高中数学人教B版选修2-2模块综合检测2 含解析

合集下载

人教版高中数学选修2-2试题四套(带答案)(整理)

人教版高中数学选修2-2试题四套(带答案)(整理)

2高中数学选修《2-2》复习试题一、选择题(共8题,每题5分)1.复数(2)z i i =+在复平面内的对应点在( )A .第一象限B .第二象限C .第三象限D .第四象限2. 一质点做直线运动,由始点经过s t 后的距离为3216323s t t t =-+,则速度为0的时刻是( )A .4s t= B .8s t = C .4s t =与8s t = D .0s t =与4s t =3。

某射击选手每次射击击中目标的概率是0.8,如果他连续射击5次,则这名射手恰有4次击中目标的概率是( )(A )40.80.2⨯ (B)445C 0.8⨯ (C )445C 0.80.2⨯⨯ (D )45C 0.80.2⨯⨯ 4.已知14a b c =+==则a,b ,c 的大小关系为( ) A .a>b>cB .c>a 〉bC .c 〉b 〉aD .b>c 〉a5.曲线32y x =-+上的任意一点P 处切线的斜率的取值范围是( ) A.)+∞B. )+∞C. ()+∞ D 。

[)+∞ 6。

有一段“三段论”推理是这样的:对于可导函数()f x ,如果0()0f x '=,那么0x x =是函数()f x 的极值点,因为函数3()f x x =在0x =处的导数值(0)0f '=,所以,0x =是函数3()f x x =的极值点. 以上推理中( )A .大前提错误B . 小前提错误C .推理形式错误D .结论正确7。

.在复平面内, 复数1 + i 与31+i 分别对应向量OA 和OB , 其中O 为坐标原点,=( ) A 。

2 B 。

2 C 。

10 D. 48、函数2()1x f x x =-( )A .在(0,2)上单调递减B .在(,0)-∞和(2,)+∞上单调递增C .在(0,2)上单调递增D .在(,0)-∞和(2,)+∞上单调递减二、填空题(共6题,30分) 9. .观察下列式子 2222221311511171,1,1222332344+<++<+++< , … … , 则可归纳出________________________________10. 复数11z i =-的共轭复数是________。

人教课标版(B版)高中数学选修2-2第一章 导数及其应用导数

人教课标版(B版)高中数学选修2-2第一章 导数及其应用导数
-x 则 g′(x)=(2x-1)e-x-(x2-x+1)e-x=-(x2-3x+2)e =-(x-1)(x-2)e-x.
感悟高考
由 g′(x)=0,得 x1=1,x2=2. 所以当 x∈(-∞, 1)时, g′(x)<0, g(x)在(-∞, 1)上为减函数;
当 x∈(1,2)时,g′(x)>0,g(x)在(1,2)上为增函数; 当 x∈(2,+∞)时,g′(x)<0,g(x)在(2,+∞)上为减函数; 1 所以,当 x=1 时,g(x)取得极小值 g(1)= ,当 x=2 时函数取 e 3 得极大值 g(2)= 2. e 函数 y=k 与 y=g(x)的图象的大致形状如上, 1 3 由图象可知,当 k= 和 k= 2时,关于 x 的方程 f(x)=kex 恰有两 e e 个不同的实根.
1 1 ①当 x∈-2,0时,h′(x)>0,∴h(x)在-2,0上单调递增.
②当 x∈(0,+∞)时,h′(x)<0,∴h(x)在(0,+∞)上单调递减.
1 1 1-2ln 2 ∴当 x∈-2,0时,h(x)>h-2= . 4
g(3)<0, 即a+4-2ln 2<0, 解得 2ln 3-5≤a<2ln 2-4. g(4)≥0, a+5-2ln 3≥0,
综上所述,a 的取值范围是[2ln 3-5,2ln 2-4). 2 方法二 ∵f(x)=2ln(x-1)-(x-1) ,
∴f(x)+x2-3x-a=0 x+a+1-2ln(x-1)=0, 即 a=2ln(x-1)-x-1, 令 h(x)=2ln(x-1)-x-1, 3-x 2 ∵h′(x)= -1= ,且 x>1, x-1 x-1 由 h′(x)>0,得 1<x<3;由 h′(x)<0,得 x>3. ∴h(x)在区间[2,3]上单调递增,在区间[3,4]上单调递减.

高中数学选修2-2(人教B版)第一章导数及其应用1.2知识点总结含同步练习题及答案

高中数学选修2-2(人教B版)第一章导数及其应用1.2知识点总结含同步练习题及答案
求下列函数的导数: (1)y = e3x+2 ;(2)ln(2x − 1).

解:(1)y ′ = (e3x+2 ) = e3x+2 ⋅ (3x + 2)′ = 3e3x+2 ; (2)y ′ = (ln(2x − 1))′ =
1 2 . ⋅ (2x − 1)′ = 2x − 1 2x − 1
2.利用导数求函数的切线方程 描述: 利用导数求函数的切线方程 步骤一:求出函数 y = f (x) 在点 x0 处的导数 f ′ (x0 ) ; 步骤二:根据直线方程的点斜式,得到切线方程为 y − f (x0 ) = f ′ (x0 )(x − x0 ). 例题: 求曲线 y = ex + 1 在 (0, 2) 处的切线方程. 解:因为 y = ex + 1,所以 y ′ = ex ,故曲线 y = ex + 1在 (0, 2)处的切线斜率为
解:(1)因为 y =
所以在点 P 处的切线的斜率等于 4 .所以在点 P 处的切线方程是
y−

8 = 4(x − 2), 3
12x − 3y − 16 = 0.
(2)设切点为 (x 0 , y 0 ),则由(1)知切线的斜率 k = x2 ,切线方程为 y − y 0 = x2 (x − x 0 ) . 0 0 又切线过点 P (2,
8 1 ) 且 (x0 , y 0 ) 在曲线 y = x3 上,所以 3 3 ⎧ ⎪ 8 − y = x2 (2 − x0 ), 0 0 ⎨3 1 ⎪ ⎩ y = x3 , ⎪ 0 3 0 − 3x2 + 4 = 0, x3 0 0
整理得

(x0 − 2)2 (x0 + 1) = 0.

