2022-2023学年人教版数学八年级上册第11章 三角形 单元测试题 含答案

合集下载

部编数学八年级上册第11章《三角形》全章检测题(含答案)含答案

部编数学八年级上册第11章《三角形》全章检测题(含答案)含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!第十一章检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.如图,三角形的个数为( C )A.3 B.4 C.5 D.6 ,第3题图) ,第6题图) 2.(2015·泉州)已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值( B ) A.11 B.5 C.2 D.13.如图,是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,这块三角形木板另外一个角∠C的度数是( B )A.30° B.40° C.50° D.60°4.若△ABC有一个外角是钝角,则△ABC一定是( D )A.钝角三角形B.锐角三角形C.直角三角形D.以上都有可能5.(2015·广元)一个多边形的内角和是外角和的2倍,这个多边形的边数为( B )A.5 B.6 C.7 D.86.如图,CD平分含30°角的三角板的∠ACB,则∠1等于( B )A.110° B.105° C.100° D.95°7.如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,若S△DEF=2,则S△ABC等于( A )A.16 B.14 C.12 D.10,第7题图) ,第9题图) ,第10题图)8.一个多边形对角线的条数是边数的3倍,则这个多边形是( C )A.七边形B.八边形C.九边形D.十边形9.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△F MN,若MF∥AD,FN∥DC,则∠D的度数为( C )A.115° B.105° C.95° D.85°10.如图,∠1,∠2,∠3,∠4恒满足的关系是( D )A.∠1+∠2=∠3+∠4 B.∠1+∠2=∠4-∠3C.∠1+∠4=∠2+∠3 D.∠1+∠4=∠2-∠3二、填空题(每小题3分,共24分)11.(2015·南充)如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是__60__度.,第11题图) ,第12题图) ,第13题图) ,第18题图) 12.如图,△ABC中,BD是AC边上的高,CE是AB边上的高,BD与CE相交于点O,则∠ABD__=__∠ACE(填“>”“<”或“=”),∠A+∠DOE=__180__度.13.如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有__稳定__性.14.若一个三角形的两边长是4和9,且周长是偶数,则第三边长为__7或9或11__.15.(2015·烟台)正多边形的一个外角是72°,则这个多边形的内角和的度数是__540°_ _.16.一个等腰三角形的底边长为5cm,一腰上的中线把这个三角形的周长分成的两部分之差是3cm,则它的腰长是__8_cm__.17.一个人从A点出发向北偏东30°方向走到B点,再从B点出发向南偏东15°方向走到C 点,此时C点正好在A点的北偏东70°的方向上,那么∠ACB的度数是__95°__.18.如图,已知∠A=α,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线相交于点A1,得∠A1;若∠A1BC的平分线与∠A1CD的平分线相交于点A2,得∠A2……∠A2015BC的平分线与∠A2015CD的平分线相交于点A2016,得∠A2016,则∠A2016=__α22016__.(用含α的式子表示)三、解答题(共66分)19.(8分)如图,△ABC中,∠A=90°,∠ACB的平分线交AB于D,已知∠DCB=2∠B ,求∠ACD的度数.