF sr c : sg o sd rt saep ee tdf tbl igt o o o i h n mo ef d a k e C B) lo l o pi f l nuy
的框 图。
共模反馈电路环路首先检测共模输出平均电压 ( o + 0 ) ,然后产生一个关 于 V cV m的信 Vn vP / 2 o— c
的电路关于对称轴是完美的匹配并且对称的 , 避免 了镜像极点 , 从而获得 了更高的闭环速度。
然而 ,全差 分运算 放 大器最 主要 的一 个缺 点是 需 要 共 模 反 馈 电路 (o mo oe ̄ dak cm n m d ebc ,
C B) MF 来控 制共 模输 出 电压 。 在一个 实 际 的差 分 电 路 中 , 电流源 ( 拉 电流 源 ) n型 电流 源 ( P型 上 与 下
s at t es’
.
T e cr u t mp e n e n 0 1 u CMOS mie in l r c s f MI sp e e t d b s d o l e h i i i l me t d i . 8 m c x d sg a o e so p S C i r s n e . a e n af d d o
d f r n il otg e b c MOS a l e s s d i r g a i e e t l ef d a k C f av a e mp i r e p o r mma l a n C n rl mp i e s A e o sd r t n i f u n b e g i o t o a l r . f r n ie a i si i f t c o n
典型的两级运放环路稳定性分析

典型的两级运算放大器环路稳定性分析典型的两级运算放大器环路稳定性分析典型的两级运放如图所示,负载电容CL=50fF 。
首先建立静态工作点。
首先建立静态工作点。
加偏置电流加偏置电流I0=4uA,加共模输入电平1.25V 。
仿真后得到结果如下,仿真后得到结果如下,静静态工作点是合适的。
态工作点是合适的。
1. 开环分析开环分析米勒补偿前做开环分析如下,显然,这是不合适的。
米勒补偿前做开环分析如下,显然,这是不合适的。
加米勒补偿电容Cc=200fF,做开环分析如下,显然,这也是不合适的。
这是由于电路中存在零点造成的。
存在零点造成的。
加入调零电阻Rz=40K,,仿真结果如下。
可以看出,,,相位裕度为40度,不够。
可通过加大补偿电容来进一步分裂p1,p2主次极点。
(已尝试过加米勒补偿电容Cc=300fF可以得到大于60度的相位裕度)。
但是本次设计的运放用在负反馈环路中,故只需要负反馈环路是稳定的就达到设计标准。
运放用在负反馈环路中,故只需要负反馈环路是稳定的就达到设计标准。
理论计算。
理论计算。
查看各管子的静态工作点。
查看各管子的静态工作点。
,,,即。
,,,即。
,非常接近。
理论值与仿真结果非常接近。
,理论值与仿真结果非常接近。
,非常接近。
,理论值与仿真结果非常接近。
,,理论值度偏差较大。
与仿真结果40度偏差较大。
2.在负反馈环路中做环路稳定性分析:在负反馈环路中做环路稳定性分析:从上图可以看出,加入反馈电阻网络R1,R2后就打破了原有的静态工作点:主要是反馈电阻网络R1,R2中的电流由M7管提供,所以M7管的静态工作点打破了,即运放的第二级跨导GmⅡ,输出电阻R2都变了。
从波特图中可以看出相位裕度为77度,满足设计标准。
理论计算:理论计算:查看各管子的静态工作点。
查看各管子的静态工作点。
,,,即。
,,,即。
,非常接近。
,理论值与仿真结果非常接近。
,理论值与仿真结果非常接近。
,此时,相位裕度为63度,满足设计标准。
运算放大器稳定性实验

●Hello,and welcome to the TI Precision Lab supplement for op amp stability.●This lab will walk through detailed calculations,SPICE simulations,and real-worldmeasurements that greatly help to reinforce the concepts established in the stability video series.●你好,欢迎来到TI Precision Labs(德州仪器高精度实验室)的运放稳定性环节。
