2018数学竞赛初赛
2018年全国初中数学联合竞赛试题(含解答)

2018年全国初中数学联合竞赛试题(含解答)2018年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准。
第一试,选择题和填空题只设7分和0分两档;第二试各题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次。
如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数。
第一试一、选择题(本题满分42分,每小题7分)1.已知$x,y,z$满足$\frac{2355x-y}{y+2z}=\frac{x}{z-z^2}$,则$\frac{y+2z}{3x-y-z}$的值为()A) 1.(B) $\frac{5}{3}$。
(C) $-\frac{1}{3}$。
(D) $-\frac{3}{5}$.答】B.解:由$\frac{2355x-y}{y+2z}=\frac{x}{z-z^2}$,得$5x-3y=3xz-3xz^2$,即$y=\frac{5}{3}x-\frac{3}{3}z+\frac{3}{3}xz^2$,所以$\frac{y+2z}{3x-y-z}=\frac{\frac{5}{3}x+\frac{1}{3}z}{\frac{4}{3}x-\frac{2}{3}z}=\frac{5}{3}$,故选(B)。
注:本题也可用特殊值法来判断。
2.当$x$分别取值$1,\frac{1}{2},\frac{1}{3},\cdots,\frac{1}{2005},\frac{1}{2006}, \frac{1}{2007}$时,计算$\frac{1}{2007}+\frac{x}{21+x^2}$代数式的值,将所得的结果相加,其和等于()A) $-1$。
(B) $1$。
(C) $0$。
(D) $2007$.答】C.解:$\frac{1}{2007}+\frac{x}{21+x^2}=\frac{1}{21}\left(\frac{21}{ 2007}+\frac{21x}{21+x^2}\right)=\frac{1}{21}\left(\frac{1}{1+x ^{-2}}\right)$,所以当$x=1,\frac{1}{2},\frac{1}{3},\cdots,\frac{1}{2005},\frac{1}{200 6},\frac{1}{2007}$时,计算所得的代数式的值之和为$0$,故选(C)。
2018全国初中数学竞赛试题及参考答案

中国教育学会中学数学教学专业委员会“《数学周报》杯”2018年全国初中数学竞赛试题答题时注意:1.用圆珠笔或钢笔作答; 2.解答书写时不要超过装订线; 3.草稿纸不上交.一、选择题<共5小题,每小题7分,共35分. 每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)qfRgF4dw271.设1a =,则代数式32312612a a a +--的值为( >.<A )24 <B )25 <C )10 <D )122.对于任意实数a b c d ,,,,定义有序实数对a b (,)与c d (,)之间的运算“△”为:<a b ,)△<c d ,)=<ac bd ad bc ++,).如果对于任意实数u v ,, 都有<u v ,)△<x y ,)=<u v ,),那么<x y ,)为( >.qfRgF4dw27<A )<0,1) <B )<1,0) <C )<﹣1,0) <D )<0,-1)3.若1x >,0y >,且满足3y y x xy x x y==,,则x y +的值为( >.<A )1 <B )2 <C )92<D )1124.点D E ,分别在△ABC 的边AB AC ,上,BE CD ,相交于点F ,设1234BDF BCF CEF EADF S S S S S S S S ∆∆∆====四边形,,,,则13S S 与24S S 的大小关系为( >.<A )1324S S S S < <B )1324S S S S = <C )1324S S S S > <D )不能确定5.设3333111112399S =++++,则4S 的整数部分等于( >. <A )4 <B )5 <C )6 <D )7 二、填空题<共5小题,每小题7分,共35分)6.若关于x 的方程2(2)(4)0x x x m --+=有三个根,且这三个根恰好可以作为一个三角形的三条边的长,则m 的取值范围是 .7.一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8. 同时掷这两枚骰子,则其朝上的面两数字之和为奇数的概率是 .NW2GT2oy018.如图,点A B ,为直线y x =上的两点,过A B ,两点分别作y 轴的平行线交双曲线1y x=<x >0)于C D ,两点. 若2BD AC =,则224OC OD - 的值为 .NW2GT2oy019.若112y x x =-+-的最大值为a ,最小值为b ,则22a b +的值为 .10.如图,在Rt △ABC 中,斜边AB 的长为35,正方形CDEF 内接于△ABC ,且其边长为12,则△ABC 的周长为 .NW2GT2oy01三、解答题<共4题,每题20分,共80分)11.已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程20x ax b ++=的两个根都大1,求a b c ++的值.12.如图,点H 为△ABC 的垂心,以AB 为直径的⊙1O 和△BCH 的外接圆⊙2O 相交于点D ,延长AD 交CH 于点P ,求证:点P 为CH 的中点.13.如图,点A 为y 轴正半轴上一点,A B ,两点关于x 轴对称,过点A 任作直线交抛物线<第8题)<第10题)<第12题)223y x =于P ,Q 两点. <1)求证:∠ABP =∠ABQ ;<2)若点A 的坐标为<0,1),且∠PBQ =60º,试求所有满足条件的直线PQ 的函数解读式.14.如图,△ABC 中,60BAC ∠=︒,2AB AC =.点P 在△ABC 内,且352PA PB PC ===,,,求△ABC 的面积.中国教育学会中学数学教学专业委员会“《数学周报》杯”2018年全国初中数学竞赛试题参考答案 一、选择题1.A解:因为71a =-, 17a +=, 262a a =-, 所以322312612362126261261260662126024.a a a a a a a a a a a +--=-+---=--+=---+=()()()2.B解:依定义的运算法则,有ux vy u vx uy v +=⎧⎨+=⎩,,即(1)0(1)0u x vy v x uy -+=⎧⎨-+=⎩,对任何实数u v ,都成立. 由于实数u v ,的任意性,得<x y ,)=<1,0).3.C<第13题)<第14题)解:由题设可知1y y x -=,于是341y y x yx x -==,所以 411y -=, 故12y =,从而4x =.于是92x y +=.4.C解:如图,连接DE ,设1DEF S S ∆'=,则1423S S EF S BF S '==,从而有1324S S S S '=.因为11S S '>,所以1324S S S S >.5.A解:当2 3 99k =,,,时,因为()()()32111112111k k k k k k k ⎡⎤<=-⎢⎥-+-⎣⎦, 所以 3331111115111239922991004S ⎛⎫<=++++<+-< ⎪⨯⎝⎭. 于是有445S <<,故4S 的整数部分等于4.二、填空题 6.3<m ≤4解:易知2x =是方程的一个根,设方程的另外两个根为12 x x ,,则124x x +=,12x x m =.