多元统计分析及实例讨论
多元统计分析学习心得总结5则范文(二篇)

多元统计分析学习心得总结5则范文多元统计分析是一门数据分析的重要方法,通过对多个变量进行联合分析,可以揭示出变量之间的关系和趋势。
在学习过程中,我深感这门课程的重要性和复杂性。
下面是我对多元统计分析学习的心得总结。
第一则:多元统计分析的基础知识多元统计分析的基础知识包括线性回归分析、相关分析、主成分分析和因子分析等。
这些方法都是在已知的统计学基础上进行推导和发展的,因此理论上是可靠的。
通过学习这些基础知识,我对多元统计分析有了初步的了解,能够理解其背后的原理和应用。
第二则:多元统计分析的应用领域多元统计分析广泛应用于各个领域,如经济学、社会学、心理学等。
在实际应用中,多元统计分析可以帮助我们寻找变量之间的关系,预测未来的趋势和结果。
例如,在经济学中,多元统计分析可以帮助我们分析经济数据,预测未来的经济发展趋势;在社会学中,多元统计分析可以帮助我们分析社会调查数据,了解人们的行为和态度。
第三则:多元统计分析的数据处理多元统计分析需要处理大量的数据,因此数据处理是十分重要的一个环节。
在数据处理过程中,我们需要进行数据清洗、数据转换和数据归一化等操作,以保证数据的质量和准确性。
同时,我们还需要进行变量选择和模型建立,以选择最合适的变量和模型来进行分析。
第四则:多元统计分析的模型解读在多元统计分析中,我们通常使用的是线性模型和非线性模型。
这些模型可以帮助我们理解变量之间的关系和趋势。
在进行模型解读时,我们需要分析模型的系数和显著性检验,以确定变量之间的影响力和有效性。
通过模型解读,我们可以得出结论和推断,并作出相应的决策。
第五则:多元统计分析的局限和不确定性多元统计分析虽然是一种强大的工具,但也存在一些局限性和不确定性。
首先,多元统计分析的结果受到样本选择和样本数量的影响,因此结果可能存在一定的误差。
其次,多元统计分析只能从观测数据中找出变量之间的关系,但不能证明因果关系。
最后,多元统计分析只能提供定量分析的结果,而不能考虑到定性因素的影响。
完整版本多元统计分析实例汇总

多元统计剖析实例院系 : 商学院学号 :姓名 :多元统计剖析实例本文采集了 2012 年 31 个省市自治区的农林牧渔和有关农业数据 , 经过对对采集的数据进行比较剖析对 31 个省市自治区进行分类 . 选用了 6个指标农业产值 , 林业产值 . 牧业总产值 , 渔业总产值 , 乡村居民家庭拥有生产性固定财产原值 , 乡村居民家庭经营耕地面积 .数据以下表 :一. 聚类法设定 4 个群聚 , 采纳了系统聚类法 . 下表为 spss 剖析以后的结果 .聚类表群集组合初次出现阶群集阶群集 1 群集 2 系数群集 1 群集 2 下一阶1 5 7 226.381 0 0 132 2 9 1715.218 0 0 53 22 24 1974.098 0 0 74 1 29 5392.690 0 0 65 2 30 6079.755 2 0 66 1 2 11120.902 4 5 87 4 22 21528.719 0 3 118 1 26 23185.444 6 0 149 12 20 26914.251 0 0 1910 27 31 35203.443 0 0 2011 4 28 50321.121 7 0 2212 11 13 65624.068 0 0 2413 5 25 114687.756 1 0 1714 1 21 169600.075 8 0 2215 8 18 188500.814 0 0 2116 17 19 204825.463 0 0 2117 5 14 268125.103 13 0 2018 3 23 387465.457 0 0 2619 6 12 425667.984 0 9 2320 5 27 459235.019 17 10 2321 8 17 499195.430 15 16 2522 1 4 559258.810 14 11 2823 5 6 708176.881 20 19 2424 5 11 854998.386 23 12 2825 8 10 1042394.608 21 0 2626 3 8 1222229.597 18 25 2927 15 16 