《对数与对数运算》教学设计(2)
2017对数与对数运算教学设计

2017对数与对数运算教学设计第一篇:2017对数与对数运算教学设计2.2.1(1)对数与对数运算(教学设计)教学目的:1、理解对数的概念、了解对数与指数的关系;掌握对数式与指数式的互化;理解对数的性质,掌握以上知识并青春期技能。
2、通过实例使学生认识对数的模型,体会引入对数的必要性;通过师生观察分析得出对数的概念及对数式与指数式的互化。
3、掌握对数的重要性质,通过练习,使学生感受到理论与实践的统一。
4、培养学生的类比、分析、归纳能力,严谨的思维品质以及在学习过程中培养学生探究的意识。
教学重点:对数的概念;对数式与指数式的相互转化。
教学难点:对数概念的理解;对数性质的理解。
教学过程:一、复习回顾,新课引入:引例1:一尺之锤,日取其半,万世不竭。
(1)取5次,还有多长?(答:1/32)x()=0.125,则x=?(2)取多少次,还有0.125尺?(答:12引例2:2002年我国GDP为a亿元,如果每年平均增长8%,那么经过多少年GDP是2002年的2倍?略解:(1+8%)x=2,则x=?二、师生互动,新课讲解: 1.定义一般地,如果ax=N(a>0,且a≠1),那么数x叫做以a为底N 的对数(logarithm),记作x=logaN,其中a叫做对数的底数,N叫做真数.(解答引例)问:以4为底16的对数是2,用等式怎么表达?讨论:按照对数的定义,以4为底16的对数是2,可记作log416=2;同样从对数的定义出发,可写成42=16.2.对数式与指数式的互化当a>0,且a≠1时,如果ax=N,那么x=logaN;如果x=logaN,那么ax=N.即ax=N等价于x=logaN,记作当a>0,且a≠1时,ax=N⇔x=logaN.负数和零没有对数3.两个重要的对数(常用对数和自然对数)通常我们将以10为底的对数叫做常用对数(common logarithm),并且把log10N记作lgN.在科学技术中常使用以无理数e=2.7***Λ为底数的对数,以e为底的对数称为自然对数(natural logarithm),并且把logeN记作lnN.例1:将下列指数式化为对数式,对数式化为指数式11;(3)3a=37;(4)()m=5.73 643(5)log116=-4;(6)log2128=7;(7)log327=a;(8)lg0.01=-2(1)54=625;(2)2-6=2变式训练1:(课本P64练习NO:1;2)例2(课本P63例2):求下列各式中x的值。
2.2.1 对数与对数运算(2)

;
变式:
lg0.001=?
例2、在
中,要使式子有
意义,x的取值范围为( ).
A.(-∞,3] B.(3,4)∪(4,+∞)
C.(4,+∞) D.(3,)
(3)
(4)
1.对数定义
2.指数式与对数式互化
ax N loga N x ,(a>0且a≠1
3.对数性质: 负数和零没有)对数N>0; loga 1 0, loga a 1
4.常用的两种对数:常用对数 lg N
和自然对数 ln N
所以a的取值范围是 2,3 3,5
合作探究并展示
题号 例1 变式 例2 例3 小结
展示 第一组 第二组 第三组 第四组
位置 前黑板 前黑板 侧黑板 侧黑板
第九组
点评 第五组 第六组 第七 组 第八组
合作探究并展示
例1、下列指数式化为对数式,对数式化
为指数式.
(1)
; (2)
;
(3)
; (4)
,其中 a叫做
对数的
;N 叫做
。
(2)我们常将以a为底的对数叫做
,记
作;
以e=2.7828…为底的对数叫做
,记作
(3) 根据对数的定义,可以得到对数与指数间的
关系:当 a>0,且a≠1时,
等价于
;
由指数与对数的这个关系,可以得到关于对数的
如下结论:
没有对数。
1.将下列指数式写成对数式,对数式写成指数式:
三、对数的性质 思考1:是不是所有的实数都有对数? 负数与零没有对数(即N>0.)