显然1242x x +=>,所以122x x -<, 164m ∆=-≥0,即 ()2121242x x x x +-<,164m ∆=-≥0,所以1642m -<, 164m ∆=-≥0,<第4题)解之得 3<m ≤4.7.19解: 在36对可能出现的结果中,有4对:<1,4),<2,3),<2,3),<4,1)的和为5,所以朝上的面两数字之和为5的概率是41369=.NW2GT2oy01 8.6解:如图,设点C 的坐标为a b (,),点D 的坐标为c d (,),则点A 的坐标为a a (,),点B 的坐标为.c c (,) 因为点C D ,在双曲线1y x=上,所以11ab cd ==,.由于AC a b =-,BD c d =-, 又因为2BD AC =,于是 22222242c d a b c cd d a ab b -=--+=-+,(),所以 22224826a b c d ab cd +-+=-=()(),即224OC OD -=6.9.32解:由1x -≥0,且12x -≥0,得12≤x ≤1.22213113122()2222416y x x x =+-+-=+--+. 由于13124<<,所以当34x =时,2y 取到最大值1,故1a =. 当12x =或1时,2y 取到最小值12,故22b =. 所以,2232a b +=. 10.84解:如图,设BC =a ,AC =b ,则<第8题)22235a b +==1225. ①又Rt △AFE ∽Rt △ACB ,所以FE AF CB AC =,即1212b a b-=,故 12()a b ab +=. ② 由①②得2222122524a b a b ab a b +=++=++()(), 解得a +b =49<另一个解-25舍去),所以493584a b c ++=+=.三、解答题11.解:设方程20x ax b ++=的两个根为αβ,,其中αβ,为整数,且α≤β,则方程20x cx a ++=的两根为11αβ++,,由题意得()()11a a αβαβ+=-++=,,两式相加得 2210αβαβ+++=, 即 (2)(2)3αβ++=,所以 2123αβ+=⎧⎨+=⎩,; 或232 1.αβ+=-⎧⎨+=-⎩,解得 11αβ=-⎧⎨=⎩,; 或53.αβ=-⎧⎨=-⎩,又因为[11]a b c αβαβαβ=-+==-+++(),,()(),所以 012a b c ==-=-,,;或者8156a b c ===,,,故3a b c ++=-,或29.12.证明:如图,延长AP 交⊙2O 于点Q ,连接 AH BD QB QC QH ,,,,. <第10题)因为AB 为⊙1O 的直径, 所以∠ADB =∠BDQ =90°, 故BQ 为⊙2O 的直径. 于是CQ BC BH HQ ⊥⊥,.又因为点H 为△ABC 的垂心,所以.AH BC BH AC ⊥⊥,所以AH ∥CQ ,AC ∥HQ ,四边形ACQH 为平行四边形. 所以点P 为CH 的中点.13.解:<1)如图,分别过点P Q , 作y 轴的垂线,垂足分别为C D , .设点A 的坐标为<0,t ),则点B 的坐标为<0,-t ).设直线PQ 的函数解读式为y kx t =+,并设P Q,的坐标分别为 P P x y (,),Q Q x y (,).由223y kx t y x =+⎧⎪⎨=⎪⎩,, 得 2203x kx t --=,于是 32P Q x x t =-,即 23P Q t x x =-.于是 222323P P Q Qx t y t BC BD y t x t ++==++22222()333.222()333P P Q P P Q P QQ P Q Q Q P x x x x x x x x x x x x x x --===--- 又因为PQx PCQD x =-,所以BC PC BDQD=.因为∠BCP =∠90BDQ =︒,所以△BCP ∽△BDQ , 故∠ABP =∠ABQ .<第12题)<第13题)<2)解法一 设PC a =,DQ b =,不妨设a ≥b >0,由<1)可知∠ABP =∠30ABQ =︒,BC ,BD ,所以AC 2-,AD =2.因为PC ∥DQ ,所以△ACP ∽△ADQ .于是PCACDQAD =,即a b =,所以a b +=.由<1)中32P Q x x t =-,即32ab -=-,所以322ab a b =+=, 于是可求得2a b =将2b =代入223y x =,得到点Q 的坐标,12).再将点Q 的坐标代入1y kx =+,求得3k =-所以直线PQ 的函数解读式为1y x =+.根据对称性知,所求直线PQ 的函数解读式为1y x =+,或1y +. 解法二 设直线PQ 的函数解读式为y kx t =+,其中1t =. 由<1)可知,∠ABP =∠30ABQ =︒,所以2BQ DQ =.故 2Q x = 将223Q Q y x =代入上式,平方并整理得4241590Q Q x x -+=,即22(43)(3)0Q Q x x --=.所以 2Q x =又由 (1>得3322P Q x x t =-=-,32P Q x x k +=.若32Q x =,代入上式得 3P x =-, 从而 23()33P Q k x x =+=-.同理,若3Q x =, 可得32P x =-, 从而 23()33P Q k x x =+=.所以,直线PQ 的函数解读式为313y x =-+,或313y x =+. 14.解:如图,作△ABQ ,使得QAB PAC ABQ ACP ∠=∠∠=∠,,则△ABQ ∽△ACP . 由于2AB AC =,所以相似比为2. 于是22324AQ AP BQ CP ====,.60QAP QAB BAP PAC BAP BAC ∠=∠+∠=∠+∠=∠=︒.由:2:1AQ AP =知,90APQ ∠=︒,于是33PQ AP ==.所以 22225BP BQ PQ ==+,从而90BQP ∠=︒. 于是222()2883AB PQ AP BQ =++=+ .故 213673sin 60282ABC S AB AC AB ∆+=⋅︒==. 申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
2018年美国“数学大联盟杯赛”(中国赛区)初赛五年级试卷(1)

2017-2018年度美国“数学大联盟杯赛”(中国赛区)初赛(五年级)(初赛时间:2017年11月26日,考试时间90分钟,总分200分)学生诚信协议:考试期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论, 我确定我所填写的答案均为我个人独立完成的成果,否则愿接受本次成绩无效的处罚。
请在装订线内签名表示你同意遵守以上规定。
考前注意事项:1. 本试卷是五年级试卷,请确保和你的参赛年级一致;2. 本试卷共4页(正反面都有试题),请检查是否有空白页,页数是否齐全;3. 请确保你已经拿到以下材料:本试卷(共4页,正反面都有试题)、答题卡、答题卡使用说明、英文词汇手册、 草稿纸。
考试完毕,请务必将英文词汇手册带回家,上面有如何查询初赛成绩、 及如何参加复赛的说明。
其他材料均不能带走,请留在原地。
选择题:每小题5分,答对加5分,答错不扣分,共200分,答案请填涂在答题卡上。