1396048.280 0 0 2928 1 5 1915098.014 22 24 3029 3 15 3086204.552 26 27 3030 1 3 6791755.637 28 29 0Rescaled Distance Cluster CombineCASE 0 5 1015 20 25 Label Num +--------- +--------- +--------- +--------- +---------+内蒙 5 -+吉林7 -+云南25 -+-+江西14 -+ +-+陕西27 -+-+ |新疆31 -+ +-+安徽12 -+-+ | |广西20 -+ +-+ +------- +辽宁 6 ---+ | |浙江11 -+----- + |福建13 -+ |重庆22 -+ +--------------------------------- +贵州24 -+ | |山西 4 -+--- + | |甘肃28 -+ | | |北京 1 -+ | | |青海29 -+ +--------- + |天津 2 -+ | |上海9 -+ | |宁夏30 -+--- + |西藏26 -+ |海南21 -+ |河北 3 ---+----- + |四川23 ---+ | |黑龙江8 -+-+ +------------- + |湖南18 -+ +--- + | | |湖北17 -+-+ +-+ +------------------------- + 广东19 -+ | |江苏10 ------- + |山东15 ----------- +----------- +河南16 ----------- +群集成员事例 4 群集1: 北京 12: 天津 13: 河北 14: 山西 15: 内蒙 26: 辽宁 17: 吉林 28: 黑龙江 29: 上海 110: 江苏 111: 浙江 112: 安徽 113: 福建 114: 江西 115: 山东 316: 河南 117: 湖北 118: 湖南 119: 广东 120: 广西 121: 海南 122: 重庆 123: 四川 124: 贵州 125: 云南 126: 西藏 427: 陕西 128: 甘肃 129: 青海 130: 宁夏 131: 新疆 2从 SPSS剖析结果能够获得 , 内蒙 , 吉林 , 黑龙江 , 新疆为第 2族群 , 这一族群的特色是农业收入可能不高 , 可是农民的固定财产 , 和耕地面积特别高 , 农民的充裕程度或许机械化程度较高; 山东是第 3族群 , 这一族群中六个指标都处于较高水平,农林牧渔四项收入都处于较高水平并且农民充裕; 西藏处于第 4族群 , 这是因为 , 西藏人员较少 , 自然条件恶劣 , 可使用耕地少 , 可是 , 因为国家的扶助 , 农民的固定 财产许多 , 农民相对而言比较富裕 ; 大部分省份属于第 1族群 , 这一族群的特色在 于六项指标都没有较为突出的一项, 或许农林牧渔收入的原来就少, 或许是农民 的固然比较辛苦 , 整体的农业收入较高 , 可是农民的收入水平比较低, 固定财产较 少 .三. 鉴别法X 1,X 2,X 3,X 4,X 5,X 6分别代表农业产值 , 林业产值 . 牧业总产值 , 渔业总产值 , 乡村居民家庭拥有生产性固定财产原值, 乡村居民家庭经营耕地面积 .剖析事例办理纲要未加权事例N百分比有效31 100.0清除的缺失或越界组代码 0 .0 起码一个缺失鉴别变量 0 .0 缺失或越界组代码还有起码一 0.0个缺失鉴别变量共计 0 .0 共计31 100.0实验结果剖析 :组统计量有效的 N (列表状态)Average Linkage (Between Groups) 均值 标准差 未加权的已加权的1农业总产值 1463.8900 1062.0348625 25.000 林业总产值 118.5768 87.02052 25 25.000 牧业总产值 830.3664 671.10440 25 25.000渔业总产值291.4128346.719022525.000乡村居民家庭拥有生产性固定14432.3400 5287.92950 25 25.000 财产原值乡村居民家庭经营耕地面积 1.5496 .88484 25 25.000 2 农业总产值1582.2975 543.92851 4 4.000林业总产值93.3500 37.71131 4 4.000 牧业总产值1021.3175 372.88255 4 4.000 渔业总产值38.3500 27.49067 4 4.000 乡村居民家庭拥有生产性固定30226.4175 4233.77839 4 4.000 财产原值乡村居民家庭经营耕地面积9.4975 3.30626 4 4.000 3 农业总产值3960.6200 . a 1 1.000林业总产值107.0100a1 1.000 .