解:设∠B=x°,可得∠DCB=∠ACD=2x°,则x+2x+2x=90,∴x=18,∴∠A CD=2x°=36°20.(8分)如图,在△ABC中,AD是高,AE是角平分线,∠B=70°,∠DAE=18°,求∠C的度数.解:∵∠BAD=90°-∠B=20°,∴∠BAE=∠BAD+∠DAE=38°.∵AE是角平分线,∴∠CAE=∠BAE=38°,∴∠DAC=∠DAE+∠CAE=56°,∴∠C=90°-∠DA C=34°21.(9分)已知等腰三角形的周长为18 cm,其中两边之差为3 cm,求三角形的各边长.解:设腰长为x cm,底边长为y cm,则{2x+y=18,x-y=3,或{2x+y=18,y-x=3,解得{x=7,y=4,或{x=5,y=8,经检验均能构成三角形,即三角形的三边长是7 cm,7 cm,4 cm或5 cm,5 cm,8 cm22.(9分)如图,小明从点O出发,前进5 m后向右转15°,再前进5 m后又向右转15°……这样一直走下去,直到他第一次回到出发点O为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?解:(1)所经过的路线正好构成一个外角是15度的正多边形,360÷15=24,24×5=120 (m),则小明一共走了120米(2)(24-2)×180°=3960°23.(10分)如图,在直角三角形ABC中,∠ACB=90°,CD是AB边上的高,AB=10 cm,BC=8 cm,AC=6 cm.(1)求△ABC的面积;(2)求CD的长;(3)作出△ABC的中线BE,并求△ABE的面积.解:(1)24 cm2(2)S△ABC=12×10×CD=24,∴CD=4.8 cm(3)作图略,S△ABE=12 cm224.(10分)(1)如图,一个直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY,XZ分别经过点B,C,△ABC中,若∠A=30°,则∠ABC+∠ACB=__150°__,∠XBC+∠XCB=__90°__;(2)若改变直角三角板XYZ的位置,但三角板XYZ的两条直角边XY,XZ仍然分别经过B,C,那么∠ABX+∠ACX的大小是否变化?若变化,请说明理由;若不变化,请求出∠ABX+∠ACX的大小.解:(2)∵∠ABX+∠ACX=(∠ABC+∠ACB)-(∠XBC+∠XCB)=150°-90°=60°,∴∠ABX+∠ACX的大小不变,其大小为60°25.(12分)平面内的两条直线有相交和平行两种位置关系.(1)如图①,若AB∥CD,点P在AB,CD外部,则有∠B=∠BOD,又因为∠BOD是△POD的外角,故∠BOD=∠BPD+∠D.得∠BPD=∠B-∠D.将点P移到AB,CD内部,如图②,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD,∠B,∠D之间有何数量关系?请证明你的结论;(2)在如图②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图③,则∠BPD,∠B,∠D,∠BQD之间有何数量关系?(不需证明);(3)根据(2)的结论求如图④中∠A+∠B+∠C+∠D+∠E的度数.解:(1)不成立,结论是∠BPD=∠B+∠D.证明:延长BP交CD于点E,∵AB∥CD,∴∠B=∠BED,又∵∠BPD=∠BED+∠D,∴∠BPD=∠B+∠D(2)∠BPD=∠BQD+∠B+∠D(3)由(2)的结论得:∠AGB=∠A+∠B+∠E且∠AGB=∠CGD,∴∠A+∠B+∠C +∠D+∠E=180°。

2022-2023学年 人教版八年级数学上册第11章 三角形 精选题(含解析)

2022-2023学年 人教版八年级数学上册第11章 三角形 精选题(含解析)