1. The smallest possible sum of two different prime numbers isA) 3B) 4C) 5D) 62. The greatest common factor of two numbers is3. The product of these two numbers mustbe divisible byA) 6 B) 9 C) 12 D) 18 3. The sum of 5 consecutive one-digit integers is at most A) 15 B) 25 C) 35 D) 45 4. How many two-digit multiples of 10 are also multiples of 12?A) 4B) 3C) 2D) 15. I have read exactly13of the total number of chapters in my 120-page book. If each chapter has the same whole number of pages, then the total number of chapters I have left could beA) 16 B) 24 C) 32 D) 50 6. What is the greatest odd factor of 44 × 55 × 66?A) 36 B) 55 C) 35 × 55 D) 36 × 55 7. What is the sum of the factors of the prime number 2017? A) 2016B) 2017C) 2018D) 20198. Lynn ran in 6 times as many races as the number of racesshe won. How many of her 126 races did Lynn not win?A) 21B) 90C) 96D) 1059. The least common multiple of 8 and 12 is the greatest common factor of 120 andA) 80B) 124C) 144D) 18010. January has the greatest possible number of Saturdays when January 1 occurs on any ofthe following days of the week exceptA) Thursday B) Friday C) Saturday D) Sunday 11. The number that is 10% of 1000 is 10 more than 10% ofA) 90B) 100C) 900D) 99012. The sum of 16 fours has the same value as the product of ? fours.A) 2 B) 3 C) 4 D) 16 13. Of the following, which is the sum of two consecutive integers?A) 111 111B) 222 222C) 444 444D) 888 88814. Abe drove for 2 hours at 30 km/hr. and for 3 hours at 50 km/hr. What was Abe’s averagespeed over the 5 hours?A) 35 km/hr.B) 40 km/hr.C) 42 km/hr.D) 45 km/hr.15. My broken watch runs twice as fast as it should. If my watch first broke at 6:15 P.M.,what time was displayed on my watch 65 minutes later?A) 7:20 P.M. B) 7:25 P.M.C) 8:20 P.M. D) 8:25 P.M.16. (2018 × 2017) + (2018 × 1) =A) 20172 B) 20182 C) 20183D) (2018 + 2017)217. A prized bird lays 2, 3, or 4 eggs each day. If the bird laid 17 eggs in 1 week,on at most how many days that week did the bird lay exactly 2 eggs?A) 2B) 3C) 4D) 518. Of the following, which could be the perimeter of a rectangle whoseside-lengths, in cm, are prime numbers?A) 10 cmB) 22 cmC) 34 cmD) 58 cm19. The average of all possible total values of a 4-coin stack of nickels and dimes (containingat least one of each coin) isA) 20¢B) 30¢C) 40¢D) 60¢20. The diameter of Ann’s drum i s 40 cm more than the radius. What is half the circumference of the drum?A) 120π cmB) 80π cmC) 60π cmD) 40π cm21. Of the following, which expression has the greatest number offactors that are multiples of 2018?A) 2018 × 12B) 20182C) 20192D) 20192019第1页,共4页 第2页,共4页22. When the sum of the factors of a prime number is divided by that prime number, theremainder isA) 0 B) 1 C) 2 D) 3 23. What is the sum of the digits of the greatest integer that has a square root less than 100? A) 18B) 36C) 99D) 10024. My favorite number has 6 different factors. If the product of all 6 factors is 123, what isthe sum of the factors of my favorite number?A) 24B) 28C) 32D) 3625. For how many different pairs of unequal positive integers less than 10 is the least commonmultiple of the numbers less than their product?A) 6B) 7C) 8D) 926. Exactly 12 of the students in my class have at least one brother, and 12 have at least onesister. If 13have no siblings, what fraction of the students in my class have at least onebrother and at least one sister?A) 16 B) 15 C) 14 D) 1327. Each day, Sal swims a lap 1 second faster than on the daybefore. If Sal swims a lap in 60 minutes on the 1st day, on what day does he swim a lap in 10% less time than the 1st day?A) 359th B) 360th C) 361st D) 362nd 28. 