牧业总产值2285.9200 . a 1 1.000 渔业总产值1267.0700 . a 1 1.000 乡村居民家庭拥有生产性固定19168.1400 . a 1 1.000 财产原值乡村居民家庭经营耕地面积 1.6400 . a 1 1.000 4 农业总产值53.3900 . a 1 1.000林业总产值 2.5600 . a 1 1.000牧业总产值59.0200a1 1.000 .渔业总产值.2200 . a 1 1.000乡村居民家庭拥有生产性固定52935.0700 . a 1 1.000财产原值乡村居民家庭经营耕地面积 1.8900 . a 1 1.000 从表上能够看出 , 组均值之间差值很大 . 各个分组 , 在 6 项指标上均值有较明显的差别 .组均值的均等性的查验Wilks 的 Lambda F df1 df2 Sig.农业总产值.773 2.640 3 27 .070林业总产值.928 .699 3 27 .561牧业总产值.801 2.238 3 27 .107渔业总产值.691 4.019 3 27 .017乡村居民家庭拥有生产性固定.253 26.538 3 27 .000财产原值组均值的均等性的查验Wilks 的 Lambda F df1 df2 Sig.农业总产值.773 2.640 3 27 .070林业总产值.928 .699 3 27 .561牧业总产值.801 2.238 3 27 .107渔业总产值.691 4.019 3 27 .017乡村居民家庭拥有生产性固定.253 26.538 3 27 .000财产原值乡村居民家庭经营耕地面积.190 38.263 3 27 .000 由表中能够知道 ,13456 指标之间的 sig 值较小 ,2 指标 sig 值有 0.561 较大 ,可是仍说明接受原假定 , 各指标族群间差别较大 .汇聚的组内矩阵农业总产值林业总产值牧业总产值渔业总产值有关性农业总产值 1.000 .449 .895 .400 林业总产值.449 1.000 .489 .481牧业总产值.895 .489 1.000 .294渔业总产值.400 .481 .294 1.000乡村居民家庭拥有生产性固定-.093 -.262 -.052 -.040财产原值乡村居民家庭经营耕地面积.056 -.033 .181 -.104汇聚的组内矩阵乡村居民家庭拥有生产性固定资乡村居民家庭经产原值营耕地面积有关性农业总产值-.093 .056林业总产值-.262 -.033牧业总产值-.052 .181渔业总产值-.040 -.104乡村居民家庭拥有生产性固定 1.000 .326财产原值乡村居民家庭经营耕地面积.326 1.000从表中能够知道 , 查验结果 p 值>0.05, 此时 , 说明协方差矩阵相等,能够进行 bayes 查验 .Fisher剖析法协方差矩阵的均等性的箱式查验对数队列式AverageLinkage(BetweenGroups) 秩对数队列式1 6 61.1252 . a . b3 . c . b4 . c . b汇聚的组内 6 62.351打印的队列式的秩和自然对数是组协方差矩阵的秩和自然对数。
多元统计数据分析报告(3篇)

第1篇一、引言随着大数据时代的到来,数据量急剧增加,传统的统计分析方法已无法满足复杂数据关系的挖掘需求。
多元统计分析作为一种处理多个变量之间关系的方法,在社会科学、自然科学、工程技术等领域得到了广泛应用。
本报告旨在通过对某研究项目的多元统计分析,揭示变量之间的关系,为决策提供科学依据。
二、研究背景与目的本研究以某企业员工绩效评估数据为研究对象,旨在通过多元统计分析方法,探究员工绩效与个人特质、工作环境等因素之间的关系,为企业人力资源管理部门提供决策支持。