思考2:loga 1 ?, loga a ? loga 1 0, loga a 1
对数与对数运算教学设计

对数与对数运算教学设计对数与对数运算教学设计【篇1】1教学目标1、理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的互化;理解对数的性质,掌握以上知识并形成技能。
2、通过事例使学生认识对数的模型,体会引入对数的必要性;通过师生观察分析得出对数的概念及对数式与指数式的互化。
3、通过学生分组探究进行活动,掌握对数的重要性质。
通过做练习,使学生感受到理论与实践的统一。
4、培养学生的类比、分析、归纳能力,严谨的思维品质以及在学习过程中培养学生探究的意识。
2学情分析现阶段大部分学生学习的自主性较差,主动性不够,学习有依赖性,且学习的信心不足,对数学存在或多或少的恐惧感。
通过对指数与指数幂的运算的学习,学生已多次体会了对立统一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得到了一定的锻炼。
因此,学生已具备了探索发现研究对数定义的认识基础,故应通过指导,教会学生独立思考、大胆探索和灵活运用类比、转化、归纳等数学思想的学习方法。
3重点难点重点:(1)对数的概念;(2)对数式与指数式的相互转化。
难点:(1)对数概念的理解;(2)对数性质的理解。
4教学过程4.1第一学时教学活动活动1【导入】创设情境引入新课引例(3分钟)1、一尺之棰,日取其半,万世不竭。
(1)取5次,还有多长?(2)取多少次,还有0.125尺?分析:(1)为同学们熟悉的指数函数的模型,易得(2)可设取x次,则有抽象出:2、__年我国GPD为a亿元,如果每年平均增长8%,那么经过多少年GPD是__年的2倍?分析:设经过x年,则有抽象出:活动2【讲授】讲授新课一、对数的概念(3分钟)一般地,如果a(a0且a≠1)的b次幂等于N, 就是 =N 那么数 b叫做 a为底 N的对数,记作,a叫做对数的底数,N叫做真数。
注意:①底数的限制:a0且a≠1②对数的书写格式二、对数式与指数式的互化:(5分钟)幂底数← a →对数底数指数← b →对数幂← N →真数思考:①为什么对数的定义中要求底数a0且a≠1?②是否是所有的实数都有对数呢?负数和零没有对数三、两个重要对数(2分钟)①常用对数:以10为底的对数 ,简记为: lgN②自然对数:以无理数e=2.71828…为底的对数的对数简记为: lnN . (在科学技术中,常常使用以e为底的对数)注意:两个重要对数的书写课堂练习(7分钟)对数与对数运算教学设计【篇2】对数与对数运算训练题1.2-3=18化为对数式为A.log182=-3 B.log18(-3)=2C.log218=-3 D.log2(-3)=18解析:选C.根据对数的定义可知选C.2.在b=log(a-2)(5-a)中,实数a的取值范围是()A.a>5或a B.2<a<3或3<a<5C.25 D.3<a<4解析:选B.5-a>0a-2>0且a-21,2<a<3或3<a<5.3.有以下四个结论:①lg(lg10)=0;②ln(lne)=0;③若10=lgx,则x =10;④若e=lnx,则x=e2,其中正确的是()A.①③ B.②④C.①② D.③④解析:选C.lg(lg10)=lg1=0;ln(lne)=ln1=0,故①、②正确;若10=lgx,则x=1010,故③错误;若e=lnx,则x=ee,故④错误.4.方程log3(2x-1)=1的解为x=________.解析:2x-1=3,x=2.答案:21.logab=1成立的条件是()A.a=b B.a=b,且b0C.a0,且a D.a0,a=b1解析:选D.a0且a1,b0,a1=b.2.若loga7b=c,则a、b、c之间满足()A.b7=ac B.b=a7cC.b=7ac D.b=c7a解析:选B.loga7b=cac=7b,b=a7c.3.如果f(ex)=x,则f(e)=()A.1 B.eeC.2e D.0解析:选A.令ex=t(t0),则x=lnt,f(t)=lnt.f(e)=lne=1.4.