20172018 × 20172019 = 2017 ? × 20171009A) 1010B) 2010C) 3028D) 403829. Both arcs AB and AD are quarter circles of radius 5, figure on the right.Arc BCD is a semi-circle of radius 5. What is the area of the region ABCD ?A) 25 B) 10 + 5π C) 50D) 50 + 5π30. For every $5 I earn from my job, I save $2. For every $4 I save from my job, I am givenan additional $1 from my parents to add to my savings. How much must I earn in order to have $40 in savings?A) $160B) $120C) $100D) $8031. In the figure on the right, the side-length of the smaller squareis 4. The four arcs are four semi-circles. Each side of square ABCD is tangent to one of the semi-circles. The area of ABCD isA) 32B) 36C) 48D) 6432. A million is a large number, a “1” follo wed by 6 zeros. A googol is a large number, a “1”followed by one hundred zeros. A googolplex is a large number, a “1” followed by a googol of zeros. A googolplexian is a large number, a “1” fo llowed by a googolplex of zeros. A googolplexian isA) 10100 B) 1001010C) 100101010D) None of the above33. An integral triangle is a triangle with positive integral side-lengths and a positive area.Such a triangle can have a perimeter as small as 3. What is the next smallest possible perimeter of an integral triangle?A) 4B) 5C) 6D) 734. 2 liter of 2% fat milk + 3 liter of 3% fat milk = 5 liter of ? fat milkA) 2.5%B) 2.6%C) 5%D) 6%35. One day, a motorist came to a hill that was ten-mile drive up one side and a ten-mile drivedown the other. He drove up the hill at an average speed of 30 miles per hour. How fast will he have to drive down the other side to average 60 miles per hour for the entire 20-mile distance?A) 30 miles per hour B) 60 miles per hour C) 90 miles per hour D) None of the above 36. What is the weight of a fish if it weighs ten pounds plus half its weight?A) 10B) 15C) 20D) 2537. Without using pennies, how many different combinations of coins (nickels, dimes,quarters) will make 30 cents?A) 3B) 4C) 5D) 638. A man once bought a fine suit for which he paid $30 more than14of its price. How much did he pay for the suit? A) $30B) $35C) $40D) $4539. A father is five times as old as his son. In fifteen years he will be only twice as old. Howold is the father at present?A) 40B) 35C) 30D) 2540. It takes 30 minutes to completely fill a tank. If, however, a hole allows13of the water that is entering the tank to escape, how long will it then take to fill the tank?A) 40 B) 45 C) 60 D) 90第3页,共4页第4页,共4页。
2018年北京市中学生数学竞赛高一年级初赛参考答案

二、填空题 1.已知实数 a, b, c, d 满足 5a=4,4b=3,3c=2,2d=5,则(abcd)2018=______. 答:1. 解:化 5a=4,4b=3,3c=2,2d=5 为对数,有 ln 4 ln 3 ln 2 ln 5 , a log5 4 , b , c , d ln 5 ln 4 ln 3 ln 2 所以
2018 年北京市中学生数学竞赛高中一年级初赛参考解答 第 2页 共6页
6 . 设 f (x) 是 定 义 在 R 上 的 函 数 , 若 存 在 两 不 等 实 数 x1, x2 R , 使 得 x +x f ( x1 ) f ( x2 ) ,则称函数 f (x)具有性质 P.那么以下函数: f( 1 2) 2 2
2018 年北京市中学生数学竞赛高中一年级初赛参考解答 第 4页 共6页
6. 在 3×3 的“九宫格”中填数, 使每行、 每列及两条对角线上 的三数之和都相等,有 3 个方格已经填的数分别为 4, 7, 2018,如右 图,则“九宫格”中其余 6 个方格所填数之和为______. 答:−11042.5. 解: 将其余 6 个格子标上字母, 如右下图, 由 a+2018+b=4+7+b
1 ( x 0) ① f ( x) x ; 0 ( x 0)
② f ( x) x 2 ;
③ f ( x) x 2 1 ;
④ f ( x) x3
中,不具有性质 P 的函数为 (A)①. 答:B. 解:具有性质 P 的函数的特点是:存在一条直线与函数图象有三个交点,且其中 一个是另外两个交点的中点. 画图可知①、③、④都是具有性质 P 的函数,②不具备有 三个交点,②是不具有性质 P 的函数 (B)②. (C)③. (D)④.