2013版高二数学(人教B版)选修2-2同步练习2-1-1 Word版含答案

2013版高二数学(人教B版)选修2-2同步练习2-1-1 Word版含答案

选修2-2 2.1.1一、选择题1.已知数列{a n}中,a1=1,当n≥2时,a n=2a n-1+1,依次计算a2,a3,a4后,猜想a n的一个表达式是()A.n2-1 B.(n-1)2+1C.2n-1 D.2n-1+1[答案] C[解析]a2=2a1+1=2×1+1=3,a3=2a2+1=2×3+1=7,a4=2a3+1=2×7+1=15,利用归纳推理,猜想a n=2n-1,故选C.2.(2010·山东卷文,10)观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=() A.f(x) B.-f(x)C.g(x) D.-g(x)[答案] D[解析]本题考查了推理证明及函数的奇偶性内容,由例子可看出偶函数求导后都变成了奇函数,∴g(-x)=-g(x),选D,体现了对学生观察能力,概括归纳推理能力的考查.3.我们把4,9,16,25,…这些数称做正方形数,这是因为这些数目的点子可以排成一个正方形(如下图),则第n-1个正方形数是()A.n(n-1)B.n(n+1)C.n2D.(n+1)2[答案] C[解析]第n-1个正方形数的数目点子可排成n行n列,即每边n个点子的正方形,∴点数为n2.故选C.4.根据给出的数塔猜测123456×9+7等于()1+9×2=1112×9+3=111123×9+4=11111234×9+5=1111112345×9+6=111111…A .1111110B .1111111C .1111112D .1111113 [答案] B5.类比三角形中的性质:(1)两边之和大于第三边;(2)中位线长等于底边的一半;(3)三内角平分线交于一点.可得四面体的对应性质:(1)任意三个面的面积之和大于第四个面的面积;(2)过四面体的交于同一顶点的三条棱的中点的平面面积等于第四个面面积的14; (3)四面体的六个二面角的平分面交于一点.其中类比推理方法正确的有( )A .(1)B .(1)(2)C .(1)(2)(3)D .都不对 [答案] C[解析] 以上类比推理方法都正确,需注意的是类比推理得到的结论是否正确与类比推理方法是否正确并不等价,方法正确结论也不一定正确.故选C.6.图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子应是什么颜色( )A .白色B .黑色C .白色可能性大D .黑色可能性大[答案] A[解析] 由图知:三白二黑周而复始相继排列,∵36÷5=7余1,∴第36颗珠子的颜色是白色.7.设0<θ<π2,已知a 1=2cos θ,a n +1=2+a n ,则猜想a n =( )A .2cos θ2nB .2cos θ2n -1C .2cos θ2n +1 D .2sin θ2n [答案] B [解析] ∵a 1=2cos θ,a 2=2+2cos θ=21+cos θ2=2cos θ2,a 3=2+2a 2=21+cos θ22=2cos θ4……,猜想a n =2cos θ2n -1.故选B. 8.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列哪些性质,你认为比较恰当的是( )①各棱长相等,同一顶点上的任两条棱的夹角都相等②各个面都是全等的正三角形,相邻两个面所成的二面角都相等③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等A .①B .①②C .①②③D .③ [答案] C[解析] 正四面体的面(或棱)可与正三角形的边类比,正四面体的相邻两面成的二面角(或共顶点的两棱的夹角)可与正三角形相邻两边的夹角类比,故①②③都对.故选C.9.把3、6、10、15、21、…这些数叫做三角形数,这是因为这些数目的点子可以排成一个正三角形(如下图),试求第六个三角形数是( )A .27B .28C .29D .30[答案] B[解析] 观察归纳可知第n -1个三角形数共有点数:1+2+3+4+…+n =n (n +1)2个,∴第六个三角形数为7×(7+1)2=28.故选B. 10.已知f (x )是R 上的偶函数,对任意的x ∈R 都有f (x +6)=f (x )+f (3)成立,若f (1)=2,则f(2005)等于()A.2005 B.2C.1 D.0[答案] B[解析]f(3)=f(-3)+f(3)=2f(3),所以f(3)=0.所以f(x+6)=f(x)+f(3)=f(x),即f(x)的最小正周期为6.所以f(2005)=f(1+334×6)=f(1)=2.故选B.二、填空题11.在平面上,若两个正三角形的边长比为12,则它们的面积比为1 4.类似地,在空间中,若两个正四面体的棱长比为12,则它们的体积比为________.[答案]18[解析]V1V2=13S1h113S2h2=S1S2·h1h2=14×12=18.12.观察下列等式:C15+C55=23-2,C19+C59+C99=27+23,C113+C513+C913+C1313=211-25,C117+C517+C917+C1317+C1717=215+27,…由以上等式推测到一个一般的结论:对于n∈N*,C14n+1+C54n+1+C94n+1+…+C4n+14n+1=________.[答案]24n-1+(-1)n22n-1[解析]由归纳推理,观察等式右边23-2,27+23,211-25,215+27,…,可以看到右边第一项的指数3,7,11,15,…成等差数列,公差为4,首项为3,通项为4n-1;第二项的指数1,3,5,7,…,通项为2n-1.故得结论24n-1+(-1)n22n-1.13.将全体正整数排成一个三角形数阵:根据以上排列规律,数阵中第n (n ≥3)行从左至右的第3个数是________.[答案] n 2-n +62[解析] 前n -1行共有正整数1+2+…+(n -1)个,即n 2-n 2个,因此第n 行从左到右的第3个数是全体正整数中第n 2-n 2+3个,即为n 2-n +62. 14.(2010·湖南理,15)若数列{a n }满足:对任意的n ∈N *,只有有限个正整数m 使得a m <n 成立,记这样的m 个数为(a n )*,则得到一个新数列{(a n )*}.例如,若数列{a n }是1,2,3,…,n ,…,则数列{(a n )*}是0,1,2,…,n -1,….已知对任意的n ∈N *,a n =n 2,则(a 5)*=________,((a n )*)*=________.[答案] 2 n 2[解析] 因为a m <5,而a n =n 2,所以m =1,2,所以(a 5)*=2.因为(a 1)*=0,(a 2)*=1,(a 3)*=1,(a 4)*=1,(a 5)*=2,(a 6)*=2,(a 7)*=2,(a 8)*=2,(a 9)*=2,(a 10)*=3,(a 11)*=3,(a 12)*=3,(a 13)*=3,(a 14)*=3,(a 15)*=3,(a 16)*=3.所以((a 1)*)*=1,((a 2)*)*=4,((a 3)*)*=9,((a 4)*)*=16.猜想((a n )*)*=n 2.三、解答题15.在△ABC 中,不等式1A +1B +1C ≥9π成立, 在四边形ABCD 中,不等式1A +1B +1C +1D ≥162π成立, 在五边形ABCDE 中,不等式1A +1B +1C +1D +1E ≥253π成立,猜想在n 边形A 1A 2…A n 中,有怎样的不等式成立?[解析] 根据已知特殊的数值:9π、162π、253π,…,总结归纳出一般性的规律:n 2(n -2)π(n ≥3且n ∈N *).∴在n 边形A 1A 2…A n 中:1A 1+1A 2+…+1A n ≥n 2(n -2)π(n ≥3且n ∈N *). 16.在数列{a n }中,a 1=1,a n +1=2a n 2+a n,n ∈N +,猜想数列的通项公式并证明. [解析] {a n }中a 1=1,a 2=2a 12+a 1=23,a 3=2a 22+a 2=12=24,a 4=2a 32+a 3=25,…,所以猜想{a n }的通项公式a n =2n +1(n ∈N +). 证明如下:因为a 1=1,a n +1=2a n 2+a n ,所以1a n +1=2+a n 2a n =1a n +12, 即1a n +1-1a n =12,所以数列⎩⎨⎧⎭⎬⎫1a n 是以1a 1=1为首项,公差为12的等差数列,所以1a n =1+(n -1)12=n 2+12,即通项公式为a n =2n +1(n ∈N +). 17.如图,点P 为斜三棱柱ABC -A 1B 1C 1的侧棱BB 1上一点,PM ⊥BB 1交AA 1于点M ,PN ⊥BB 1交CC 1于点N .(1)求证:CC 1⊥MN ;(2)在任意△DEF 中有余弦定理:DE 2=DF 2+EF 2-2DF ·EF cos ∠DFE .拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明.[解析] (1)证明:∵PM ⊥BB 1,PN ⊥BB 1,∴BB 1⊥平面PMN .∴BB 1⊥MN .又CC 1∥BB 1,∴CC 1⊥MN .(2)在斜三棱柱ABC -A 1B 1C 1中,有S 2ABB 1A 1=S 2BCC 1B 1+S 2ACC 1A 1-2SBCC 1B 1·SACC 1A 1cos α.其中α为平面CC 1B 1B 与平面CC 1A 1A 所成的二面角.∵CC 1⊥平面PMN ,∴上述的二面角的平面角为∠MNP .在△PMN 中,PM 2=PN 2+MN 2-2PN ·MN cos ∠MNP⇒PM 2·CC 21=PN 2·CC 21+MN 2·CC 21-2(PN ·CC 1)·(MN ·CC 1)cos ∠MNP , 由于S BCC 1B 1=PN ·CC 1,S ACC 1A 1=MN ·CC 1,S ABB 1A 1=PM ·BB 1=PM ·CC 1,∴有S 2ABB 1A 1=S 2BCC 1B 1+S 2ACC 1A 1-2S BCC 1B 1·S ACC 1A 1·cos α.18.若a 1、a 2∈R +,则有不等式a 21+a 222≥⎝⎛⎭⎫a 1+a 222成立,此不等式能推广吗?请你至少写出两个不同类型的推广.[解析] 本题可以从a 1,a 2的个数以及指数上进行推广.第一类型:a 21+a 22+a 233≥(a 1+a 2+a 33)2, a 21+a 22+a 23+a 244≥(a 1+a 2+a 3+a 44)2,…, a 21+a 22+…+a 2n n ≥(a 1+a 2+…+a n n)2; 第二类型:a 31+a 322≥(a 1+a 22)3, a 41+a 422≥(a 1+a 22)4, …,a n 1+a n 22≥(a 1+a 22)n ; 第三类型:a 31+a 32+a 333≥(a 1+a 2+a 33)3,…, a m 1+a m 2+…+a m n n ≥(a 1+a 2+…+a n n)m .上述a1、a2、…、a n∈R+,m、n∈N*.。