三、数据与方法1. 数据来源本研究数据来源于某企业员工绩效评估系统,包括员工的基本信息、个人特质、工作环境、绩效评分等。
2. 研究方法本研究采用以下多元统计分析方法:(1)描述性统计分析:对员工绩效、个人特质、工作环境等变量进行描述性统计分析,了解数据的分布情况。
(2)相关分析:分析变量之间的线性关系,找出相关系数较大的变量对。
(3)因子分析:将多个变量归纳为少数几个因子,揭示变量之间的内在关系。
(4)聚类分析:将员工根据绩效、个人特质、工作环境等因素进行分类,分析不同类别员工的特点。
(5)回归分析:建立员工绩效与个人特质、工作环境等因素之间的回归模型,分析各因素对绩效的影响程度。
四、数据分析结果1. 描述性统计分析通过对员工绩效、个人特质、工作环境等变量的描述性统计分析,得出以下结论:(1)员工绩效评分呈正态分布,平均绩效评分为75分。
(2)个人特质得分集中在中等水平,其中创新能力得分最高,稳定性得分最低。
(3)工作环境得分普遍较高,其中工作压力得分最低。
2. 相关分析通过对员工绩效、个人特质、工作环境等变量进行相关分析,得出以下结论:(1)绩效与创新能力、稳定性、工作环境等因素呈正相关。
(2)创新能力与稳定性呈负相关。
3. 因子分析通过对员工绩效、个人特质、工作环境等变量进行因子分析,得出以下结论:(1)提取了3个因子,分别对应创新能力、稳定性、工作环境。
数据分析中的多元统计方法与实践案例

数据分析中的多元统计方法与实践案例随着信息时代的到来,数据分析已成为各行各业的重要工具。
在大数据时代,如何从海量的数据中提取有用的信息,成为了数据分析师面临的重要问题。
多元统计方法作为一种有效的数据分析工具,被广泛应用于市场调研、社会科学、医学研究等领域。
本文将介绍多元统计方法的基本概念,并结合实际案例,探讨其在数据分析中的应用。
多元统计方法是一种综合性的统计分析方法,它可以同时考虑多个变量之间的关系,帮助我们理解数据背后的规律。
常见的多元统计方法包括主成分分析、因子分析、聚类分析、判别分析等。
这些方法都是基于数学模型和统计理论的,通过对数据进行降维、分类、聚类等操作,从而揭示数据背后的本质。
首先,让我们来介绍主成分分析(PCA)这一常用的多元统计方法。
主成分分析是一种将多个相关变量转化为少数几个无关变量的方法。
通过PCA,我们可以找到一组新的变量,它们是原始变量的线性组合,且彼此之间不相关。
这样做的好处是可以减少变量之间的冗余信息,提取出数据中的主要成分。
以市场调研为例,我们可以将多个相关的消费行为变量转化为几个无关的因子,从而更好地理解不同消费者群体的特点。
接下来,让我们来看看因子分析(FA)这一多元统计方法。
因子分析是一种通过降维的方式,将多个相关变量转化为几个潜在因子的方法。
与PCA不同的是,因子分析更加关注变量之间的共同因素,而不是总体变差的解释。
通过因子分析,我们可以揭示数据背后的潜在结构,发现变量之间的内在联系。
例如,在心理学研究中,我们可以通过因子分析找到一些隐含的心理因素,如情绪、认知等,从而更好地理解人类的心理过程。
聚类分析是另一种常见的多元统计方法,它通过将相似的个体或变量分组,来研究数据中的群体结构。
聚类分析可以帮助我们发现数据中的模式和规律,从而更好地理解数据的本质。
例如,在市场分析中,我们可以通过聚类分析将消费者分为不同的群体,从而更好地制定营销策略。
聚类分析还可以应用于社会网络分析、医学研究等领域,帮助我们发现人际关系、疾病分类等问题。
多元统计分析方法的介绍与应用场景

多元统计分析方法的介绍与应用场景多元统计分析是指同时考察两个或两个以上变量之间关系的一种统计方法。
它可以帮助我们理解不同变量之间的关系,并从中获得有意义的结论。
在实际应用中,多元统计分析方法被广泛用于数据分析、预测、模型建立等领域。
本文将介绍几种常见的多元统计分析方法,并探讨它们的应用场景。
一、主成分分析主成分分析(PCA)是一种常见的降维技术,它通过线性变换将高维数据转化为低维表示,同时保留原始数据的关键信息。
主成分分析可以剔除数据中的冗余信息,减少数据维度,从而提高模型的拟合效果。