2018年北京市中学生数学竞赛初二试题(含答案)

2018年北京市中学生数学竞赛初二试题(含答案)2,3,4,5,6,7,8,9中的一个,且这些自然数的和为2018.请问这个学生写出的这17个自然数中,最小的数是多少?(请给出详细解题过程)解:设这17个自然数分别为a1,a2,…,a17,则有:a1+a2+…+a17=2018由于每个自然数的个位数码只能是1,2,3,4,5,6,7,8,9中的一个,所以每个自然数的个位数字之和一定是45,即这17个自然数的个位数字之和为765.设b1,b2,…,b17分别为这17个自然数的十位数字,则有:b1+b2+…+b17=765由于每个自然数的十位数字也只能是1,2,3,4,5,6,7,8,9中的一个,所以每个自然数的十位数字之和一定是45,即这17个自然数的十位数字之和为765.设c1,c2,…,c17分别为这17个自然数的百位数字,则有:c1+c2+…+c17=765由于每个自然数的百位数字也只能是1,2,3,4,5,6,7,8,9中的一个,所以每个自然数的百位数字之和一定是45,即这17个自然数的百位数字之和为765.由此可得,这17个自然数中最小的数为100+10+1=111.一、1.A在1到100这100个自然数中,有25个质数,分别是2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97.因此,质数在这100个自然数中所占的百分比是25%。
2.C将10分拆成三个正整数之和,共有8种情况:1+1+8、1+2+7、1+3+6、1+4+5、2+2+6、2+3+5、2+4+4、3+3+4.根据“三角形两边之和大于第三边”的原则,只有(2,4,4)和(3,3,4)两组可以构成三角形。
由于等腰三角形的两个底角都是锐角,因此以2、4、4为边的等边三角形中,最小边2对的顶角也是锐角。
以3、3、4为边的等腰三角形中,由3的平方加3的平方大于4的平方可知顶角也是锐角。
2018年第一学期八年级数学竞赛试题(含答案)

2018年第一学期八年级数学竞赛试题(满分120分 时间120分钟) 一、选择题(每小题5分,共40分) 1.若m 为实数,则代数式m +m 的值一定是( ) A.正数 B.0 C.负数 D.非负数 2.已知:三角形的三边a 、b 、c 的长都是整数,且a ≤b <c,如果b=5,那么这样的三角形个数为( ) A .6个 B .10个 C .15个 D .21个 3. 关于x 的方程1x ax =+的解不可能出现的情况为( ) A .正数 B .零 C .负数 D .无解 4.2008年10月,我校进行第9届田径运动会,八年(1)班的甲、乙、丙、丁四名运动员参加4×100米接力赛,甲必须为第一接力棒或第四接力棒的运动员,那么这四名运动员在比赛过程中的接棒顺序有( ) A .3种 B .4种 C .6种 D .12种 5. 如图,是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是1,直角三角形的两条直角边长分别为a 、b ,则()2a b +的值是( ) A.13 B.19 C.25 D.169 6. 有一堆形状大小都相同的珠子,其中只有一粒比其它都轻些,其余一样重。
若利用天平(不用砝码)最多两次就找出了这粒较轻的珠子,则这堆珠子最多有( ) A .8粒 B .9粒 C .10粒 D .11粒 7. 如图,等腰直角三角形ABC 中,∠ACB=90°,在斜边AB 上取两点M 、N , 使∠MCN=45°.设MN=x ,BN=n ,AM=m ,则以x 、m 、n 为边的三角形的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .随x 、m 、n 的值而定 8.某人将2008看成了一个填数游戏式:2□□8.于是,他在每个框中各写了一个两位数ab 与 学 校____________________ 班 级______________ 姓 名__________________…………………………………………………………………………………………………………………………………………………………………………cd ,结果发现,所得到的六位数28abcd 恰是一个完全立方数,则ab +cd 的值为( ) A.40 B.50 C.60 D.70二、填空题(40分)9. 如图,已知AB ∥CD ,MF ⊥FG ,∠AEM=50°,∠NHC=55°.则∠FGH 的度数为 .第9题 第11题 第12题10.已知实数a 、b 满足a 2+b 2+a 2b 2= 4ab-1,则a+b 的值为 .11.如图,在△ABC 中,AB=AC ,∠BAD=20︒,且AE=AD ,则∠CDE = 度.12.如图,D 是Rt ⊿ABC 斜边AB 边上一点,DE ⊥AC,DF ⊥BC,且DE=DF,若AD=3,BD=4, 则⊿ADE 与⊿BDF 的面积之和....是 . 13. 三个同学对问题“若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩ 的解。
【竞赛试题】2018全国高中数学联赛安徽省初赛试卷