2022-2021学年高中数学人教B版选修1-2模块综合测评2

2022-2021学年高中数学人教B版选修1-2模块综合测评2

模块综合测评(二)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.有下列关系:①人的年龄与他(她)拥有的财宝之间的关系;②曲线上的点与该点的坐标之间的关系;③苹果的产量与气候之间的关系;④森林中的同一种树木,其横断面直径与高度之间的关系,其中有相关关系的是()A.①②③B.①②C.②③D.①③④【解析】曲线上的点与该点的坐标之间是确定关系——函数关系,故②不正确.其余均为相关关系.【答案】 D2.(2022·全国卷Ⅲ)若z=1+2i,则4izz-1=()A.1B.-1C.iD.-i【解析】由于z=1+2i,则z=1-2i,所以zz=(1+2i)(1-2i)=5,则4izz-1=4i4=i.故选C.【答案】 C3.有一段演绎推理:直线平行于平面,则平行于平面内全部直线;已知直线b⊄平面α,直线a⊂平面α,直线b∥平面α,则直线b∥直线a.这个结论明显是错误的,这是由于()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误【解析】大前提错误,直线平行于平面,未必有直线平行于平面内的全部直线.【答案】 A4.如图1所示的学问结构图为________结构.()图1A.树形B.环形C.对称性D.左右形【解析】由题图可知结构图为树形结构.【答案】 A5.(2022·陕西高考)依据如图2所示的框图,对大于2的整数N,输出的数列的通项公式是()图2A.a n=2nB.a n=2(n-1)C.a n=2nD.a n=2n-1【解析】由程序框图可知第一次运行:i=1,a1=2,S=2;其次次运行:i =2,a 2=4,S =4; 第三次运行:i =3,a 3=8,S =8; 第四次运行:i =4,a 4=16,S =16. 故选C. 【答案】 C6.假设同学在初一和初二的数学成果是线性相关的,若10个同学初一和初二的数学期末考试分数如下(分别为x ,y ): x 74 71 72 68 76 73 67 70 65 74 y76757170767965776272则初一和初二数学考试分数间的回归直线方程为( ) A.y =1.218 2x +14.192 B.y =1.218 2+14.192x C.y =1.218 2-14.192x D.y =1.218 2x -14.192【解析】 由表中数据可得x -=71,y -=72.3,由于回归直线肯定经过(x -,y -),阅历证只有D 满足条件.【答案】 D7.依据如图3的结构图,总经理的直接下属是( )图3A.总工程师和专家办公室B.开发部C.总工程师、专家办公室和开发部D.总工程师、专家办公室和全部七个部【解析】 由组织结构图可知:总工程师、开发部、专家办公室都受总经理的直接领导,它们都是总经理的直接下属,故选C.【答案】 C8.(2022·南昌高二检测)已知数列{a n }的前n 项和S n =n 2·a n (n ≥2),而a 1=1,通过计算a 2,a 3,a 4猜想a n 等于( )【导学号:37820064】 A.2(n +1)2B.2n (n +1)C.22n -1D.22n -1【解析】 ∵a 1=1,S n =n 2·a n (n ≥2), ∴a 1+a 2=22·a 2,得a 2=13;由a 1+a 2+a 3=32· a 3,得a 3=16; 由a 1+a 2+a 3+a 4=42·a 4,得a 4=110,…, 猜想a n =2n (n +1).【答案】 B9.(2022·临沂高二检测)若关于x 的一元二次实系数方程x 2+px +q =0有一个根为1+i(i 为虚数单位),则p +q 的值是( )A.-1B.0C.2D.-2【解析】 把1+i 代入方程得(1+i)2+p (1+i)+q =0,即2i +p +p i +q =0,即p +q +(p +2)i =0, ∵p ,q 为实数,∴p +q =0. 【答案】 B10.(2021·西安高二检测)满足条件|z -i|=|3-4i|的复数z 在复平面上对应点的轨迹是( )A.一条直线B.两条直线C.圆D.椭圆【解析】|z-i|=|3-4i|=5,∴复数z对应点到定点(0,1)的距离等于5,故轨迹是个圆.【答案】 C11.(2021·大同高二检测)设a,b,c均为正实数,P=a+b-c,Q=b+c-a,R=c+a-b,则“PQR>0”是“P,Q,R同时大于0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】必要性明显成立;PQR>0,包括P,Q,R同时大于0,或其中两个为负两种状况.假设P<0,Q<0,则P+Q=2b<0,这与b为正实数冲突.同理当P,R同时小于0或Q,R同时小于0的状况亦得出冲突,故P,Q,R同时大于0,所以选C.【答案】 C12.在正整数数列中,由1开头依次按如下规章将某些数染成红色.先染1,再染2个偶数2,4;再染4后面最邻近的3个连续奇数5,7,9;再染9后面最邻近的4个连续偶数10,12,14,16;再染16后面最邻近的5个连续奇数17,19,21,23,25.按此规律始终染下去,得到一红色子数列1,2,4,5,7,9,10,12,14,16,17,….则在这个红色子数列中,由1开头的第60个数是()A.103B.105C.107D.109【解析】由题可知染色规律是:每次染完色后得到的最终一个数恰好是染色个数的平方.故第10次染完后的最终一个数为偶数100,接下来应当染101,103,105,107,109,此时共60个数.【答案】 D二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.(2022·嘉兴高二检测)若复数z=7+a i2-i的实部为3,则z的虚部为________.【解析】z=7+a i2-i=(7+a i)(2+i)(2-i)(2+i)=(14-a)+(2a+7)i5,由题意知,14-a5=3,∴a=-1,∴z=3+i,故z的虚部为1.【答案】 114.(2022·郑州高二检测)某工程的工序流程图如图4所示,现已知工程总工时数为10天,则工序c所需工时为________天.图4【解析】设工序c所需工时为x天.由题意知:按①→③→④→⑥→⑦→⑧所需工时为0+2+3+3+1=9(天),按①→②→④→⑥→⑦→⑧所需工时为1+0+3+3+1=8(天),故按①→②→⑤→⑦→⑧所需工时应为10天.∴1+x+4+1=10,∴x=4.【答案】 415.在Rt△ABC中,若∠C=90°,AC=b,BC=a,则△ABC外接圆半径r=a2+b22.运用类比方法,若三棱锥的三条侧棱两两相互垂直且长度分别为a,b,c,则其外接球的半径R=________.【解析】通过类比可得R=a2+b2+c22.证明:作一个在同一个顶点处棱长分别为a,b,c的长方体,则这个长方体的体对角线的长度是a 2+b 2+c 2,故这个长方体的外接球的半径是a 2+b 2+c 22,这也是所求的三棱锥的外接球的半径.【答案】a 2+b 2+c 2216.(2022·三明高二检测)某考察团对中国10个城市进行职工人均工资水平x (千元)与居民人均消费水平y (千元)调查,y 与x 具有相关关系,回归方程为y ^=0.66x +1.562,若A 城市居民人均消费水平为7.765(千元),估量该城市人均消费额占人均工资收入的百分比约为________.【解析】 由于y 与x 具有线性相关关系,满足回归方程y ^=0.66x +1.562,A 城市居民人均消费水平为y =7.765,所以可以估量该城市的职工人均工资水平x 满足7.765=0.66x +1.562,所以x ≈9.4,所以该城市人均消费额占人均工资收入的百分比约为7.7659.4×100%≈83%.【答案】 83%三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)复数z =1+i ,求实数a ,b ,使az +2b z -=(a +2z )2. 【解】 ∵z =1+i ,∴az +2b z -=(a +2b )+(a -2b )i ,又∵(a +2z )2=(a +2)2-4+4(a +2)i =(a 2+4a )+4(a +2)i , ∵a ,b 都是整数,∴⎩⎪⎨⎪⎧a +2b =a 2+4a ,a -2b =4(a +2),解得⎩⎪⎨⎪⎧a 1=-2,b 1=-1,或⎩⎪⎨⎪⎧a 2=-4,b 2=2.故所求实数为a =-2,b =-1或a =-4,b =2.18.(本小题满分12分)对196个接受心脏搭桥手术的病人和196个接受血管清障手术的病人进行了3年的跟踪争辩,调查他们是否又发作过心脏病,调查结果如下表所示:又发作过心脏病未发作过心脏病合计 心脏搭桥手术 39 157 196 血管清障手术29 167 196 合计68324392试依据上述数据比较这两种手术对病人又发作心脏病的影响有没有差别. 【解】 由公式得χ2=392×(39×167-157×29)2196×196×68×324=1.78.由于1.78<6.635,所以我们没有理由推断“心脏搭桥手术”与“又发作过心脏病”有关,可以认为病人又发作心脏病与否与其做过何种手术无关.19.(本小题满分12分)某省公安消防局对消防产品的监督程序步骤为:首先受理产品恳求,假如是由公安部发证的产品,则审核考察,领导复核,不同意,则由窗口将信息反馈出去,同意,则报公安部审批,再经本省公安消防局把反馈信息由窗口反馈出去.假如不是由公安部发证的产品,则由窗口将信息反馈出去.试画出此监督程序的流程图.【解】 某省公安消防局消防产品监督程序的流程图如下:20.(本小题满分12分)(2021·中山高二检测)已知a ,b ,c 是全不相等的正实数,求证:b +c -aa +a +c -b b +a +b -c c >3.【导学号:37820065】【证明】 法一(分析法)要证b +c -a a +a +c -b b +a +b -cc >3,只需证明b a +c a -1+c b +a b -1+a c +bc -1>3, 即证b a +c a +c b +a b +a c +bc >6,而事实上,由a ,b ,c 是全不相等的正实数, ∴b a +a b >2,c a +a c >2,c b +b c >2. ∴b a +c a +c b +a b +a c +bc >6,∴b +c -a a +a +c -b b +a +b -c c >3得证. 法二(综合法)∵a ,b ,c 全不相等, ∴b a 与a b ,c a 与a c ,c b 与bc 全不相等, ∴b a +a b >2,c a +a c >2,c b +bc >2, 三式相加得b a +c a +c b +a b +a c +bc >6, ∴⎝ ⎛⎭⎪⎫b a +c a -1+⎝ ⎛⎭⎪⎫c b +a b -1+⎝ ⎛⎭⎪⎫a c +bc -1>3, 即b +c -a a +a +c -b b +a +b -c c >3.21.(本小题满分12分)某产品的广告支出x (单位:万元)与销售收入y (单位:万元)之间有下表所对应的数据.广告支出x (单位:万元) 1 2 3 4 销售收入y (单位:万元)12284256(1)画出表中数据的散点图; (2)求出y 对x 的线性回归方程;(3)若广告费为9万元,则销售收入约为多少万元? 【解】 (1)散点图如图:(2)观看散点图可知各点大致分布在一条直线四周,列出下列表格,以备计算a ^,b ^.i x i y i x 2i x i y i 1 1 12 1 12 2 2 28 4 56 3 3 42 9 126 445616224于是x -=52,y -=692, 代入公式得:b ^==418-4×52×69230-4×⎝ ⎛⎭⎪⎫522=735,a ^=y --b ^x -=692-735×52=-2.故y 与x 的线性回归方程为y ^=735x -2,其中回归系数为735,它的意义是:广告支出每增加1万元,销售收入y 平均增加735万元.(3)当x =9万元时,y =735×9-2=129.4(万元).所以当广告费为9万元时,可猜测销售收入约为129.4万元.22.(本小题满分12分)(2022·吉林临江高二检测)某少数民族的刺绣有着悠久的历史,下图5(1)、(2)、(3)、(4)为她们刺绣最简洁的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越秀丽,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.图5(1)求出f(5);(2)利用合情推理的“归纳推理思想”归纳出f(n+1)与f(n)的关系式;(3)依据你得到的关系式求f(n)的表达式.【解】(1)∵f(1)=1,f(2)=5,f(3)=13,f(4)=25,∴f(5)=25+4×4=41.(2)∵f(2)-f(1)=4=4×1.f(3)-f(2)=8=4×2,f(4)-f(3)=12=4×3,f(5)-f(4)=16=4×4,由上式规律得出f(n+1)-f(n)=4n.(3)∵f(2)-f(1)=4×1,f(3)-f(2)=4×2,f(4)-f(3)=4×3,f(n-1)-f(n-2)=4·(n-2),f(n)-f(n-1)=4·(n-1).∴以上各式相加得f(n)-f(1)=4[1+2+…+(n-2)+(n-1)]=2(n-1)·n,∴f(n)=2n2-2n+1.。