主成分分析的应用场景非常广泛,比如金融领域的投资组合优化、图像处理中的人脸识别等。
二、聚类分析聚类分析是一种将相似对象归类到同一个簇的方法。
它通过计算样本之间的相似性来确定彼此之间的关系。
聚类分析可以帮助我们理解数据中的内在结构,并发现其中的模式和规律。
聚类分析的应用场景包括市场细分、社交网络分析等。
三、判别分析判别分析是一种有监督学习方法,其目标是找到能够将不同类别样本尽可能分开的投影方向。
判别分析可以帮助我们研究不同类别之间的差异,识别出重要的特征变量,并用于分类和预测。
判别分析的应用场景包括医学诊断、客户流失预测等。
四、回归分析回归分析是一种研究自变量和因变量之间关系的统计方法。
通过建立数学模型,回归分析可以预测因变量的取值,并评估自变量对因变量的影响程度。
回归分析的应用场景非常广泛,比如经济学中的经济增长预测、市场调研中的销量预测等。
五、因子分析因子分析是一种探索性的数据降维方法,它可以帮助我们识别出隐藏在观测变量背后的潜在因子。
通过因子分析,我们可以压缩数据维度,提高模型拟合效果,并从中提取出对原始数据解释最好的因子。
因子分析的应用场景包括心理学中的人格分析、市场调研中的消费者偏好分析等。
综上所述,多元统计分析方法在实际应用中发挥着重要的作用。
通过合理地选择和应用这些方法,我们可以从数据中提取有意义的信息,解决实际问题,并做出科学的决策。
多元统计分析案例分析

多元统计分析案例分析多元统计分析是指采用多个统计方法和技术对数据进行综合分析的一种分析方法。
它可以帮助研究者揭示出多个变量之间的复杂关系,并进一步分析它们的影响和作用。
下面以一份市场调研报告为例,介绍如何运用多元统计分析进行案例分析。
案例背景:饮料公司在上海市开展了一项市场调研,调查了300名消费者对其产品的购买行为和偏好。
调研对象包括消费者的年龄、性别、收入水平、产品购买频率、产品品牌偏好等变量。
1.数据准备:将调研数据录入电脑,确保数据的准确性和完整性。
对于缺失值进行处理,可以采用删除、插补等方法。
2.描述性统计分析:首先对数据进行描述性统计分析,包括计算平均值、标准差、频数等。
了解数据的分布情况和基本统计信息,例如了解不同性别的样本比例,不同年龄段的购买频率等。
3.相关性分析:通过相关系数分析来研究各个变量之间的关系,包括变量间的线性相关性和非线性相关性。
可以计算皮尔逊相关系数或斯皮尔曼相关系数来评估变量之间的关联程度。
4.回归分析:通过回归分析可以研究一个或多个自变量对因变量的影响程度。
可以先进行单变量回归分析,确定哪些自变量对因变量有显著影响。
然后进行多元回归分析,建立一个多元回归模型,研究多个自变量对因变量的综合影响。
5.研究假设检验:通过假设检验来验证研究假设的可靠性。
例如,可以进行t检验或方差分析来判断一些自变量对因变量的影响是否显著。
6.因素分析:可以利用因素分析来研究多个自变量之间的共同特征。
通过提取主成分或因子,将原始变量转化为更少的几个综合变量,以便对数据进行更简洁的分析和解释。
7.聚类分析:通过聚类分析可以将样本划分为不同的类别或群体,以研究不同自变量组合的消费者群体特征和购买行为。
8.判别分析:通过判别分析可以建立分类模型,将样本分为多个已知类别,以研究哪些自变量最能有效地区分不同群体。
9.结果解释和报告撰写:将多元统计分析的结果进行解释和总结,并撰写报告。
报告中应包括对分析方法的描述、数据的描述和分析结果的解释。
多元统计分析笔记附实例

多元统计分析笔记附实例1.主成分分析,因⼦分析,对应分析可以⽤来简化数据结构⼜不会损失太多信息2.聚类分析和判别分析是对所考察的变量按相似程度进⾏分类。
3.回归分析⽤来判断⼀些变量的变化是不是依赖于另外⼀些变量的变化,如果是,建⽴变量之间的定量关系式,并⽤于预测4.典型相关分析⽤来分析两组变量之间的相互关系5.多元数据的统计推断参数估计假设检验6.参数估计:⽤样本值估计总体X中的某些参数。
点估计:区间估计:7.数学期望的置信区间分为⽅差已知和⽅差未知置信区间:估计参数的取值范围8.假设检验:对总体的分布律或分布参数作某种假设,根据抽样得到的值,俩判断假设是否成⽴。
9.假设检验分为参数检验和⾮参数检验。
参数检验是在总体分布类型已经知道情况下进⾏的,其⽬的是对总体的参数及其有关性质做出明确判断。