1【竞赛试题】2018全国高中数学联赛安徽省初赛试卷(考试时间:2018年6月30日上午9:00)一、填空题(每题8分,共64分,结果须化简)1、设三个复数1, i, z 在复平面上对应的三点共线,且|z|=5,则z=2、设n 是正整数,且满足n 5=438427732293,则n=3、函数f(x) =sin(2x) + sin(3x) + sin(4x)的最小正周期=4.设点P,Q 分别在函数y=2x 和y=log 2x 的图象上,则|PQ|的最小值=5、从1,2,…,10中随机抽取三个各不相同的数字,其样本方差s 2≤1的概率=6、在边长为I 的正方体ABCD-A 1B 1C 1D 1内部有一小球,该小球与正方体的对角线段AC 1相切,则小球半径的最大值=7、设H 是△ABC 的垂心,且3450HA HB HC ++=,则cos ∠AHB=8、把1,2,…,n 2按照顺时针螺旋方式排成n 行n 列的表格T n ,第一行是1,2,…,n.例如:3123894765T ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦设2018在T 100的第i 行第j 列,则(i,j)= · 二、解答题(第9-10题每题21分,第11-12题每题22分,共86分)9、如图所示,设ABCD 是矩形,点E, F 分别是线段AD, BC 的中点,点G 在线段EF 上,点D, H 关于线段AG 的垂直平分线L 对称.求证:∠HAB=3∠GAB.10、设O 是坐标原点,双曲线C:上动点M 处的切线交C 的两条渐近线于A,B 两点。
(1)减B 两点:`(1)求证:△AOB 的面积S 是定值。
(2)求△AOB 的外心P 的轨迹方程.11、(1)求证:对于任意实数x,y,z都有: ) 222x23y z xy yz zx ++≥++.(2)是否存在实数x.y,z下式恒成立?()222x23y z k xy yz zx++≥++,试证明你的结论.12.在正2018边形的每两个顶点之间均连一条线段,并把每条线段染成红色或蓝色.求此图形中三边颜色都相同的三角形的最小个数.232018全国高中数学联赛安徽省初赛试卷考试时间:2019年6月30日上午9:001.设三个复数1,i,z 在复平面上对应的三点共线,且5z =,则z =4-3i,34i -+.2.设n 是正整数,且满足5438427732293n =,则n =213.3.函数()sin2sin3sin4f x x x x =++的最小正周期=2π.4.设点,P Q 分别在函数2x y =和2log y x =的图象上,则PQ 的最小值=5、从1,2,,10⋅⋅⋅中随机抽取三个各不相同的数字,其样本方差21s ≤的概率=115. 6、在边长为1的正方体1111ABCD A BC D -内部有一小球,该小球与正方体的对角线段1AC 相切,则小球半径的最大值 7、设H 是ABC ∆的垂心,且3450HA HB HC ++=,则cosAHB ∠=6-. 8、把21,2,,n ⋅⋅⋅按照顺时针螺旋方式排成n 行n 列的表格n T ,第一行是1,2,,n ⋅⋅⋅.例如:3123894765T ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦设2018在100T 的第i 行第j 列,则(),i j =()34,95.9、如图所示,设ABCD 是矩形,点,E F 分别是线段,AD BC 的中点,点G 在线段EF 上,点,D H 关于线段AG 的垂直平分线L 对称.求证:3HAB GAB ∠=∠.。
2018年“大梦杯”福建省初中数学竞赛试题+参考答案及评分标准
2018年“大梦杯〞省初中数学竞赛试题考试时间 2018年3月18日 9∶00-11∶00 总分值150分一、选择题〔共5小题,每题7分,共35分〕。
每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分〕1.假设关于x 的方程244310x mx m +--=有两个相等的实数根,那么32442m m m ++-的值为〔 〕A .3-B .2-C .1-D .12.如图,ABCD 、DEFG 都是正方形,边长分别为m 、n 〔m n <〕。
坐标原点O 为AD 的中点,A 、D 、E 在y 轴上。
假设二次函数2y ax =的图像过C 、F 两点,那么nm=〔 〕A .31+B .21+C .231-D .221-3.如图,G 为ABC △的重心,点D 在CB 延长线上,且12BD BC =,过D 、G 的直线交AC 于点E ,那么AEAC=〔 〕 A .25B .35C .37D .474.如图,H 、O 分别为ABC △的垂心、外心,45BAC ∠=︒,假设ABC △外接圆的半径 为2,那么AH =〔 〕A .23B .22C .4D .31+5.满足方程22419151x xy y -+=的整数对()x y ,有〔 〕 A .0对 B .2对 C .4对D .6对HOBCA〔第4题图〕〔第2题图〕 EG〔第3题图〕二、填空题〔共5小题,每题7分,共35分〕6.a ,b ,c 为正整数,且a b c >>。
假设b c +,a c +,a b +是三个连续正整数的平方,那么222a b c ++的最小值为。
7.如图,ABCD 为矩形,E 为对角线AC 的中点,A 、B 在x 轴上。
假设函数4y x=〔0x >〕的图像过D 、E 两点,那么矩形ABCD 的面积为。
8.如图,ABC △是边长为8的正三角形,D 为AB 边上一点,1O ⊙为ACD △的切圆,2O ⊙为CDB △的边DB 上的旁切圆。
2018 年全国高中数学联合竞赛A 卷试题及解析(含一试及加试)
而I<π - 2 < 8-2r. < 2 , 故原不等式组成立当且仅当xE[肯 - 2, 8-2肯}. 6.设复数z满足l= I=I , 使得关于,y的方程 x' + 2:x+2 =0有实根 , 则这样
=
的复数z的和为 答案:
分别是F;、凡,椭l2ll c 的弦 ST 与 UV 分别 -'¥· 行于 x 剿l与y轴 , 且相交子点P. 己 知线段PU,PS ‘ PV 、 PT 的长分另lj为L 2. 3. 6 , 则 MF., 凡的朋积为 答案: -Jl5. 解: 由对称性 , 不妨设 P (,飞·,,, )'p )在第 一 象限,则由条件知
主.