【人教B版】高中数学选修2-2学案全集(全册 共65页 附答案)

【人教B版】高中数学选修2-2学案全集(全册 共65页 附答案)

【人教B版】高中数学选修2-2学案全集(全册共65页附答案)目录1.2 导数的运算1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理2.1.1 合情推理2.1.2 演绎推理2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法3.1.2 复数的概念3.1.3 复数的几何意义3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法1.2 导数的运算1.掌握基本初等函数的导数公式,并能利用这些公式求基本初等函数的导数. 2.熟练运用导数的运算法则.3.正确地对复合函数进行求导,合理地选择中间变量,认清是哪个变量对哪个变量求导数.1.基本初等函数的导数公式表y =f (x ) y′=f′(x )(1)求导公式在以后的求导数中可直接运用,不必利用导数的定义去求. (2)幂函数的求导规律:求导幂减1,原幂作系数.【做一做1-1】给出下列结论:①若y =1x 3,则y′=-3x 4;②若y =3x ,则y′=133x ;③若y =1x2,则y′=-2x -3;④若y =f (x )=3x ,则f′(1)=3;⑤若y =cos x ,则y′=sin x ;⑥若y =sin x ,则y′=cos x .其中正确的个数是( ).A .3B .4C .5D .6【做一做1-2】下列结论中正确的是( ).A .(log a x )′=a xB .(log a x )′=ln 10xC .(5x )′=5xD .(5x )′=5xln 5 2.导数的四则运算法则(1)函数和(或差)的求导法则: 设f (x ),g (x )是可导的,则(f (x )±g (x ))′=__________,即两个函数的和(或差)的导数,等于这两个函数的____________.(2)函数积的求导法则:设f (x ),g (x )是可导的,则[f (x )g (x )]′=____________,即两个函数的积的导数等于第一个函数的导数乘上第二个函数,加上第一个函数乘上第二个函数的导数.由上述法则立即可以得出[Cf (x )]′=Cf′(x ),即常数与函数之积的导数,等于常数乘以____________.(3)函数的商的求导法则:设f (x ),g (x )是可导的,g (x )≠0,则⎣⎢⎡⎦⎥⎤f (x )g (x )′=________________.(1)比较:[f (x )g (x )]′=f′(x )g (x )+f (x )g ′(x ),⎣⎢⎡⎦⎥⎤f (x )g (x )′=g (x )f ′(x )-f (x )g ′(x )g 2(x ),注意差异,加以区分.(2)f (x )g (x )≠f ′(x )g ′(x ),且⎣⎢⎡⎦⎥⎤f (x )g (x )′≠g (x )f ′(x )+f (x )g ′(x )g 2(x ).(3)两函数的和、差、积、商的求导法则,称为可导函数四则运算的求导法则.(4)若两个函数可导,则它们的和、差、积、商(商的分母不为零)必可导. 若两个函数不可导,则它们的和、差、积、商不一定不可导.例如,设f (x )=sin x +1x ,g (x )=cos x -1x,则f (x ),g (x )在x =0处均不可导,但它们的和f (x )+g (x )=sin x +cos x 在x =0处可导. 【做一做2】下列求导运算正确的是( ).A .⎝ ⎛⎭⎪⎫x +1x ′=1+1x2B .(log 2x )′=1x ln 2C .(3x )′=3x·log 3eD .(x 2cos x )′=-2x sin x 3.复合函数的求导法则对于两个函数y =f (u )和u =g (x ),如果通过变量u ,y 可以表示成x 的函数,那么称这个函数为函数y =f (u )和u =g (x )的复合函数,记作y =f [g (x )].如函数y =(2x +3)2是由y =u 2和u =2x +3复合而成的.复合函数y =f [g (x )]的导数和函数y =f (u ),u =g (x )的导数间的关系为 y′x =y′u ·u ′x .即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.对于复合函数的求导应注意以下几点:(1)分清复合函数是由哪些基本函数复合而成的,适当选定中间变量.(2)分步计算的每一步都要明确是对哪个变量进行求导的,而其中要特别注意的是中间变量的导数.如(sin 2x )′=2cos 2x ,而(sin 2x )′≠cos 2x .(3)根据基本初等函数的导数公式及导数的运算法则,求出各函数的导数,并把中间变量转换成自变量的函数.如求y =sin ⎝ ⎛⎭⎪⎫2x +π3的导数,设y =sin u ,u =2x +π3,则y′x =y′u ·u ′x =cos u ·2=2cos ⎝⎛⎭⎪⎫2x +π3. (4)复合函数的求导熟练后,中间步骤可省略不写. 【做一做3】函数y =ln(2x +3)的导数为________.1.如何看待导数公式与用定义法求导数之间的关系?剖析:导数的定义本身给出了求导数的最基本的方法,但由于导数是用极限定义的,因此求导数总是归结到求极限,这在运算上很麻烦,有时甚至很困难,利用导数公式就可以比较简捷地求出函数的导数.2.导数公式表中y′表示什么?剖析:y′是f′(x )的另一种写法,两者都表示函数y =f (x )的导数. 3.如何理解y =C (C 是常数),y′=0;y =x ,y′=1?剖析:因为y =C 的图象是平行于x 轴的直线,其上任一点的切线即为本身,所以切线的斜率都是0;因为y =x 的图象是斜率为1的直线,其上任一点的切线即为直线本身,所以切线的斜率为1.题型一 利用公式求函数的导数 【例题1】求下列函数的导数:(1)y =x x ;(2)y =1x4;(3)y =5x 3;(4)y =log 2x 2-log 2x ;(5)y =-2sin x2(1-2cos 2x4).分析:熟练掌握常用函数的求导公式.运用有关的性质或公式将问题转化为基本初等函数后再求导数.反思:通过恒等变形把函数先化为基本初等函数,再应用公式求导. 题型二 利用四则运算法则求导 【例题2】求下列函数的导数:(1)y =x 4-3x 2-5x +6; (2)y =x ·tan x ;(3)y =(x +1)(x +2)(x +3);(4)y =x -1x +1.分析:仔细观察和分析各函数的结构规律,紧扣求导运算法则,联系基本函数求导公式,不具备求导法则条件的可适当进行恒等变形,然后进行求导.反思:对于函数求导问题,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用.在实施化简时,必须注意变换的等价性,避免不必要的运算错误.题型三 求复合函数的导数 【例题3】求下列函数的导数:(1)y =(2x +1)n(x ∈N +);(2)y =⎝⎛⎭⎪⎫x 1+x 5;(3)y =sin 3(4x +3);(4)y =x cos x 2.分析:选择中间变量是复合函数求导的关键.必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合而成的,分清其间的复合关系.要善于把一部分量、式子暂时当作一个整体,这个暂时的整体就是中间变量.求导时需要记住中间变量,注意逐层求导,不遗漏,其中还应特别注意中间变量的关系,求导后,要把中间变量转换成自变量的函数.反思:对于复合函数的求导,要注意分析问题的具体特征,灵活恰当地选择中间变量.易犯错误的地方是混淆变量,或忘记中间变量对自变量求导.复合函数的求导法则,通常称为链条法则,因为它像链条一样,必须一环一环套下去,而不能丢掉其中的一环.题型四 易错辨析易错点:常见函数的导数公式、导数的四则运算法则、复合函数的求导法则等,记忆不牢或不能够灵活运用,所以在求导时容易出错.牢记公式、灵活应用法则是避免求导出错的关键.【例题4】求函数y =12(e x +e -x)的导数.错解:y′=⎣⎢⎡⎦⎥⎤12(e x +e -x )′=12(e x +e -x )′=12[(e x )′+(e -x )′]=12(e x +e -x).1下列各组函数中导数相同的是( ). A .f (x )=1与f (x )=xB .f (x )=sin x 与f (x )=cos xC .f (x )=1-cos x 与f (x )=-sin xD .f (x )=x -1与f (x )=x +12已知函数f (x )=ax 3+3x 2+2,若f′(-1)=4,则a 的值为( ). A .193 B .103 C .133 D .1633函数y =cos xx的导数是( ).A .-sin xx2 B .-sin xC .-x sin x +cos x x 2D .-x cos x +cos xx 24设y =1+a +1-x (a 是常数),则y′等于( ).A .121+a +121-xB .121-xC .121+a -121-xD .-121-x5已知抛物线y =ax 2+bx -5(a ≠0),在点(2,1)处的切线方程为y =-3x +7,则a =________,b =________.答案:基础知识·梳理1.nxn -1a xln a1x ln acos x -sin x 【做一做1-1】B 由求导公式可知,①③④⑥正确. 【做一做1-2】D2.(1)f′(x )±g′(x ) 导数和(或差) (2)f′(x )g (x )+f (x )g′(x ) 函数的导数 (3)fx g x -f x gxg 2x【做一做2】B 由求导公式知,B 选项正确.⎝⎛⎭⎪⎫x +1x′=x ′+(x -1)′=1-x -2=1-1x2.(3x )′=3x ln 3,(x 2cos x )′=(x 2)′cos x +x 2(cos x )′=2x cos x -x 2sin x . 【做一做3】y′=22x +3函数y =ln(2x +3)可看作函数y =ln u 和u =2x +3的复合函数,于是y′x =y′u ·u ′x =(ln u )′·(2x +3)′=1u ×2=22x +3.典型例题·领悟【例题1】解:(1)y′=(x x )′=⎝ ⎛⎭⎪⎫x 32′=32x 32-1=32x . (2)y′=⎝ ⎛⎭⎪⎫1x4′=(x -4)′=-4x -4-1=-4x -5=-4x5.