第11章三角形精选题(含答案)-人教版八年级上册一.选择题1.如图,∠B=30°,∠CAD=65°且AD平分∠CAE,则∠ACD等于()A.95°B.65°C.50°D.80°2.如图,在△ABC中,O是三个内角的平分线的交点,过点O作∠ODC=∠AOC,交边BC于点D.若∠ABC=n°,则∠BOD的度数为()A.90°+n°B.45°+n°C.90°﹣n°D.90°3.如图,在△ABC中,AF平分∠BAC交BC于点F、BE平分∠ABC交AC于点E,AF与BE相交于点O,AD是BC边上的高,若∠C=50°,BE⊥AC,则∠DAF的度数为()A.10°B.12°C.15°D.20°4.如图所示,考古学家发现在地下A处有一座古墓,古墓上方是煤气管道,为了不影响管道,准备在B和C处开工挖出“V”字形通道,如果∠DBA=120°,∠ECA=125°,则∠A的度数是()A.65°B.80°C.85°D.90°5.如图,四边形ABCD为一长方形纸带,AD∥BC,将四边形ABCD沿EF折叠,C、D两点分别与C′、D′对应,若∠1=2∠2,则∠3的度数为()A.50°B.54°C.58°D.62°6.如图,大建从A点出发沿直线前进8米到达B点后向左旋转的角度为α,再沿直线前进8米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了72米,则每次旋转的角度α为()A.30°B.40°C.45°D.60°7.如图,在△ABC中,以点B为圆心,AB为半径画弧交BC于点D,以点C为圆心,AC 为半径画弧交BC于点E,连接AE,AD.设∠ACB=α,∠EAD=β,则∠B的度数为()A.2β﹣αB.α﹣βC.2α﹣βD.α+β8.如图,在△ABC中,∠A=80°,∠B=36°,将△ABC沿直线BC向右平移到△DEF的位置,则∠F的度数是()A.80°B.36°C.64°D.116°9.如图1所示,将长为6的矩形纸片沿虚线折成3个矩形,其中左右两侧矩形的宽相等,若要将其围成如图2所示的三棱柱形物体,则图中a的值可以是()A.1B.2C.3D.410.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF,以下结论:①AD∥BC,②∠ACB=∠ADB,③∠ADC+∠ABD=90°,④∠ADB=45°﹣∠CDB,其中正确的结论有()A.1个B.2个C.3个D.4个二.填空题11.如图,直线a∥直线b,Rt△ABC的直角顶点A落在直线a上,点B落在直线b上,若∠1=18°,∠2=32°,则∠ABC的大小为.12.如图,三角形ABC中,∠A=64°,∠B=90°,∠C=26°.点D是AC边上的定点,点E在BC边上运动,沿DE折叠三角形CDE,点C落在点G处.当三角形DEG的三边与三角形ABC的三边有一组边平行时,∠ADG=.13.如图,已知BD是△ABC的中线,AB=5,BC=3,且△ABD的周长为12,则△BCD 的周长是.14.如图①,我们知道,光线射向一个平面镜被反射后,两条光线与平面镜的夹角相等(∠1=∠2).如图②,光线照射到平面镜甲上,会反射到平面镜乙,然后光线又会射到平面镜甲上,…….若∠α=55°,∠γ=75°,则∠β=°.15.如图,在△ABC中,BD、BE分别是△ABC的高线和角平分线,点F在CA的延长线上,FH⊥BE交BD于点G,交BC于点H.写出∠FGD,∠ABE,∠C的之间的数量关系:.三.解答题16.如图,在△ABC中,AD平分∠BAC交BC于点D,BE平分∠ABC交AD于点E.(1)若∠C=50°,∠BAC=60°,求∠ADB的度数;(2)若∠BED=45°,求∠C的度数.17.在△ABC中,D是BC边上一点,且∠CDA=∠CAB,MN是经过点D的一条直线.(1)直线MN⊥AC,垂足为点E,在图1中画出直线MN.若∠CAB=70°,∠DAB=20°,求∠CAD,∠CDE的度数;(2)直线MN∥AB交AC边于点F,在图2中画出直线MN,求证:∠CDF=∠CAD.(提示:三角形内角和等于180°)18.如图所示,在△ABC中,CD⊥AB于点D,EF⊥CD于点G,∠ADE=∠EFC.(1)证明AB∥EF.(2)请说明∠AED=∠ACB的理由.(3)若∠BDE=2∠B+36°,求∠DEF的度数.19.已知:在△ABC中,AE平分∠BAC,BF平分∠ABC,AE、BF交于点G.