解:设们在平面。上的射影为。白条件知, 立 = tanLOQP |丘♂ I ' OQ I 3
ε
i己为 a, b,c, d, e,f ,则。be ÷d吃f ;是偶数的
概率为 答案: 解:先考虑。 bc+def :为奇数的俏况,此时 abc、 d吃f 一 奇一 {间,若 abc 为奇敛,
10
则。 , b,c 为l, 3, 5 的排列 , 避而 d‘ e,f 为2,4,6的排列,这样有3!×31=36种情况, 由对称性可知 , 使 abc+def 为奇数的情况数为 36 × 2 =72 种.从而 abc+d,电f 为偶 72 72 9 =I-一一=一. 数的概率为I-一 ' 6 720 JO
1. 设织合 A= {I, 2, 3、
2018年全国高中数学联合竞赛一试(A卷) 参考答案及评分标准
,99}‘B={2xjxE A}, C={xl2xε斗 , 则B门C的元
2018年太原市初中数学竞赛试题(含答案)
2018年太原市初中数学竞赛一、选择题(每小题7分,共42分)1.若x+y=1,x3+y3=13,则x5+y5的值是().(A)11311131 ()()() 8181243243B C D2.已知(x>0),则222241629x xy yx xy y+-+-的值是().(A)241616 ()()() 392527B C D3.在凸多边形中,四边形有两条对角线,五边形有5条对角线.观察探索凸十边形有()条对角线.(A)29 (B)32 (C)35 (D)384.已知△ABC中,AD=8,则△ABC外接圆的半径为().(A)8 (B)9 (C)10 (D)125.若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如3=22-12,16=52-32).已知智慧数按从小到大顺序构成如下数列:3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,….则第2 006年智慧数是()(A)2 672 (B)2 675 (C)2 677 (D)2 6806.图1是山西省某古宅大院窗棂图案:图形构成10×21的长方形,•空格与实木的宽度均为1,那么,这种窗户的透光率(即空格面积与全部面积之比)是().(A)25(B)345()()7911C D二、填空题(每小题7分,共42分)1.如图2,已知正方形ABCD 的顶点坐标为A (1,1),B (3,1),C (3,3),D (1,3),直线y=2x+b 交AB 于点E ,交CD 于点F .则直线在y 轴上的截距b 的变化范围是_______. 2.一次函数y=ax+b•的图像L 1关于直线y=•-•x•轴对称的图像L 2的函数解析式是____________. 3.不论m 取任何实数,抛物线y=x 2+2mx+m 2+m-1的顶点都在一条直线上,则这条直线的函数解析式是_______. 4.当a<0时,方程x │x │+│x │-x-a=0的解为__________.5.某广场地面铺满了边长为36cm 的正六边形地砖.现在向上抛掷半径为的圆碟,圆碟落地后与地砖间的间隙不相交的概率大约是________.6.将红、白、黄三种小球,装入红、白、黄三个盒子中,•每个盒子中装有相同颜色的小球.已知:(1)黄盒中的小球比黄球多; (2)红盒中的小球与白球不一样多; (3)白球比白盒中的球少.则红、白、黄三个盒子中装有小球的颜色依次是________.三、(16分)将一个三位数abc 的中间数码去掉,成为一个两个数ac ,且满足abc =9ac +4c (•如155=9×15+4×5).试求出所有这样的三位数.四、(16分)已知二次函数y=a x2+4ax+4a-1的图像是C1.(1)求C1关于点R(1,0)中心对称的图像C2的函数解析式;(2)设曲线C1、C2与y轴的交点分别为A、B,当│AB│=18时,求a的值.五、(17分)求方程2x2+5xy+2y2=2 006的所有正整数解.六、(17分)如图3,已知AB为⊙O的弦,M为AB的中点,P为⊙O上任意一点,以点P 为圆心、2MO为半径作圆并交⊙O于点C、D,AC、BD交于点Q,请问:(1)点Q是△PAB的什么“心”?(2)点Q是否在⊙P上?试证明你的结论.提示:(1)三角形的三条高线交于一点,称为垂心定理,此点称为垂心.(2)三角形有内心、外心、重心、垂心等.参考答案一、1.A.由x3+y3=(x+y)(x2-xy+y2)=13,x+y=1,有x2-xy+y2=13.又因x2+2xy+y2=1,则3xy=23,xy=29.由21,,321,.93x y xxyy⎧+==⎧⎪⎪⎪⎨⎨=⎪⎪=⎩⎪⎩解得故x5+y5=321331124324324381+==.2.D由原方程得2(xy)-2=0.=t,则方程变形为2t2-3t-2=0,即(2t+1)(t-2)=0.解得t1=2,t2=-12(舍去),故xy=4.将x=4y代入分式,得222241629x xy yx xy y+-+-=22(161616)16(3249)27yy+-=+-.3.C 画图观察探索知多边形:四五六七八九十对角线条数: 2 5 9 14 20 27 35规律是: 2+3 5+4 9+5 14+6 20+7 27+8 4.D如图,延长AD交外接圆于点E,则AE为直径.