●这个实验会包括计算,SPICE仿真和实际测试。
这些环节帮助大家对视频中的概念加深理解。
●The detailed calculation portion of this lab can be done by hand,but calculationtools such as MathCAD or Excel can help greatly.●The simulation exercises can be performed in any SPICE simulator,since TexasInstruments provides generic SPICE models of the op amps used in this lab.However,the simulations are most conveniently done in TINA-TI,which is a free SPICE simulator available from the Texas Instruments website.TINA simulation schematics are embedded in the presentation.●Finally,the real-world measurements are made using a printed circuit board,orPCB,provided by Texas Instruments.If you have access to standard lab equipment,you can make the necessary measurements with any oscilloscope, function generator,Bode plotter,and±15V power supply.However,we highly recommend the VirtualBench from National Instruments.The VirtualBench is an all-in-one test equipment solution which connects to a computer over USB or Wi-Fi and provides power supply rails,analog signal generator and oscilloscope channels,and a5½digit multimeter for convenient and accurate measurements.This lab is optimized for use with the VirtualBench.●本实验的计算可以通过實際計算,如果使用Mathcad或者Excel这样工具会更好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运算放大器稳定性分析(一)上网日期: 2007年10月24日关键字:运算放大器稳定性寄生电感作者:Tim Green,TI公司Burr-Brown产品战略发展经理1.0 引言本系列所采用的所有技术都将“以实例来定义”,而不管它在其他应用中能否用普通公式来表达。
为便于进行稳定性分析,我们在工具箱中使用了多种工具,包括数据资料信息、技巧、经验、SPICE仿真以及真实世界测试等,都将用来加快我们的稳定运放电路设计。
尽管很多技术都适用于电压反馈运放,但上述这些工具尤其适用于统一增益带宽小于20MHz的电压反馈运放。
选择增益带宽小于20MHz的原因是,随着运放带宽的增加,电路中的其他一些主要因素会形成回路,如印制板(PCB) 上的寄生电容、电容中的寄生电感以及电阻中的寄生电容与电感等。
我们下面介绍的大多数经验与技术并非仅仅是理论上的,而且是从利用增益带宽小于20MHz的运放、实际设计并构建真实世界电路中得来的。
本系列的第1部分回顾了进行稳定性分析所需的一些基本知识,并定义了将在整个系列中使用的一些术语。
图1.0 稳定性分析工具箱图字(上、下):数据资料信息、技巧、经验、Tina SPICE仿真、测试;目的:学习如何用数据资料信息、技巧、经验法则、Tina SPICE仿真及测试来“更容易地”分析和设计运放,以确保环路稳定性;注:用于统一增益带宽小于20MHz的电压反馈运放的技巧与经验法则。