方程2log3x=14的解是()A.x=19 B.x=x3C.x=3 D.x=9解析:选A.2log3x=2-2,log3x=-2,x=3-2=19.5.若log2(log3x)=log3(log4y)=log4(log2z)=0,则x+y+z的值为() A.9 B.8C.7 D.6解析:选A.∵log2(log3x)=0,log3x=1,x=3.同理y=4,z=2.x+y+z=9.6.已知logax=2,logbx=1,logcx=4(a,b,c,x>0且1),则logx(abc)=()A.47B.27C.72D.74解析:选D.x=a2=b=c4,所以(abc)4=x7,所以abc=x74.即logx(abc)=74.7.若a0,a2=49,则log23a=________.解析:由a0,a2=(23)2,可知a=23,log23a=log2323=1.答案:18.若lg(lnx)=0,则x=________.解析:lnx=1,x=e.答案:e9.方程9x-63x-7=0的解是________.解析:设3x=t(t0),则原方程可化为t2-6t-7=0,解得t=7或t=-1(舍去),t=7,即3x=7.x=log37.答案:x=log3710.将下列指数式与对数式互化:(1)log216=4; (2)log1327=-3;(3)log3x=6(x>0); (4)43=64;(5)3-2=19; (6)(14)-2=16.解:(1)24=16.(2)(13)-3=27.(3)(3)6=x.(4)log464=3.(5)log319=-2.(6)log1416=-2.11.计算:23+log23+35-log39.解:原式=232log23+353log39=233+359=24+27=51. 12.已知logab=logba(a0,且a1;b0,且b1).求证:a=b或a=1b.证明:设logab=logba=k,则b=ak,a=bk,b=(bk)k=bk2.∵b0,且b1,k2=1,即k=1.当k=-1时,a=1b;当k=1时,a=b.a=b或a=1b,命题得证.对数与对数运算教学设计【篇3】对数是什么在数学中,对数是对求幂的逆运算,正如除法是乘法的倒数,反之亦然。
对数与对数运算教案

对数与对数运算教案一、教学目标1.了解对数的概念和性质。
2.掌握对数的换底公式。
3.能够运用对数运算解决实际问题。
二、教学重点1.对数的换底公式的掌握。
2.对数运算的实际应用。
三、教学难点1.对数的换底公式的理解与应用。
2.对数运算在实际问题中的灵活运用。
四、教学过程1.导入(5分钟)通过提问的方式引入对数的概念,例如:什么是指数?怎样求指数运算的结果?对数与指数有何关系等。
2.知识讲解与演示(25分钟)(1)对数的概念与性质:先简要介绍对数的概念,即以一些数为底,使结果等于一些数的指数运算。
然后讲解对数的性质,包括对数的唯一性、对数的基本法则等。
3.练习与巩固(25分钟)(1)讲解练习题:组织学生进行对数运算的练习,包括计算对数的值、利用对数解决方程等。
逐步提高题目的难度,以巩固学生的基本技能。
(2)拓展练习:根据实际问题设置应用题,引导学生运用对数解决实际问题,如物种数量的估算、露营地数量的计算等。
培养学生的问题解决能力和分析能力。
4.深化与延伸(20分钟)(1)对数运算的实际意义:通过一些具体的实际例子,讲解对数运算在生活中的应用,如音量的计算、地震强度的测量等。
让学生感受到对数运算在实际问题中的重要性。
(2)拓展延伸:引导学生深入思考对数的概念和性质,并做一些拓展性的练习,如求对数的近似值、应用对数解决复杂方程等。
拓宽学生的数学思维。
五、课堂小结与展望(5分钟)对本节课的内容进行小结,回顾所学的知识点和技能。
展望下节课的内容,为下一步学习打下基础。
六、作业布置布置适量的练习题作业,巩固对数与对数运算的知识与技能的掌握。
七、教学反思通过本节课的教学,学生对对数和对数运算有了初步的了解。
对数的换底公式的掌握是此节课的难点和重点,需要进行反复的练习和巩固。
通过设置实际问题的应用题,培养学生的问题解决能力和应用能力。
同时,教师需要耐心引导学生思考和讨论,帮助学生更好地理解和掌握数学知识。