联结BE,知△ABE•为直角三角形,•有AB2=AD·AE.因此,半径为12.5.C观察探索规律,知全部智慧数从小到大可按每三个数分一组,从第2•组开始每组的第一个数都是4的倍数.归纳可得第n组的第一个数为4n(n≥2).因2 006=3×668+2,所以,第2 006个智慧数是第669组中的第2•个数,•即为4•×669+1=2 677.6.B观察图1的结构规律,知长方形面积为10×21=210,空格图形面积为2(9+8+7+6+5+4+3+2+1)=90.则透光率=903 2107=.二、1.-3≤b≤-1.由直线y=2x+b随b的数值不同而平行移动,知当直线通过点A时,得b=-1;• 当直线通过点C时,得b=-3.故-3≤b≤-1.2.y=1ax+ba.直线y=ax+b与x轴、y轴的交点分别为A1(-ba,0),B(0,b),则点A1、B2关于直线y=-x•轴对称的点为A2(0,ba),B2(-b,0),利用待定系数法或斜率、截距关系知,过点A2、B2的直线为y=1ax+ba.故一次函数y=ax+b的图像关于直线y=-x轴对称的图像的函数解析式为y=1ax+ba.3.y=-x-1.将二次函数变形为y=(x+m)2+m-1,知抛物线的顶点坐标为,1. x my m=-⎧⎨=-⎩.消去m,得x+y=-1.4.当a<0时,若x≥0,方程为x2-a=0,得x2=a<0,无解;若x<0,方程为-x2-2x-a=0,即 x2+2x+a=0.此时,△=4-4a>0.解得=-15.49欲使圆碟不压地砖间的间隙,则圆碟的圆心必须落在与地砖同中心、•且边与地砖边彼此平行、距离为的小正六边形内(如图).作OC1⊥A1A2,且C1C2.因A1A2=A2O=36,A2C1=18,所以,C12则C2O=C1O-C1C2=又因C22O,所以,B22.而B1B2=B2O,则小正六边形的边长为24cm.故所求概率为P=221222122436B BA A==小正六边形的面积正六边形地砖面积=49.6.黄、红、白.由条件(2)知红盒不装白球,由条件(3)知白盒不装白球,故黄盒装白球.假设白盒装黄球,由条件(3)知白球比黄球少,这与条件(1)矛盾,故白盒装红球,红盒装黄球.三、因abc=100a+10b+c=,ac=10a+c,由题意得100a+10b+c=9(10a+c)+4c.化简得5(a+b )=6c . 这里0≤a 、b 、c ≤9,且a ≠0. 因为5是质数,所以,5,1,2,3,4,5,6,6.5,4,3,2,1,0.c a a b b ==⎧⎧⎨⎨+==⎩⎩故 则abc =155,245,335,425,515,605.四、(1)由y=a (x+2)2-1,可知抛物C 1的顶点为M (-2,-1).由图知点M (-2,-1)关于点R (1,0)中心对称的点为N (4,1),以N (4,1)为顶点,与抛物线C 1关于点R (1,0)中心对称的图像C 2也是抛物线,且C 1与C 2的开口方向相反,故抛物线C 2的函数解析式为y=-a (x-4)2+1,即y=-a x 2+8ax-16a+1.(2)令x=0,得抛物线C 1、C 2与y 轴的交点A 、B 的纵坐标分别为4a-1和-16a+1,故│AB │=│(4a-1)-(-16a+1)│=│20a-2│. 注意到│20a-2│=18.当a ≥110时,有20a-2=18,得a=1; 当a<110时,有2-20a=18,得a=-45.五、方程两端分解因式得(2x+y )(x+2y )=2×17×59. 不妨先设x ≥y ≥1,则有 ① 2x+y ≥x+2y>x+y>1. 由此,只有三种情况: 259,2118,21003,234,217,2 2.x y x y x y x y x y x y +=+=+=⎧⎧⎧⎨⎨⎨+=+=+=⎩⎩⎩或或 由式②、③得x+y=31. 再由31,28259,3;x y x x y y +==⎧⎧⎨⎨+==⎩⎩解得由式④、⑤得x+y=45,与式①矛盾;由式⑥、⑦得x+y=335,与式①矛盾.故原方程的正整数解为2833;28. x xy y==⎧⎧⎨⎨==⎩⎩.六、分析:当点P在弦AB的垂直平分线MO上时,点Q也在直线MO上,此时,PQ⊥AB,•故考虑Q为△PAB的垂心.(1)如图,作⊙O的直径BE,联结PD、DE、EA.因为∠BAE=90°,所以,AE∥MO.因M为AB中点,则AE=2MO.于是,有AE=PD.故四边形APDE为等腰梯形,DE∥PA.又因为∠BDE=90°,BD⊥DE,所以,BD⊥PA,即点Q在△PAB的顶点B到底边PA•的垂线上.联结PE、PC.因AE=PC=2MO,则四边形ACPE也为等腰梯形,所以,PE∥AC.又∠BPE=90°,PE⊥PB,则AC⊥PB,即点Q在△PAB的顶点A到底边PB的垂线上.因Q是△PAB两条高的交点,故Q为△PAB的垂心.(2)联结PQ.根据垂心定理知PQ⊥AB,但AE⊥AB,则PQ∥AE.又因PE∥AC,即有PE∥AQ,则四边形AQPE为平行四边形.所以,PQ=AE=PC=2MO.故点Q在⊙P上.。