1.1 波特图(曲线)基础幅度曲线的频率响应是电压增益改变与频率改变的关系。
这种关系可用波特图上一条以分贝(dB) 来表示的电压增益比频率(Hz) 曲线来描述。
波特幅度图被绘成一种半对数曲线:x轴为采用对数刻度的频率(Hz)、y轴则为采用线性刻度的电压增益(dB) ,y轴最好是采用方便的每主格45°刻度。
波特图的另一半则是相位曲线(相移比频率),并被描绘成以“度”来表示的相移比频率关系。
波特相位曲线亦被绘成一种半对数曲线:x轴为采用对数刻度的频率(Hz)、y轴为采用线性刻度的相移(度),y轴最好是采用方便的每主格45°刻度。
图1.1 幅度与相位波特曲线(图)图字(上、下):Aol曲线、幅度曲线、频率、相位曲线。
幅度波特图要求将电压增益转换成分贝(dB) 。
进行增益分析时,我们将采用以dB(定义为20Log10A)表示的电压增益,其中A为以伏/伏表示的电压增益。
图1.2 幅度波特曲线分贝(dB) 定义图1.3定义一些常用的波特图术语:图1.3 更多波特曲线定义图字(上、下):roll-off rate(下降速率)——增益随频率减小;decade(十倍频程)——频率按x10增加或按x1/10减小,从10Hz到100 Hz为一个decade(十倍频程);octave(倍频程)——频率按x2增加或按x1/2减小,从10Hz到20 Hz为一个octave(倍频程);在电压增益波特图上,增益随频率变化的斜线可定义成按+20dB/decade或-20dB/decade增加或减小。
另一种描述同样斜线的方法是按+6dB/octave或-6dB/octave增加或减小(参见图1.4)以下推导证明了20dB/decade与6dB/octave的等效性:ΔA(dB) = A(dB) at fb ?C A(dB) at faΔA(dB) = *Aol(dB) - 20log10(fb/f1)] ?C [Aol(dB) - 20log10(fa/f1)]ΔA(dB) = Aol(dB) - 20log10(fb/f1) ?C Aol(dB) + 20log10(fa/f1)]ΔA(dB) = 20log10(fa/f1) ?C 20Log10(fb/f1)]ΔA(dB) = 20log10(fa/fb)ΔA(dB) = 20log10(1k/10k) = -20dB/decadeΔA(dB) = 20log10(fb/fc)ΔA(dB) = 20log10(10k/20k) = -6db/octave-20dB/decade = -6dB/octave因此:+20dB/decade = +6dB/octave -20dB/decade = -6dB/octave+40dB/decade = +12dB/octave -40dB/decade = -12dB/octave+60dB/decade = +18dB/Octave -60dB/decade = -18dB/Octave图1.4 幅度波特图:20dB/decade = 6dB/octave极点.. 单个极点响应在波特图(幅度或增益曲线)上具有按-20dB/decade或-6db/octave 斜率下降的特点。
在极点位置,增益为直流增益减去3dB。
在相位曲线上,极点在频率fP 上具有-45°的相移。
相位在fP的两边以-45°/decade的斜率变化为0°和-90°。
单极点可用图1.5中的简单RC低通网络来表示。
请注意极点相位是如何影响直到高于(或低于)极点频率10倍频程处的频率的。
图1.5 极点:波特曲线幅度与相位图字:实际函数、直线近似、频率;单极点电路等效电路图极点位置= fp幅度= -20dB/decade斜线- 斜线从fP处开始、并继续随频率增加而下降- 实际函数= -3dB down @ fp相位= -45°/decade斜率通过fp- fp以上10倍频程处相位= -90°零点到单个零点响应在波特图(幅度或增益曲线)上具有按+20dB/decade或+6db/octave 斜率上升(对应于下降)的特点。
在零点位置,增益为直流增益加3dB。
在相位曲线上,零点在其频率fz上具有+45°的相移。
相位在fz的两边以+45°/decade斜率变化为0°与+90°。
单零点可用图1.6中的简单RC高通网络来表示。
请注意零点相位是如何影响直到高于(或低于)零点频率10倍频程处的频率的。