(1)如图1:若∠C=60°,求∠AGB的度数;(2)如图2:点D是AE延长线上一点,连接BD、CD,∠ADC=∠ABG+∠BAG,求证:CD∥BF;(3)如图3:在(2)的条件下,过点G作GK∥AB,交BD于点K,点M在线段DC 的延长线上,连接KM,若∠ACB=∠BDA,∠ABC+∠BAE=2∠DKM,∠M=16°,求∠BAC的度数.20.(1)如图(1)所示,△ABC中,∠ABC,∠ACB的平分线交于点O,求证:∠BOC =90°+∠A;(2)如图(2)所示,∠ABC,∠ACD的平分线交于点O,求证:∠BOC=A;(3)如閔(3)所示,∠CBD,∠BCE的平分线交于点O,请直接写出∠BOC与∠A的关系.参考答案与试题解析一.选择题1.【解答】解:∵∠CAD=65°,AD平分∠CAE,∴∠CAE=2∠CAD=130°,∴∠BAC=180°﹣130°=50°,∵∠B=30°,∴∠ACD=∠B+∠BAC=30°+50°=80°.故选:D.2.【解答】解:∵∠ABC=n°,∴∠BAC+∠BCA=180°﹣∠ABC=180°﹣n°,∵O是三个内角的平分线的交点,∴∠OBC=ABC=n°,∠OCA=BCA,∠OAC=BAC,∴∠OAC+∠OCA=(∠BAC+∠BCA)=(180°﹣n°)=90°﹣n°,∴∠AOC=180°﹣(∠OAC+∠OCA)=180°﹣(90°﹣n°)=90°+n°,∵∠ODC=∠AOC,∴∠ODC=∠AOC=90°+n°,∵∠ODC=∠OBC+∠BOD,∠OBC=n°,∴∠BOD=90°,故选:D.3.【解答】解:∵BE⊥AC,BE平分∠ABC,∴∠AEB=∠CEB=90°,∠ABE=∠CBE,∵BE=BE,∴△ABE≌△CBE(ASA),∴∠BAC=∠C=50°,∴∠ABC=190°﹣∠BAC﹣∠C=80°,∵AF平分∠BAC,∴∠BAF=∠BAC=25°,∵BE⊥AC,∴∠ADB=90°,∴∠BAD=10°∴∠DAF=∠BAF﹣∠DAB=15°,故选:C.4.【解答】解:∵∠DBA=120°,∠ECA=125°,∴∠ABC=180°﹣∠DBA=60°,∠ACB=180°﹣∠ECA=55°,∴∠A=180°﹣∠ABC﹣∠ACB=180°﹣60°﹣55°=65°,即∠A=65°.故选:A.5.【解答】解:如图,过点D′作D′G∥AD,则∠2=∠ED′G,∵AD∥BC,∴BC∥D′G,∴∠3=∠C′D′G,∵AD∥BC,∴∠1=∠4,根据折叠的性质得:∠4=∠5,∵∠1=2∠2,∴∠4=∠5=2∠2,∴2∠2+2∠2+∠2=180°,∴∠2=36°,∵∠ED′C′=∠D=90°,∴∠2+∠3=90°,∴∠3=90°﹣36°=54°,故选:B.6.【解答】解:∵72÷8=9,∴360°÷9=40°.∴每次旋转的角度α=40°.故选:B.7.【解答】解:∵以点B为圆心,AB为半径画弧交BC于点D,以点C为圆心,AC为半径画弧交BC于点E,∴AB=BD,AC=CE,∴∠BAD=∠BDA,∠CAE=∠CEA,∵∠ACB=α,∴∠CAE=∠CEA=(180°﹣∠ACB)=90,∵∠DAE=β,∴∠CAD=∠CAE﹣∠DAE=(90°﹣)﹣β=90°﹣﹣β,∴∠BAD=∠BDA=∠C+∠CAD=α+(90°﹣﹣β)=90°+﹣β,∴∠B=180°﹣∠BAD﹣∠BDA=180°﹣(90°+﹣β)﹣(90°+﹣β)=180°﹣90°﹣+β﹣90°﹣+β=2β﹣α,故选:A.8.【解答】解:∵∠A=80°,∠B=36°,∴∠ACB=180°﹣∠A﹣∠B=180°﹣80°﹣36°=64°,∵将△ABC沿直线BC向右平移到△DEF的位置,∴∠F=∠ACB=64°,故选:C.9.【解答】解:长为6的线段围成等腰三角形的腰长为a.则底边长为6﹣2a.由题意得,.解得<a<3.所给选项中分别为:1,2,3,4.∴只有2符合上面不等式组的解集.∴a只能取2.故选:B.10.