(3)y′=(5x 3)′=⎝ ⎛⎭⎪⎫x 35′=35x 35-1=35x -25=355x 2. (4)∵y =log 2x 2-log 2x =log 2x ,∴y′=(log 2x )′=1x ln 2. (5)∵y =-2sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4=2sin x 2⎝ ⎛⎭⎪⎫2cos 2x 4-1=2sin x 2cos x2=sin x ,∴y′=cos x .【例题2】解:(1)y′=(x 4-3x 2-5x +6)′=(x 4)′-3(x 2)′-5x ′-6′=4x 3-6x -5.(2)y′=(x ·tan x )′=⎝ ⎛⎭⎪⎫x ·sin x cos x ′=x ·sin x ′·cos x -x ·sin x cos x ′cos 2x=sin x +x ·cos x ·cos x +x ·sin 2xcos 2x=sin x ·cos x +x ·cos 2x +x ·sin 2x cos 2x =12sin 2x +x cos 2x +x sin 2x cos 2x =sin 2x +2x 2cos 2x . (3)方法1:y′=[(x +1)(x +2)]′(x +3)+(x +1)(x +2)(x +3)′=[(x +1)′(x +2)+(x +1)(x +2)′](x +3)+(x +1)(x +2) =(x +2+x +1)(x +3)+(x +1)(x +2) =(2x +3)(x +3)+(x +1)(x +2)=3x 2+12x +11.方法2:y =x 3+6x 2+11x +6, y′=3x 2+12x +11.(4)方法1:y′=⎝ ⎛⎭⎪⎫x -1x +1′=x -1′x +1-x -1x +1′x +12=x +1-x -1x +12=2x +12.方法2:y =1-2x +1, y′=⎝ ⎛⎭⎪⎫1-2x +1′=⎝ ⎛⎭⎪⎫-2x +1′=-2′x +1-2x +1′x +12=2x +12.【例题3】解:(1)y′=[(2x +1)n]′=n (2x +1)n -1·(2x +1)′=2n (2x +1)n -1.(2)y′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x 1+x 5′=5·⎝ ⎛⎭⎪⎫x 1+x 4·⎝ ⎛⎭⎪⎫x 1+x ′=5x4x +16.(3)y′=[sin 3(4x +3)]′=3sin 2(4x +3)[sin(4x +3)]′=3sin 2(4x +3)·cos(4x +3)·(4x +3)′=12sin 2(4x +3)cos(4x +3).(4)y′=(x cos x 2)′=x ′·cos x 2+(cos x 2)′·x=cos x 2-2x 2sin x 2.【例题4】错因分析:y =e -x 的求导错误,y =e -x 由y =e u与u =-x 复合而成,因此其导数应按复合函数的求导法则进行.正解:令y =e u ,u =-x ,则y′x =y′u ·u ′x ,所以(e -x )′=(e u )′(-x )′=e -x×(-1)=-e -x,所以y′=⎣⎢⎡⎦⎥⎤12x +e -x ′=12[(e x )′+(e -x )′]=12(e x -e -x ). 随堂练习·巩固1.D2.B f′(x )=3ax 2+6x ,∴f′(-1)=3a -6=4,∴a =103.3.C y′=⎝⎛⎭⎪⎫cos x x ′=xx -cos x ·x ′x =-x sin x -cos xx =-x sin x +cos xx 2.4.D 由x 是自变量,a 是常数,可知(1+a )′=0,所以y′=(1+a )′+(1-x )′=[(1-x )12]′=12(1-x )-12·(1-x )′=-121-x .5.-3 9 ∵y′=2ax +b ,∴y′|x =2=4a +b ,∴方程y -1=(4a +b )(x -2)与方程y =-3x +7相同,即⎩⎪⎨⎪⎧4a +b =-3,1-a +b =7,即4a +b =-3,又点(2,1)在y =ax 2+bx -5上, ∴4a +2b -5=1.即4a +2b =6.由⎩⎪⎨⎪⎧4a +b =-3,4a +2b =6,得⎩⎪⎨⎪⎧a =-3,b =9.1.3.1 利用导数判断函数的单调性1.理解可导函数单调性与其导数的关系,会用导数确定函数的单调性. 2.通过比较体会用导数求函数单调区间的优越性.用函数的导数判定函数单调性的法则1.如果在(a ,b )内,f′(x )>0,则f (x )在此区间是______,(a ,b )为f (x )的单调增区间;2.如果在(a ,b )内,f′(x )<0,则f (x )在此区间是______,(a ,b )为f (x )的单调减区间.(1)在(a ,b )内,f′(x )>0(<0)只是f (x )在此区间是增(减)函数的充分条件而非必要条件.(2)函数f (x )在(a ,b )内是增(减)函数的充要条件是在(a ,b )内f′(x )≥0(≤0),并且f′(x )=0在区间(a ,b )上仅有有限个点使之成立.【做一做1-1】已知函数f (x )=1+x -sin x ,x ∈(0,2π),则函数f (x )( ). A .在(0,2π)上是增函数 B .在(0,2π)上是减函数C .在(0,π)上是增函数,在(π,2π)上是减函数D .在(0,π)上是减函数,在(π,2π)上是增函数【做一做1-2】设f′(x )是函数f (x )的导数,f′(x )的图象如图所示,则f (x )的图象最有可能是( ).1.函数的单调性与其导数有何关系?剖析:(1)求函数f(x)的单调增(或减)区间,只需求出其导函数f′(x)>0(或f′(x)<0)的区间.(2)若可导函数f(x)在(a,b)内是增函数(或减函数),则可以得出函数f(x)在(a,b)内的导函数f′(x)≥0(或f′(x)≤0).2.利用导数判断函数单调性及单调区间应注意什么?剖析:(1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域,解决问题时只能在定义域内,通过讨论导数的符号,来判断函数的单调区间.(2)在对函数划分单调区间时,要注意定义域内的不连续点和不可导点.(3)如果一个函数具有相同单调性的单调区间不止一个,这些单调区间不能用“∪”连接,而只能用“逗号”或“和”字隔开.题型一求函数的单调区间【例题1】求下列函数的单调区间:(1)f(x)=x-x3;(2)f(x)=x ax-x2(a>0).分析:先求f′(x),然后解不等式f′(x)>0得单调增区间,f′(x)<0得单调减区间.反思:运用导数讨论函数的单调性需注意如下几点:(1)确定函数的定义域,解决问题时,只能在函数的定义域内,通过讨论函数导数的符号,来判断函数的单调区间;(2)在对函数划分单调区间时,要注意定义域内的不连续点和不可导点;(3)在某一区间内f′(x)>0(或f′(x)<0)是函数f(x)在该区间上为增(或减)函数的充分不必要条件.题型二根据函数的单调性求参数的取值范围【例题2】已知函数f(x)=2ax-1x2,x∈(0,1],若f(x)在x∈(0,1]上是增函数,求a 的取值范围.分析:函数f(x)在(0,1]上是增函数,则f′(x)≥0在(0,1]上恒成立.反思:函数f(x)在区间M上是增(减)函数,即f′(x)≥0(≤0)在x∈M上恒成立.题型三证明不等式【例题3】已知x>1,求证:x>ln(1+x).分析:构造函数f(x)=x-ln(1+x),只要证明在x∈(1,+∞)上,f(x)>0恒成立即可.反思:利用可导函数的单调性证明不等式,是不等式证明的一种重要方法,其关键在于构造一个合理的可导函数.此法的一般解题步骤为:令F(x)=f(x)-g(x),x≥a,其中F(a)=f(a)-g(a)=0,从而将要证明的不等式“当x>a时,f(x)>g(x)”转化为证明“当x>a时,F(x)>F(a)”.题型四易错辨析易错点:应用导数求函数的单调区间时,往往因忘记定义域的限制作用从而导致求解结果错误,因此在求函数的单调区间时需先求定义域.【例题4】求函数f (x )=2x 2-ln x 的单调减区间.错解:f′(x )=4x -1x =4x 2-1x ,令4x 2-1x <0,得x <-12或0<x <12,所以函数f (x )的单调减区间为⎝ ⎛⎭⎪⎫-∞,-12,⎝ ⎛⎭⎪⎫0,12.1在区间(a ,b )内f′(x )>0是f (x )在(a ,b )内为增函数的( ). A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件2函数y =x cos x -sin x 在下面哪个区间内是增函数( ). A .⎝ ⎛⎭⎪⎫π2,3π2 B .(π,2π)C .⎝ ⎛⎭⎪⎫3π2,5π2 D .(2π,3π)3若f (x )=ax 3+bx 2+cx +d 为增函数,则一定有( ).A .b 2-4ac ≤0 B.b 2-3ac ≤0C .b 2-4ac ≥0 D.b 2-3ac ≥04如果函数f (x )=-x 3+bx (b 为常数)在区间(0,1)上是增函数,则b 的取值范围是__________.5函数y =-13x 3+x 2+5的单调增区间为________,单调减区间为________.答案:基础知识·梳理 1.增函数 2.减函数 【做一做1-1】A f′(x )=1-cos x ,当x (0,2π)时,f′(x )>0恒成立,故f (x )在(0,2π)上是增函数.【做一做1-2】C 由f′(x )的图象知,x (-∞,0)或x (2,+∞)时,f′(x )>0,故f (x )的增区间为(-∞,0),(2,+∞),同理可得f (x )的减区间为(0,2).典型例题·领悟【例题1】解:(1)f (x )′=1-3x 2.令1-3x 2>0,解得-33<x <33.因此函数f (x )的单调增区间为⎝ ⎛⎭⎪⎫-33,33. 令1-3x 2<0,解得x <-33或x >33.因此函数f (x )的单调减区间为⎝⎛⎭⎪⎫-∞,-33和⎝ ⎛⎭⎪⎫33,+∞. (2)由ax -x 2≥0得0≤x ≤a ,即函数的定义域为[0,a ].又f (x )′=ax -x 2+x ×12(ax -x 2)-12·(a -2x )=-4x 2+3ax 2ax -x2, 令f (x )′>0,得0<x <3a 4;令f (x )′<0,得x <0或x >34a ,又x [0,a ],∴函数f (x )的单调增区间为⎝ ⎛⎭⎪⎫0,3a 4,单调减区间为⎝ ⎛⎭⎪⎫3a 4,a .【例题2】解:由题意,得f′(x )=2a +2x3.。