高中数学必修一《对数与对数运算》教学设计

高中数学必修一《对数与对数运算》教学设计一、教学背景分析:(一)教材地位与作用我们在前面的学习过程中,已了解了指数函数的概念和性质,它是后续学习的基础,从本节开始我们学习对数及其运算.使学生认识引进对数的必要性,理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.(二)学情分析学生刚开始接触对数,从指数函数到对数函数的过渡,学生在学习上可能会有些困难,转化能力有待提高。
而且学生学习的主动意识不强,自主探究能力也有待提高。
(三)设计思想教材注重从现实生活的事例中引出对数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情景创设.教材安排了“阅读与思考”的内容,有利于加强数学文化的教育,应指导学生认真研读.根据本节内容的特点,教学中要注意发挥信息技术的力量,使学生进一步体会到信息技术在数学学习中的作用,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.注重引导学生通过自己观察、操作交流、讨论、有条理的思考和推理,让学生通过自主探索、合作交流,进一步认识和掌握对数式与指数式的互化,积累数学活动的经验。
(四)教法分析和学法指导掌握对数的双基,即对数产生的意义、概念等基础知识,求对数及对数式与指数式间转化等基本技能的掌握在本课的教学设计中,注重“引、思、探、练”的结合。
引导学生学习方式发生转变,采用激发兴趣、主动参与、积极体验、自主探究的学习,形成师生互动的教学氛围。
在学习方法上,指导学生:通过实例启发学生产生主动运用的意识;通过解题思路的脉络分析,对学生进行解题思路的指导;通过对学生发言的点评,规范语言表达,指导学生进行交流和讨论。
(五)教具设备:多媒体课件.二、教学目标(一)知识与能力1.理解对数的概念,了解对数与指数的关系;2.理解和掌握对数的性质;3.掌握对数式与指数式的关系。
对数及对数函数教案8篇

写教案能帮助教师更好地安排课堂教学时间,教案要结合实际的教学进度和学生的学习能力,才能更好地帮助学生提高学习效果,下面是范文社小编为您分享的对数及对数函数教案8篇,感谢您的参阅。
对数及对数函数教案篇1【学习目标】一、过程目标1通过师生之间、学生与学生之间的互相交流,培养学生的数学交流能力和与人合作的精神。
2通过对对数函数的学习,树立相互联系、相互转化的观点,渗透数形结合的数学思想。
3通过对对数函数有关性质的研究,培养学生观察、分析、归纳的思维能力。
二、识技能目标1理解对数函数的概念,能正确描绘对数函数的图象,感受研究对数函数的意义。
2掌握对数函数的性质,并能初步应用对数的性质解决简单问题。
三、情感目标1通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的.学习兴趣。
2在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质。
教学重点难点:1对数函数的定义、图象和性质。
2对数函数性质的初步应用。
教学工具:多媒体学前准备】对照指数函数试研究对数函数的定义、图象和性质。
对数及对数函数教案篇2对数函数及其性质教学设计1.教学方法建构主义学习观,强调以学生为中心,学生在教师指导下对知识的主动建构。
它既强调学习者的认知主体作用,又不忽视教师的指导作用。
高中一年级的学生正值身心发展的过渡时期,思维活跃,具有一定的独立性,喜欢新鲜事物,敢于大胆发表自己的见解,不过思维还不是很成熟.在目标分析的基础上,根据建构主义学习观,及学生的认知特点,我拟采用“探究式”教学方法。
将一节课的核心内容通过四个活动的形式引导学生对知识进行主动建构。
其理论依据为建构主义学习理论。
它很好地体现了“学生为主体,教师为主导,问题为主线,思维为主攻”的“四为主”的教学思想。
2.学法指导新课程强调“以学生发展为核心”,强调培养学生的自主探索能力与合作学习能力。
高中数学教学课例《对数与对数运算》课程思政核心素养教学设计及总结反思

知识并形成技能.