⾮参数检验这是总体分布类型未知的情况下进⾏的检验10.相关系数是⽤来描述两个变量间的线性相关程度的。
简单线性相关系数:Pearson11.标准化:(1)min-max标准化对原始数据进⾏线性变换适⽤于最⼤值和最⼩值已知⽬的是把所有制映射到[0,1] 区间。
(2)Z-zcore 标准化适⽤于最⼤值和最⼩值未知,或者超出取值范围的离群数据的值。
12. 聚类分析:分析-----分类—系统聚类---检验聚类分析显著性:/doc/f89672b26294dd88d0d26b9a.html/article/e8cdb32b7a2daf37052bade5.html⽤SPSS做相关分析的应⽤⽰例【例】表1是某市从1978年⾄1992年社会商品零售总额、居民收⼊和全市总⼈⼝统计数字表,试分析它们之间是否存在线性关系。
表1某市统计表第⼀步:建⽴数据⽂件。
定义变量:序号为Number,假设年份⽤y表⽰,零售总额⽤r表⽰,居民收⼊⽤i表⽰,全市总⼈⼝⽤p表⽰,输⼊数据,如下截图⽰:第⼆步:进⾏数据分析。
在数据⽂件管理窗⼝中,点击Analyze,展开下拉菜单,再点击Correlate中的Bivariate项,进⼊Bivariate Correlations对话框,请童鞋们看下图:(1)在左边的这个东东为源变量列框,右边的Variables框为待分析的变量列框,就是这个东东:(2)再看下边的Correlation Coefficients选项,也就是分析⽅法选择项,就是这个东东。
多元统计分析数据

多元统计分析数据一、聚类分析例1、为深入了解我国人口的文化程度状况,现利用1990年全国人口普查数据对全国30个省市自治区进行聚类分析。
分析选用了三个指标:(1)大学以上文化程度的人口占全部人口的比例(DXBZ);(2)初中文化程度的人口占全部人口的比例(CZBZ);(3)文盲半文盲人口占全部人口的比例(WMBZ),分别用来反映例2、根据信息基础设施的发展状况,对世界20个国家和地区进行分类。
这里选取了发达国家、新兴工业化国家、拉美国家、亚洲发展中国家、转型国家等不同类型的20个国家作聚类分析。
描述信息基础设施的变量主要的有六个:call——千人拥有电话号码,movecall——每千户居民蜂窝移动电话,fee——高峰时期每三分钟国际电话成本,computer——每千人拥有的计算机数,mips——每千例3、为了研究1982年全国各地区农民家庭收支的分布规律,根据抽样调查资料进行分类处理,共抽取28个省、市、自治区的样本,每个样本有六个指标,这六个指标反映了平均每人生活消费的支出情况,其原始数据见表3。
例4为了研究世界各国森林、草原资源的分布规律,共抽取了21个国家的数据,每个国家4项指标,原始例5 若要从沪市的蒲发银行、齐鲁石化、东北高速、武钢股份、东风汽车等53家上市公司中优选适合开放式基金组合投资的10只股票,我们以总股本和流通股本为分类标志,根据这53家公司的总股本和A股流通股本数据(见表5.3),用聚类分析法将它们分成若干类,再从各类公司中选出比较活跃的股票建立股票池。
例6沪市上市公司2001年末总股本在10000—12000万股、流通股本在3600—5050万股之间共有23家(对于股本结构在其它范围内的上市公司,用雷同的方法,可以建立相应的每股收益预测模型),各公司2000年及2001年有关的财务数据见表。
二、判别分析例1、人文发展指数是联合国开发计划署于1990年5月发表的第一份《人类发展报告》中公布的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安 装 R
进入网页/
点击CRAN得到一批镜像网站
点击CHINA中第一项 点击Download R for windows 点击install.... 点击download R 3.0.1 for windows
R语言》一元回归 exam1:
测得12名女中学生体检数据
程序如下:
exam2:
>x1=c(35,40,40,42,37,45,43, 37,44,42,41,39); x1 >mean(x1) >sd(x1) >x2=c(60,74,64,71,72,68,78, 66,70,65,73,75) >plot(x1,x2) #画出散点图 >hist(x1) #画出x1的直方图