【金版优课】高中数学人教B版选修2-2课时作业:1.3.5 导数的实际应用(含答案解析)

【金版优课】高中数学人教B版选修2-2课时作业:1.3.5 导数的实际应用(含答案解析)

第一章 §1.3 课时作业10一、选择题1.做一个容积为256升的方底无盖水箱,那么用料最省时,它的底面边长为( )A. 5分米B. 6分米C. 7分米D. 8分米解析:设底面边长为x 分米,则高为h =256x 2,其表面积S =x 2+4·256x 2·x =x 2+256×4x,S ′=2x -256×4x 2,令S ′=0,则x =8.当0<x <8时S ′<0,当x >8时S ′>0,故x =8时S 最小. 答案:D2.某商场从生产厂家以每件20元的价格购进一批商品.若该商品零售价定为P 元,销售量为Q ,则销售量Q (单位:件)与零售价P (单位:元)有如下关系:Q =8300-170P -P 2.最大毛利润为(毛利润=销售收入-进货支出)( )A .30元B .60元C .28000元D .23000元解析:设毛利润为L (P ),由题意知L (P )=PQ -20Q =Q (P -20)=(8300-170P -P 2)(P -20)=-P 3-150P 2+11700P -166000,所以,L ′(P )=-3P 2-300P +11700.令L ′(P )=0,解得P =30,或P =-130(舍去).此时,L (30)=23000.根据实际问题的意义知,L (30)是最大值,即零售价定为每件30元时,最大毛利润为23000元.答案:D3.[2013·湖南株洲一模]横梁的强度和它的矩形横断面的宽与高的平方的乘积成正比,要将直径为d 的圆木锯成强度最大的横梁,则横断面的高和宽分别为( ) A. 3d ,33d B. 33d ,63d C. 63d ,33d D. 63d ,3d解析:如图所示,设矩形横断面的宽为x ,高为y ,由题意知当xy 2取最大值时,横梁的强度最大.∵y 2=d 2-x 2,∴xy 2=x (d 2-x 2)(0<x <d ).令f (x )=x (d 2-x 2)(0<x <d ),求导数,得f ′(x )=d 2-3x 2.令f ′(x )=0,解得x =33d 或x =-33d (舍去).当0<x <33d 时,f ′(x )>0; 当33d <x <d 时,f ′(x )<0,因此,当x =33d 时,f (x )取得极大值,也是最大值. 综上,当矩形横断面的高为63d ,宽为33d 时,横梁的强度最大.答案:C4.设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,底面边长为() A.3V B.32VC.34V D .23V解析:如右图,设底面边长为x (x >0)则底面积S =34x 2,∴h =V S =4V3x 2.S 表=x ·4V3x 2×3+34x 2×2=43Vx +32x 2.S ′表=3x -43V x 2,令S ′表=0,x =34V .∵S 表只有一个极值,故x =34V 为最小值点.答案:C二、填空题5.某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与到车站的距离成正比,如果在距离车站10千米处建仓库,这两项费用y 1和y 2分别为2万元和8万元.那么,要使这两项费用之和最小,仓库应建在离车站__________千米处.解析:依题意可设每月土地占用费y 1=k 1x,每月库存货物的运费y 2=k 2x ,其中x 是仓库到车站的距离.于是由2=k 110,得k 1=20;由8=10k 2,得k 2=45. 因此两项费用之和为y =20x +4x 5,y ′=-20x 2+45,令y ′=-20x 2+45=0得x =5(x =-5舍去),经验证,此点即为最小值点.故当仓库建在离车站5千米处时,两项费用之和最小.答案:56.某厂生产某种产品x 件的总成本:C (x )=1200+275x 3,又产品单价的平方与产品件数x 成反比,生产100件这样的产品的单价为50元,总利润最大时,产量应定为__________件.解析:设产品单价为a 元,又产品单价的平方与产品件数x 成反比,即a 2x =k ,由题知502×100=k =250000,则a 2x =250000,所以a =500x. 总利润y =500x -275x 3-1200(x >0), y ′=250x -225x 2, 由y ′=0,得x =25,x ∈(0,25)时,y ′>0,x ∈(25,+∞)时,y ′<0,所以x =25时,y 取最大值.答案:257.书店预计一年内要销售某种书15万册,欲分几次订货,如果每次订货要付手续费30元,每千册书存放一年要耗库存费40元,并假设该书均匀投放市场,则此书店分________次进货、每次进________册,可使所付的手续费与库存费之和最少.解析:设每次进书x 千册(0<x <150),手续费与库存费之和为y 元,由于该书均匀投放市场,则平均库存量为批量之半,即x 2,故有y =150x ×30+x 2×40, y ′=-4500x 2+20=x +x -x 2.∴当0<x <15时y ′<0,当15<x <150时y ′>0.故当x =15时,y 取得最小值,此时进货次数为15015=10(次). 即该书店分10次进货,每次进15000册书,所付手续费与库存费之和最少.答案:10 15000三、解答题8.[2013·山东聊城三模]一火车锅炉每小时煤的消耗费用与火车行驶速度的立方成正比,已知当速度为20 km/h 时,每小时消耗的煤价值40元,其他费用每小时需400元,火车的最高速度为100 km/h ,火车以何速度行驶才能使从甲城开往乙城的总费用最少?解:设火车的速度为x km/h ,甲、乙两城距离为a km.由题意,令40=k ·203,∴k =1200, 则总费用f (x )=(kx 3+400)·a x =a (kx 2+400x). ∴f (x )=a (1200x 2+400x)(0<x ≤100). 由f ′(x )=a x 3-100x 2=0,得x =2035.当0<x <2035时,f ′(x )<0;当2035<x <100时,f ′(x )>0.∴当x =2035时,f (x )取最小值,即速度为2035 km/h 时,总费用最少.9.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系:C (x )=k 3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元.设f (x )为隔热层建造费用与20年的能源消耗费用之和.(1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小?并求最小值.解:(1)由题设,每年能源消耗费用为C (x )=k 3x +5(0≤x ≤10),再由C (0)=8,得k =40,因此C (x )=403x +5. 而建造费用为C 1(x )=6x . 最后得隔热层建造费用与20年的能源消耗费用之和为f (x )=20C (x )+C 1(x )=20×403x +5+6x =8003x +5+6x (0≤x ≤10). (2)f ′(x )=6-2400x +2, 令f ′(x )=0,即2400x +2=6,解得x =5,x =-253(舍去). 当0<x <5时,f ′(x )<0,当5<x <10时,f ′(x )>0,故x =5是f (x )的最小值点,对应的最小值为f (5)=6×5+80015+5=70.当隔热层修建5 cm 厚时,总费用达到最小值70万元.。