2.通过实例使学生认识对数模型,体会引入对数 教学目标
的必要性;通过师生观察分析得出对数的概念及对数式
与指数式的互化.
3.通过学生分组进行探究活动,掌握对数的重要
性质.通过做练习,使学生感受到理论与实践的统一.
现阶段大部分学生学习的自主性较差,主动性不
够,学习有依赖性,且学习的信心不足,对数学存在或 学生学习能
课例研究综 要突出的是不同轮次的教学中学生表现的变化情况。另
述
一方面也叫以对学生实施教学后测,根据学生教学后测
中的表现以及与前测情况的比较,来推断课堂是否有效
地帮助学生掌握了学习内容。
多或少的恐惧感.通过对指数与指数幂的运算的学习, 力分析
学生已多次体会了对立统一、相互联系、相互转化的思
想,并且探究能力、逻辑思维能力得到了一定的锻炼.
教学策略选
本教学设计先由引例出发,创设情境,激发学生对
择与设计 对数的学习兴趣;在讲授新课部分,通过结合多媒体教
学以及一系列的课堂探究活动,加深学生对对数的认
识;最后通过课堂练习来巩固学生对对数的掌握.
探究活动时,学生独立完成后,通过思考,然后分
小组进行讨论,最后得出结论.我针对问题补充,通过
教学过程 练习与讨论的方式,让学生自己得出结论,从而能更好
地理解和掌握对数的性质.培养学生类比、分析、归纳
的能力.
根据观察记录说明他们在课堂上的参与程度和具
体表现(参与状态、思维发展、学习体验等方面),尤其
高中数学教学课例《对数与对数运算》教学设计及总结反思
学科
高中数学
教学课例名
《对数与对数运算》
称
重点:(1)对数的概念;(2)对数式与指数式的相互
对数与对数的运算(2)

∴ a ( MN ) = log a M + log a N log
二、新课讲解 我们已经学习了指数的运算性质,是否对数 我们已经学习了指数的运算性质 是否对数 也有运算性质呢?先观察下列两个例子 也有运算性质呢 先观察下列两个例子 1 2 3 (1).log 2 2 = __ 2 4 = __ 2 8 = __ log log 2 1 3 (2).log 3 3 = __ 39= __ 3 27 = __ log log 由此,我们可以猜想到
六、作业 P74 习题 习题2.2 A组 3 组
二、新课讲解
对数运算法则 :
1 (4) log a M = log a M (a > 0, a ≠ 1, M > 0, n ∈ R ) n log c b (5) log a b = (a > 0, b > 0, c > 0, a ≠ 1, c ≠ 1) log c a
2、记牢对数的运算性质的特征 、
log a ( M ± N ) = log a M ± log a N log a ( MN ) = log a M × log a N M log a = log a M ÷ log a N N log a ( M n ) = (log a M ) n
×
×
四、巩固练习
M ∴ a ( ) = log a M − log a N log N
二、新课讲解 我们已经学习了指数的运算性质,是否对数 我们已经学习了指数的运算性质 是否对数 也有运算性质呢?先观察下列两个例子 也有运算性质呢 先观察下列两个例子 1 2 3 (1).log 2 2 = __ 2 4 = __ 2 8 = __ log log 2 1 3 (2).log 3 3 = __ 39= __ 3 27 = __ log log 由此,我们可以猜想到 由此 我们可以猜想到
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题: 2.2.1 对数与对数运算
科目:数学教学对象:高一年级学生课时:第一课时
提供者:赵晓云单位:阳泉一中
一、教学内容分析
让学生在实际背景中认识对数概念,既是本节的重点又是难点。
要通过适当的素材创设情境,使学生认识到引入对数的必要性,从而调动学生学习对数的积极性。