图1.6 零点:波特曲线幅度与相位关键字:运算放大器稳定性寄生电感图字:实际函数、直线近似、频率;单零点电路等效电路图零点位置= fz幅度= +20dB/decade斜线- 斜线从fz开始、并继续随频率增加而上升- 实际函数= -3dB up @ fz相位= +45°/decade斜率通过fz- fz以上10倍频程处相位=+90°- fz以下10倍频程处相位=0°在波特幅度图上,很容易测量给定极点或零点的频率。
由于x轴为频率的对数刻度,故这种技术允许用距离比来准确及迅速地确定感兴趣的极点或零点的频率。
图1.7显示这种“对数刻度技巧”。
图1.7 对数刻度技巧图字:fp=?、频率;对数刻度技巧(fp=?)1) 假设L=1cm, D=2cm2) L/D=log10(fp)3) ….4) 对应的十倍频程内的频率为fp= 31.6Hz5) ……,其中fp’为fp对1-10十倍频程归一化后的频率,fp=31.6,fp’=3.161.2 直观元件模型大多数运放应用都采用四种关键元件的组合,即:运放、电阻、电容和电感。
为便于进行稳定性分析,最好是能拥有这些关键元件的“直观模型”。
用于交流稳定性分析的直观运放模型如图1.8所示。
IN+ 与IN- 端之间的差分电压先被放大1倍并转化为单端交流电压源VDIFF,VDIFF然后再被放大K(f) 倍,其中K(f) 代表数据资料中的Aol(开环增益比频率曲线)。
由此得到的电压VO再后接运放开环、交流小信号及输出电阻RO。
电压通过RO后即为VOUT。
图1.8 直观运放模型图1.9 定义用于交流稳定性分析的直观电阻模型。
无论其工作频率如何,电阻均具有恒定的阻值。
图1.9 直观电阻模型图1.10定义用于交流稳定性分析的直观电容模型,包括三个不同的工作区。
在“直流”区,电容将被看成是开路。
在“高频”区,电容则被看成是短路。
在这二者之间,电容将被看成是一个受频率控制的电阻(阻抗1/Xc随频率增加而减小)。
图1.11所示的SPICE仿真结果显示直观电容模型随频率变化的关系。
图1.10 直观电容模型图1.11 直观电容模型SPICE仿真图1.12定义用于交流稳定性分析的直观电感模型,包括三个不同的工作区。
在“直流”区,电感将被看成是短路。
在“高频”区,电感则被看成是开路。
在这二者之间,电感将被看成是一个受频率控制的电阻(阻抗XL随频率增加而增加)。
图1.13所示的SPICE仿真结果显示出直观电感模型随频率变化的关系。
图1.12 直观电感模型图1.13 直观电感模型SPICE仿真1.3 稳定性标准图1.14的下部显示代表一个带反馈运放电路的传统控制环路模型框图;上部显示与控制环路模型相对应的典型带反馈运放电路。
我们将这种带反馈运放电路称为“运放环路增益模型”。
请注意,Aol为运放数据资料Aol,且为运放的开环增益。
β(贝它)为从VOUT上作为反馈返回的输出电压量。
本例中的β网络为一个电阻反馈网络。
在推导VOUT/VIN时,我们能看到,可直接用Aol 及β来定义闭环增益函数。
图1.14 运放环路增益模型图字:Aol:开环增益;β:反馈系数;Acl:闭环增益从图1.14所示的运放开环增益模型中,我们能得出稳定闭环运放电路的标准。
详细推导如图1.15所示。
在频率fcl上,环路增益(Aolβ) 为1或0dB,如果环路增益相移为+/-180°,则电路不稳定!在fcl上,环路增益相移距离180°的相位称为环路增益相位余量。
对于临界阻尼表现良好的闭环响应,我们要求环路增益相位余量大于45°。
图1.15 稳定性标准推导图字:VOUT/VIN= Aol/(1+ Aolβ)如果:Aolβ= -1 则:VOUT/VIN= Aol/0 → ∞如果:VOUT/VIN= ∞ → 无穷大增益则VIN中任何小的变化都会导致VOUT中的很大变化,而这又会反馈给VIN并导致VOUT中更大的变化→ 振荡→ 不稳定!!A olβ:环路增益Aolβ= -1 → +/-180°相移,幅度为1 (0dB)fcl:Aolβ= 1 (0dB) 时的频率稳定性标准:在Aolβ= 1 (0dB) 时的fcl频率上,相移< +/-180°所需相位余量(离+/-180°相移的距离)≥ 45°关键字:运算放大器稳定性寄生电感1.4 环路稳定性测试由于环路稳定性由环路增益(Aolβ) 的幅度与相位曲线决定,因此我们需要知道如何才能方便地分析环路增益幅度与相位。
为做到这一点,我们需要打破闭环运放电路,并将一个小信号交流源插入到环路中,然后再测量幅度与相位并绘出完整的环路增益曲线图。