高二数学人教版选修2-2模块综合测试题(含答案)

高二数学人教版选修2-2模块综合测试题(含答案)

高二数学选修2-2模块综合测试题(本科考试时间为120分钟,满分为150分)•选择题(本大题有10小题,每小题5分,共50 分)1 .在“近似替代”中,函数f (x)在区间[x i, x i 1]上的近似值((A)只能是左端点的函数值 f (x i)(B)只能是右端点的函数值f(Xn)(C)可以是该区间内的任一函数值 f i ([X i,X i 1] ) ( D)以上答案均正确2.已知z123m m i, z 4 (5m 6)i,其中m为实数, 为虚数单位,若Z1z20,贝U m的值为((A) 4 (B)1 (C) (D) 03.已知x1,y 1,下列各式成立的是(A) x 2 (B) (C) x (D) xy 1 x y4.设f ( x)为可导函数,且满足lfx 0f(12xx)=—1,则曲线y=f (x)在点(1, f(1)) 处的切线的斜率(A) 2 (B)_ (0 (D)—25.若a、b、c是常数, 的 ( )(A)充分不必要条件则“ a>0 且b2—4ac v 0”2是“对任意x € R,有ax2+bx+c >0”(B)必要不充分条件(C)充要条件(D)必要条件6.函数f (x) x3ax2 bx a2在x 1处有极值10,贝U点(a, b)为(A) (3, 3) (B) ( 4,11) (0 (3, 3)或( 4,11) (D)不存在7. x y 1,则2x2 2 23y z的最小值为(A)1 (B) (C) 611(D)& 曲线和直线x1围成的图形面积是(A) e e (B) 1 c(C) e e 2 (D)9.点P是曲线x2In x上任意一点,则点P到直线y2的距离的最小值是((A) 1(B) (C) (D) 2.210 .设f(x) x2ax b ( a,b R ),当x 1,1 时, f (x)的最大值为m,贝ym的最小值为( )(A)1 2(B) 1 (C)3 2(D)2填空题 (本大题有 4小题,每小题 5分,共20分)12,其中i 为虚数单位,则复数 zi12.如图,数表满足:⑴第n 行首尾两数均为n ;⑵表中递推关系类似杨辉三角 记第n(n 1)行第2个数为f(n).根据表中上下两行数据关系, 可以求得当n …2时,f(n)13.设函数f (x )=n 2x 2(1 — x )n (n 为正整数),则f (x )在]0,1 ]上的最大值为 ________________ 14 .设 a iR , x i R , i1,2,L n ,且 a ; a ; La : 1 , x ; x ; Lx ; 1,则勺,邑丄 △的X 2 x n值中,现给出以下结论,其中你认为正确的是 _________ .①都大于1②都小于1③至少有一个不大于 1④至多有一个不小于 1⑤至少有一个不小于 1 三 解答题(本大题共 6小题,共80分)15、(本小题12分)已知等腰梯形 OABC 的顶点A , B 在复平面上对应的复数分别为 1 2i 、 2 6i , 且O 是坐标原点,OA // BC .求顶点C 所对应的复数z .16 (本小题满分14分)1 o(1)求定积分x 2 2 dx 的值;2⑵(2)若复数z 1 a 2i(a R) , z 2 3 4i ,且弓_为纯虚数,求z , Z 217 (本小题满分12分)11 .定义运算1ad be ,若复数z 满足z某宾馆有5 0个房间供游客居住,当每个房间定价为每天18 0元时,房间会全部住满;房间单价增加1 0元,就会有一个房间空闲,如果游客居住房间,宾馆每间每天需花费2 0元的各种维护费用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修2-2模块综合测试(二)(时间120分钟 满分150分)一、选择题1.曲线y =-1x 在点(1,-1)处的切线方程为( )A .y =x -2B .y =xC .y =x +2D .y =-x -2解析:∵y =-1x =-x -1,∴y ′=x -2=1x 2,∴y ′| x =1=1=k .由点斜式得切线方程为y +1=x -1,即x -y -2=0,故选A. 答案:A2.[2013·广东高考]若复数z 满足i z =2+4i ,则在复平面内,z 对应的点的坐标是( ) A. (2,4) B. (2,-4) C. (4,-2)D. (4,2)解析:由已知条件得z =2+4ii =4-2i ,所以z 对应的点的坐标为(4,-2),故选C.答案:C3.函数y =f (x )的图象如下图所示,则导函数y =f ′(x )的图象可能是( )解析:当x ∈(-∞,0)时,f (x )为减函数,则f ′(x )<0. 当x ∈(0,+∞)时,f (x )为减函数,则f ′(x )<0. 故选D.4.下列结论不正确的是( ) A .若y =3,则y ′=0 B .若y =1x,则y ′=-12xC .若y =-x ,则y ′=-12xD .若y =3x ,则y ′|x =1=3 解析:y ′=⎝⎛⎭⎫1x ′=(x -12)′=-12x -32,故B 选项不正确. 答案:B5.[2014·课标全国卷Ⅱ]设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .3解析:y ′=a -1x +1,由题意得y ′|x =0=2,即a -1=2,所以a =3. 答案:D6.如图,阴影部分的面积为( )A .2 3B .2- 3 C.323 D.353解析:由图形分析阴影部分的面积为⎠⎛1-3(3-x 2-2x )d x =⎪⎪⎝⎛⎭⎫3x -13x 3-x 21-3=323. 答案:C7.已知三次函数f (x )=13x 3-(4m -1)x 2+(15m 2-2m -7)x +2在R 上是增函数,则m 的取值范围是( )A .m <2或m >4B .-4<m <-2C .2<m <4D .2≤m ≤4解析:由题意f ′(x )=x 2-2(4m -1)x +(15m 2-2m -7),由于f ′(x )≥0在R 上恒成立,故Δ≤0,解之得2≤m ≤4,故应选D.8.设x ,y ,z 都是正数,则三个数x +1y ,y +1z ,z +1x 的值( )A. 都小于2B. 至少有一个不大于2C. 至少有一个不小于2D. 都大于2解析:假设这三个数都小于2, 即x +1y <2,y +1z <2,z +1x <2,则(x +1y )+(y +1z )+(z +1x)<6,又由基本不等式x >0,y >0,z >0时,(x +1y )+(y +1z )+(z +1x )≥2x ·1x +2 y ·1y+2 z ·1z =6,与假设矛盾.故选C. 答案:C9.已知函数f (x )(x ∈R )的图象上任一点(x 0,y 0)处的切线方程为y -y 0=(x 0-2)(x 20-1)(x-x 0),那么函数f (x )的单调减区间是( )A .[-1,+∞)B .(-∞,2]C .(-∞,-1)和(1,2)D .[2,+∞)解析:根据函数f (x )(x ∈R )的图象上任一点(x 0,y 0)处的切线方程为y -y 0=(x 0-2)(x 20-1)(x -x 0),可知其导数f ′(x )=(x -2)(x 2-1)=(x +1)·(x -1)(x -2),令f ′(x )<0,得x <-1或1<x <2.因此f (x )的单调减区间是(-∞,-1)和(1,2).答案:C10.给出下列命题:( )①⎠⎛b a d x =⎠⎛ab d t =b -a (a ,b 为常数且a <b );②⎠⎛0-1x 2d x =⎠⎛01x 2d x ;③曲线y =sin x ,x ∈[0,2π]与直线y =0围成的两个封闭区域面积之和为2, 其中正确命题的个数为( ) A. 0 B. 1 C. 2D. 3解析:⎠⎛a b d t =b -a ≠⎠⎛ba d x =a -b ,故①错.y =x 2是偶函数,其在[-1,0]上的积分结果等于其在[0,1]上的积分结果,故②对.对于③有S =2⎠⎛0πsin x d x =4.故③错.故选B.答案:B11.已知函数f (x )=2x -2,则函数y =|f (|x |)|的图象可能是( )解析:显然从f (x )→f (|x |)的图象是保留原函数y 轴右侧的图象,再根据偶函数的性质处理即可;从f (x )→|f (x )|的图象是保留原函数在x 轴上方的图象,把下方的图象翻折到x 轴上方去,结合原函数的特征.答案:A12.若0<x <π2,则2x 与3sin x 的大小关系( )A .2x >3sin xB .2x <3sin xC .2x =3sin xD .与x 的取值有关解析:令f (x )=2x -3sin x ,则f ′(x )=2-3cos x . 当cos x <23时,f ′(x )>0,当cos x =23时,f ′(x )=0,当cos x >23时,f ′(x )<0.即当0<x <π2时,f (x )先递增再递减,而f (0)=0,f ⎝⎛⎫π2=π-3>0.故f (x )的值与x 取值有关,即2x 与sin x 的大小关系与x 取值有关.故选D. 答案:D 二、填空题13.若三次函数f (x )=ax 3-x (a ≠0)在R 上单调递减,则a 的取值范围为________. 