根据底数、指数与幂之间的关系,从已知底数和幂如何求指数入手,引导学生借助指数函数的图像,分析问题中幂指数的存在性,从而引出对数的概念。
通过对指数式与对数式中各字母进行对比分析,引导学生认识对数与指数的相互联系,利用指数式与对数式的互化,帮助学生理解对数概念,体会转化思想在对数运算中的作用。
二、教学目标
1、知识技能
理解对数的概念,了解对数与指数的关系;理解和掌握对数的性质;掌握对数式与指数式的关系。
2、过程与方法
通过与指数式的比较,引出对数的定义和性质;由易到难。
3、情感、态度、价值观
通过对数式与指数式的互化,培养学生分析、类比、归纳的能力;在学习过程中,培养学生探究的意识;培养学生了解事物间的联系,培养学生用已有知识解决未知问题的能力。
三、学习者特征分析
通过平时的观察发现,高一学生通过前段时间的学习,已经基本上学会了自学,并能自主学习,能够从课本中学习并总节所学知识点,但有部分学生只看不动笔,所以第一课时主要以书本内容为主。
四、教学策略选择与设计
利用多媒体:学生喜欢自己上网,并喜欢去了解未知的东西,所以提前布置任务,让学生阅读课本68页的阅读材料,并上网查找有关对数的介绍,了解对数的重要性。
采用“学案导学”的教学方法:高一学生通过前段时间的学习,已经基本上学会了自学,并能自主学习,所以学生完全可以学懂课本的有关知识,所以,以问题与练习的形式制成学案,让学生自学课本62页——63页后完成,达到进一步理解对数概念,并体会转化思想在对数运算中的目的。
小组讨论:对数恒等式的得出,即较难的对数求解问题,让学生讨论得出,培养学生合作学习的能力。
五、教学重点及难点
教学重点:指数式与对数式的互相转化,对数性质的推导。
教学难点:对数概念以及对数符号的理解,对数性质的
六、教学过程
教师活动学生活动设计意图
这些式子,都是已知底数和幂的值,求指数,而且我们不能根据熟悉的数据解出来。
要解决这个问题,就要用到我们这节课将要
思考问题一:截止到1999年底,我国
人口约13亿,如果今后能将人口平均增长
率控制在1%,那么经过20年后我国人口数
最多为多少亿?
让学生在实际背
景中认识对数概念,通
过适当的素材创设情
境,使学生认识到引入
学习的对数知识。
(写课题名称,引出对数的概念。
)
对数16、17世纪交,苏格兰数学家皮纳尔在研究天文学的时候发明的。
希望同学在课下上网搜搜对数的其他信息并进行交流。
解:y=13(1+1%)20≈16(亿)
思考问题二:在上面问题的条件下,
问经过多少年后我国人口数将达到18亿,
20亿,30亿?
解:1.01x= 1.01x=
1.01x=
对数的必要性,从而调
动学生学习对数的积
极性
请同学们自学课本62——63页,完成学案内容一。
遇到问题请举手。
(巡视教室,回答学生疑问。
)自学课本62——63页,完成学案内容一。
学完后,集体总结所学内容。
(投影演示)
培养学生自学能力及
抽象概括能力。
请大家完成“学案”上的练习1、2、3,有问题的可以举手。
练习1.指数式化与对数式互化:
1024
10
2=
32
1
2
1
5=
)
(57
.2
3=
m
4
log
16
1
2
-
= lg0.1=-1 ln3=n
对数定义与指对
互化是本节课的重点,
学生自学课本,有可能
只是“看懂”,而不是
“掌握”,所以,变换
数字,在学案上重做,
以检查学生掌握情
况。
练习2.求下列各式中x的值:
3
2
64
log-
=
x6
27
log=
x
x
=
1000
lg
x
e=
-3
ln
练习3.求下列各式的值
125
5
log641
2
log343
log
7
1
log
4.0
10
lg1
ln25
.6
log
5
2。
同学们请试着做拓展延伸练习
我们把这个公式叫做对数恒等式。
拓展延伸:
log2(log381)=
1
)
(log
log
2
3
=
x,则x= .