举个“栗子”
例1、对10位应聘者做智能检验。指标X,Y和Z分 别表示数学推理能力,空间想象能力和语言理 解能力。
例2、家庭特征(年龄、收入、受教育程度)与 家庭消费(外食、电影娱乐)之间的关系 例3、奥运会十项全能运动项目得分数据的因子 分析
例1:对10位应聘者做智能检验。X,Y和Z分别表示数 学推理能力,空间想象能力和语言理解能力。其得分如 下,选择合适的统计方法对应聘者进行分类。
1 0.24 1 0.34 0.24 1 0.02 0.17 0.02 1
变量 百米跑X 1
F1
0.844
*
F2
0.136 0.194 0.825 * 0.15 0.075 0.153 0.814 * 0.176 0.735 -0.041
程序如下: #在体检数据.xls中选中数据并复制
简单的回归分析
>y=read.table("clipboard ", header=TRUE);y >lm=lm(weight~height,da ta=y) >summary(lm)
《MATLAB》聚类分析
>>x=[9.3 30.55 8.7
4.67 29.38 8.92 ...... 1.85 20.66 12.75] >> Y=pdist(X,’Euclid’)
典型相关分析基本思想简介
例3 奥运会十项全能运动项目
百米跑成绩 跳远成绩 铅球成绩 X 3 跳高成绩 X 4 400米跑成绩 百米跨栏 铁饼成绩 X 7 撑杆跳远成绩 标枪成绩 X 9 1500米跑成绩
X2
X5 X6
X8
X 10
1 0.59 0.35 0.34 0.63 0.40 0.28 0.20 0.11 0.07
U1 U2
X1就餐频率 X2看电影频率 Y1户主年龄 Y2家庭收入
0.9866 0.8872 V1 0.4211 0.9822
-0.1632
0.4614 V2 0.8464 -0.1101
Y3受教育程度
0.5145
0.3013
分析 两个反映消费的指标与第一对典型变量中 u1的相关系数分别为0.9866和0.8872,可以看 出u1可以作为消费特性的指标,第一对典型变 量中v1与Y2之间的相关系数为0.9822,可见典 型变量v1主要代表了了家庭收入, u1和 v1的 相关系数为0.6879,这就说明家庭的消费与一 个家庭的收入之间其关系是很密切的;
分 析
1. X1:百米跑,X2:跳远和X5:400米跑,需要爆发力的 项目在F1有较大的载荷, 称为短跑速度因子; 2. X3:铅球,X7:铁饼和X9:标枪,在F2上有较大的载荷, 称为爆发性臂力因子;
3. X6: 百米跨栏, X8: 撑杆跳远, X2 :跳远和 X4 :跳高在
F3上有较大的载荷,爆发腿力因子; 4. F4:长跑耐力因子。
应聘者 1 2 3 4 5 6 7 8 9 10
X
Y Z
28 18 11 21 26 20 16 14 24 22
29 23 22 23 29 23 22 23 29 27 28 18 16 22 26 22 22 24 24 24
例1(EXCEL)----样品
35 30 25 20 15 10 5 0 1 2 3
X2 铅球 X 3 跳高 X 4 400 米 X 5 百米栏 X 6 铁饼 X 7 撑杆跳X 8 标枪 X 9 X 10 1500 米
跳远
0.631* 0.243 0.239 0.797* 0.404 0.186 -0.036 -0.048 0.045
0.635 * 0.147 0.762 * 0.11 0.112
多元统计方法及实例讨论
2017年春·董志清
本次课时提纲 • 走近多元统计分析 • 相关统计软件简介 • 2012年全国大学生数模竞赛A题分析 • 经验总结
参考书目
• [1]《金融大数据统计方法与实证》 杨虎 杨玥含 科学出版社 2016.4. • [2]《复杂数据统计方法——基于R的应用》(第二版) 吴喜之 中国人民大学出版社 2013.9. • [3]《多元统计分析》(第二版) 任雪松于秀林中国统计出版社 2013.3. • [4]《多元统计分析及R语言建模》 王斌会 暨南大学出版社 2011.9. • [5]《多元统计分析——基于R》 费宇 中国人民大学出版社 2014.10.