解析:f (x )在R 上单调递减⇔f ′(x )≤0恒成立, 即3ax 2-1≤0恒成立.又∵a ≠0,∴a <0. 答案:(-∞,0)14.[2013·陕西高考]观察下列等式 12=1 12-22=-3 12-22+32=6 12-22+32-42=-10 ……照此规律,第n 个等式可为____________________.解析:设等式右边的数的绝对值构成数列{a n},∵a2-a1=2,a3-a2=3,a4-a3=4,…,a n-a n-1=n,以上所有等式相加可得a n-a1=2+3+4+…+n,即a n=1+2+3+…+n=n(n+1)2,再观察各式的符号可知第n个等式为:12-22+32-42+…+(-1)n+1n2=(-1)n+1n(n+1)2.答案:12-22+32-42+…+(-1)n+1n2=(-1)n+1n(n+1)215.若a>b>c,n∈N*,且1a-b+1b-c≥na-c恒成立,则n的最大值为________.解析:要使1a-b+1b-c≥na-c恒成立.∵a>b>c,∴a-c>0.∴只需a-ca-b+a-cb-c≥n恒成立.∵a-c=(a-b)+(b-c),∴a-ca-b+a-cb-c=(a-b)+(b-c)a-b+(a-b)+(b-c)b-c=2+b-ca-b+a-bb-c≥2+2b-ca-b·a-bb-c=4.要使不等式恒成立只需n≤4.∴n的最大值为4.答案:416.某公司在甲、乙两地销售同一种品牌的汽车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则该公司能获得的最大利润为______万元.解析:解法一:设在甲地销售m辆车,在乙地销售(15-m)辆车,则总利润y=5.06m-0.15m2+2(15-m)=-0.15m2+3.06m+30,所以y′=-0.3m+3.06.令y′=0,得m=10.2.当0≤m<10.2时,y′>0;当10.2<m≤15时,y′<0.故当m=10.2时,y取得极大值,也就是最大值.又由于m为正整数,且当m=10时,y=45.6;当m=11时,y=45.51.故该公司获得的最大利润为45.6万元.解法二:设在甲地销售m 辆车,乙地销售15m 辆车. 则总利润y =-0.15m 2+3.06m +30=0.15(m -10.2)2+45.51∵m ∈Z 且m ∈(0.15],∴当m =10时,y max =45.6,故该公司获得的最大利润为45.6万元.答案:45.6 三、解答题17.(10分)已知x ,y ∈(0,+∞),且x +y >2,求证:1+y x 和1+xy 中至少有一个小于2.证明:反证法.假设1+y x ≥2,1+xy ≥2,即1+y ≥2x,1+x ≥2y .∴2+x +y ≥2x +2y .即x +y ≤2. 这与x +y >2矛盾. ∴1+y x 和1+x y中至少有一个小于2. 18.(12分)设z 1=1+2a i ,z 2=a -i(a ∈R ),已知A ={z ||z -z 1|≤2},B ={z ||z -z 2|≤22},A ∩B =∅,求a 的取值范围.解:∵集合A 、B 在复平面内对应的点是两个圆面,又A ∩B =∅,∴这两个圆外离. 所以|z 1-z 2|>32, 即|(1+2a i)-(a -i)|>3 2.解之得a ∈(-∞,-2)∪⎝⎛⎭⎫85,+∞. 19.(12分)[2013·广西高考]已知函数f (x )=ln(1+x )-x (1+λx )1+x .(1)若x ≥0时f (x )≤0,求λ的最小值;(2)设数列{a n }的通项a n =1+12+13+…+1n ,证明:a 2n -a n +14n >ln2.解:(1)由已知f (0)=0,f ′(x )=(1-2λ)x -λx 2(1+x )2,f ′(0)=0.若λ<12,则当0<x <2(1-2λ)时,f ′(x )>0,所以f (x )>0.若λ≥12,则当x >0时,f ′(x )<0,所以当x >0时,f (x )<0. 综上,λ的最小值是12.(2)令λ=12.由(1)知,当x >0时,f (x )<0. 即x (2+x )2+2x>ln(1+x ). 取x =1k ,则2k +12k (k +1)>ln k +1k .于是a 2n -a n +14n =∑k =n 2n -1 (12k +12(k +1))=∑k =n 2n -1 2k +12k (k +1)>∑k =n2n -1ln k +1k =ln2n -ln n =ln2.所以a 2n -a n +14n>ln2.20.(12分)已知f (x )=23x 3-2ax 2-3x (a ∈R ),(1)若f (x )在区间(-1,1)上为减函数,求实数a 的取值范围; (2)试讨论y =f (x )在(-1,1)内的极值点的个数. 解:(1)∵f (x )=23x 3-2ax 2-3x ,∴f ′(x )=2x 2-4ax -3.∵f (x )在区间(-1,1)上为减函数, ∴f ′(x )≤0在(-1,1)上恒成立.∴⎩⎪⎨⎪⎧f ′(-1)≤0,f ′(1)≤0,得-14≤a ≤14.(2)当a >14时,∵⎩⎨⎧f ′(-1)=4⎝⎛⎭⎫a -14>0f ′(1)=-4⎝⎛⎭⎫a +14<0,∴存在x 0∈(-1,1),使f ′(x 0)=0. ∵f ′(x )=2x 2-4ax -3开口向上, ∴在(-1,x 0)内,f ′(x )>0, 在(x 0,1)内,f ′(x )<0, 即f (x )在(-1,x 0)内单调递增, 在(x 0,1)内单调递减.∴f (x )在(-1,1)内有且仅有一个极值点,且为极大值点.当a <14时,∵⎩⎨⎧f ′(-1)=4⎝⎛⎭⎫a -14<0,f ′(1)=-4⎝⎛⎭⎫a +14>0,∴存在x 0∈(-1,1)使f ′(x 0)=0. ∵f ′(x )=2x 2-4ax -3开口向上,∴在(-1,x 0)内f ′(x )<0,在(x 0,1)内f ′(x )>0即f (x )在(-1,x 0)内单调递减,在(x 0,1)内单调递增.∴f (x )在(-1,1)内有且仅有一个极值点,且为极小值点.当-14≤a ≤14时,由(1)知f (x )在(-1,1)内递减,没有极值点.21.(12分)由下列各式:1>12,1+12+13>1,1+12+13+14+15+16+17>32,1+12+13+…+115>2,…,你能得到怎样的一般不等式,并加以证明. 解:观察发现,每一个不等式左边的第一项都是1,各项的分子都是1,分母按自然数顺序排列,所以它的规律将由最后一项的分母确定.由1,13,17,115,…,猜想第n 个不等式左边的最后一项为12n-1,又由各不等式的右边可分别写成12,1=22,32,2=42,所以第n个不等式应为n2.猜想:第n 个不等式为1+12+13+…+12n -1>n2(n ∈N *). 用数学归纳法证明如下(1)当n =1时,1>12,猜想正确.(2)假设当n =k 时猜想正确,即1+12+13+…+12k -1>k2(k ∈N *),那么,当n =k +1时,1+12+13+…+12k -1+12k +12k +1+…+12k +1-1 >k 2+12k +12k +1+…+12k +1-1 >k 2+12k +1+12k +1+…+12k +1 =k 2+2k 2k +1=k 2+12=k +12. ∴当n =k +1时,猜想也正确.综上可知,对于任意n ∈N *,不等式成立.22.(12分)[2013·北京高考]已知函数f (x )=x cos x -sin x ,x ∈[0,π2].(1)求证:f (x )≤0;(2)若a <sin x x <b 对x ∈(0,π2)恒成立,求a 的最大值与b 的最小值.解:(1)证明:由f (x )=x cos x -sin x 得 f ′(x )=cos x -x sin x -cos x =-x sin x .因为在区间(0,π2)上f ′(x )=-x sin x <0,所以f (x )在区间[0,π2]上单调递减.从而f (x )≤f (0)=0.(2)当x >0时,“sin x x >a ”等价于“sin x -ax >0”;“sin xx <b ”等价于“sin x -bx <0”.令g (x )=sin x -cx ,则g ′(x )=cos x -c . 当c ≤0时,g (x )>0对任意x ∈(0,π2)恒成立.当c ≥1时,因为对任意x ∈(0,π2),g ′(x )=cos x -c <0,所以g (x )在区间[0,π2]上单调递减.从而g (x )<g (0)=0对任意x ∈(0,π2)恒成立.当0<c <1时存在唯一的x 0∈(0,π2)使得g ′(x 0)=cos x 0-c =0.g (x )在g ′(x )在区间(0,π2)上的情况如下:因为g (x )00(x )>0对任意x ∈(0,π2)恒成立”当且仅当g (π2)=1-π2c ≥0,即0<c ≤2π. 综上所述,当且仅当c ≤2π时,g (x )>0对任意x ∈(0,π2)恒成立;当且仅当c ≥1时,g (x )<0对任意x ∈(0,π2)恒成立.所以,若a <sin x x <b 对任意x ∈(0,π2)恒成立,则a 的最大值为2π,b 的最小值为1.。

相关文档
最新文档