N
N
a
a
log
log=,写成指数式
培养学生举一反
三的能
力,并给出课本中没有
但经常会用到的公式
——对数恒等式
练习4.计算下列各式的值:
巩固对数恒等式
七、教学评价设计
课堂数学学习评价表
内容
情感态度基本知识掌握情况知识运用技能
听课状
况 (10
分)
课堂参
与情况
(10分
课本自学
情况(10
分)
学案完
成情况
(15分)
拓展延
伸完成
(10分)
参与合
作学习
(10分)
课堂板
演情况
(10分)
课外运
用(10
分)
作业完
成情况
(15分)
13
18
13
30
13
20
.
)
(lg
log
log
5
10
27
3
4
2
10
2
3
2
2
1;
)
(
;
)
(
自我评价 小组评价 教师评价
八、板书设计
2.2.1对数与对数运算
对数的概念:若a x =N (a>0且a ≠1),那么x 叫做以a 为底,N 的对数,
记做log a N ,a 叫底数,N 叫真数。
如:
指对互化: a x =N ⇔log a N=x
对数式 幂底数←a →对数底数 指 数←x →对数 幂 ←N →真数
说明:在对数的概念中,要注意底数的限定:a>0且a ≠1 对数的性质:
log a 1= 0 log a a= 1 负数和零没有对数。
对数恒等式:
)0N ,1a 0a (N a
N
log a >≠>=且对数的恒等式,
学 案
一、阅读课本62——63页,并总结你学到的知识: 1、对数的概念:
一般地,若a x =N (a>0且a ≠1),那么x 叫做以a 为底,N 的对数,记做log a N ,a 叫做 ,N 叫做 。
请同学们举两个例子说明: , 2、对数式与指数式的互化:
a x =N ⇔log a N=x 对数式
幂底数←a → 指 数←x → 幂 ←N →
说明:在对数的概念中,要注意底数的限定:a>0且a ≠1 3、对数的性质:
log a 1= log a a= =-)(log 32 =02log
负数和零有无对数? 4、两类特殊的对数
以10为底的对数称为常用对数,即 ,简记为 。
以e (e= )为底的对数称为自然对数,即 ,简记为 。
说明:以后在没有给出底数的情况下,均指常用对数,如1000的对数等于3,指lg1000=3.
二、例题与练习
1、 将下列指数式化为对数式,对数式化为指数式:
(1)1024210
= (2)
32
12
15
=)( (3)57.23=m
(4)41612-=log (4)lg0.1=-1 (5)ln3=n
2、求下列各式中的x : (1)3
2log 64-
=x (2)627log =x (3) x =1000lg (4)x e =-3
ln
3、求下列各式的值:
(1)125log 5 (2)64
12
log (3) 343log 7 (4)1log 4.0
(5)25.6log 52。
(5)10lg (6)1ln
三、拓展延伸:
① =)81(log 2log 3 ② 123=)(log log x ,则x = ③N N a a log log =,写成指数式 4.计算下列各式的值:
四、归纳小结:
指对互化: 对数的性质: 对数恒等式: 五、自我评价
课堂数学学习评价表
内容
情感态度
基本知识掌握情况
知识运用技能
听课状况 (10分) 课堂参与(10分) 课本自学情况(10分) 学案完成(15分) 拓展延伸(10分) 参与合作学习(10分) 课堂板演情况(10分) 课外运用(10分) 作业完成情况15分)
自我评价 小组评价 教师评价
六、布置作业:
作业:课本81页练习3,4. 课本84页习题1,2 选作:练习册
.)(lg log log 510273*********;)(;)(。