附件1:葡萄酒品尝评分表(含4个表格)
附件2:葡萄和葡萄酒的理化指标(含2个 表格) 附件3:葡萄和葡萄酒的芳香物质(含4个 表格)
一次参赛 终生受益
>> S=squareform(Y)
# 输入数据X(30*3)矩阵#
#计算观察值两两之间的距离#
# 将pdist的输出转换为方阵(可略)#
>> Z = linkage(Y,’ single’)
>> H=dendrogram (Z)
#生成聚类树#
#画聚类树图#
葡萄酒评价及相关统计问题 ——2012全国大学生数学建模竞赛A题 A题 葡萄酒的评价
*
F3
0.156 0.515 * 0.223 0.750 0.102
*
F4
-0.113 -0.006 -0.148 0.076 0.468 -0.17 -0.079 0.217 0.141 0.934
*ቤተ መጻሕፍቲ ባይዱ
共同度 0.84 0.7 0.81 0.65 0.87 0.62 0.72 0.66 0.57 0.89
1 0.42 0.51 0.49 0.52 0.31 0.36 0.21 1 0.38 0.19 0.36 0.73 0.24 0.44 1 0.29 1 1 0.46 0.34
0.27 0.17 0.32 0.39 0.23 0.33 0.17 0.13 0.18
0.09 0.08 0.18 0.39 0.01
系列1 系列2 系列3 系列4 系列5 系列6 系列7 系列8 系列9 系列10
例1(EXCEL)----变量
35 30 25 20 15 10 5 0 1 2 3 4 5 6 7 8 9 10 系列1 系列2 系列3
我们直观地来看,这个分类是否合理? 计算4号和6号得分的离差平方和: (21-20)2+(23-23)2+(22-22)2=1 计算1号和2号得分的离差平方和: (28-18)2+(29-23)2+(28-18)2=236 计算1号和3号得分的离差平方和为482,由此可 见一般,分类可能是合理的,欧氏距离很大的应聘 者没有被聚在一起 聚类分析基本思想简介
例2:家庭特征与家庭消费之间的关系
为了了解家庭的特征与其消费模式之间的关 系。调查了70个家庭的下面两组变量:
x1:每年去餐馆就餐的频率 x2:每年外出看电影频率
y1:户主的年龄 y2:家庭的年收入 y :户主受教育程度 3
分析两组变量之间的关系。
典型变量的结构(相关系数)
分析
第二对典型变量中u2与x2的相关系数为
0.4614,可以看出u2可以作为文化消费特性的指
标,第二对典型变量中v2与Y1和Y3之间的分别相
关系数为0.8464和0.3013,可见典型变量v2主要 代表了家庭成员的年龄特征和教育程度, u2和 v2的相关系数为0.1869,说明文化消费与年龄和 受教育程度之间的有关。
因子分析基本思想简介
多元统计分析
多元统计分析是以p个变量的n次观测数
所组成的数据为依据。
简化数据结构(降维)
分类与判别(归类) 分析变量间的相互联系 多元数据的统计推断
统计软件简介
• 不管选用什么语言,首先应该学会怎么将数 据从Excell或其它数据管理软件中调用出来 • 流行的统计软件: R语言、SAS、SPSS、EXCEL MATLAB统计软件包等; • 基本步骤: 数据的组织(数据库结构的建立) 数据的录入 统计分析 结果输出