【解答】解:∵AD平分∠EAC,∴∠EAC=2∠EAD,∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,故①正确;∵AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∠ABC=∠ACB,∴∠ABC=∠ACB=2∠DBC,∴∠ACB=2∠ADB,故②错误;在△ADC中,∠ADC+∠CAD+∠ACD=180°,∵CD平分△ABC的外角∠ACF,∴∠ACD=∠DCF,∵AD∥BC,∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,∴∠ADC+∠ABD=90°∴∠ADC=90°﹣∠ABD,即∠ADC+∠ABD=90°,故③正确;∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠ADB=∠DBC,∴∠ABD=∠ADB,∵90°﹣∠ABC=90°−∠ABD=∠DBC+∠BDC=∠ABD+∠BDC,∴∠BDC=90°﹣2∠ABD,∴∠ADB=45°﹣∠CDB,④错误;故选:B.二.填空题11.【解答】解:如图,作CK∥a.∵a∥b,CK∥a,∴CK∥b,∴∠1=∠3,∠4=∠2,∴∠ACB=∠1+∠2=18°+32°=50°,∵∠CAB=90°,∴∠ABC=90°﹣50°=40°,故答案为:40°.12.【解答】解:如图,当DG∥AB时,则∠ADG=180°﹣∠A=180°﹣64°=116°;如图,当DG∥BC时,∠ADG=∠C=26°;如图,当EG∥AC时,∠ADG=∠G=∠C=26°;如图,当EG∥AB时,则∠A=∠CFE=64°,∠B=∠CEG=90°,由折叠可知,∠DEG=∠DEC=45°,∴∠EDF=∠C+∠DEC=26°+45°=71°,∴∠ADG=∠EDG﹣∠EDF=∠CDE﹣∠EDF=109°﹣71°=38°;如图,当DG∥AB时,则∠ADG=∠A=64°,如图,∵AB∥EG,∴∠GEB=∠B=90°,∴∠CEG=90°,由折叠性质得:∠DEC=∠DEG==135°,∵∠C=26°,∴∠GDE=∠CDE=180°﹣135°﹣26°=19°,∴∠ADG=180°﹣19°﹣19°=142°;综上,其他所有情况下∠ADG的度数为26°或38°或64°或116°或142°.故答案为:26°或38°或64°或116°或142°.13.【解答】解:∵BD是△ABC的中线,即点D是线段AC的中点,∴AD=CD.∵AB=5,△ABD的周长为12,∴AB+BD+AD=12,即5+BD+AD=12.解得BD+AD=7.∴BD+CD=7.则△BCD的周长是BC+BD+CD=3+7=10.故答案为:10.14.【解答】解:如图,由题意知:∠α=∠1=55°,∠β=∠2,∠γ=∠3=75°,∵∠1+∠3+∠4=180°,∴∠4=50°,∵∠2+∠4+∠β=180°,∴∠β=65°,故答案为:65.15.【解答】解:∵∠AEB=∠EBC+∠C,∵BE是△ABC的角平分线,∠ABE=∠CBE,∴∠AEB=∠ABE+∠C,∵BD⊥FC,FH⊥BE,∴∠FGD=∠AEB,∴∠FGD=∠ABE+∠C,故答案为:∠FGD=∠ABE+∠C.三.解答题16.【解答】解:(1)∵AD平分∠BAC,∠BAC=60°,∴.∵∠ADB是△ADC的外角,∠C=50°,∴∠ADB=∠C+∠DAC=80°;(2)∵AD平分∠BAC,BE平分∠ABC,∴∠BAC=2∠BAD,∠ABC=2∠ABE.∵∠BED是△ABE的外角,∠BED=45°,∴∠BAD+∠ABE=∠BED=45°.∴∠BAC+∠ABC=2(∠BAD+∠ABE)=90°.∵∠BAC+∠ABC+∠C=180°,∴∠C=180°﹣(∠BAC+∠ABC)=90°.17.【解答】(1)解:如图1中,∵∠CAB=70°,∠DAB=20°,∴∠CAD=∠CAB﹣∠DAB=70°﹣20°=50°,∵DE⊥AC,∴∠AED=90°,∴∠ADE=90°﹣50°=40°,∵∠ADC=∠CAB=70°,∴∠CDE=∠ADC﹣∠ADE=70°﹣40°=30°;(2)证明:∵MN∥AB,∴∠ADF=∠DAB,∵∠ADC=∠CAB,∴∠CDF=∠CAD.18.【解答】解:(1)证明:∵CD⊥AB于点D,EF⊥CD于点G,∴∠BDC=∠FGC,=90°,∴AB∥EF(同位角相等,两直线平行).(2)证明:由(1)得AB∥EF,∴∠B=∠EFC(两直线平行,同位角相等),又∵∠ADE=∠EFC.∴∠B=∠ADE;(3)由(2)得∠B=∠ADE,由(1)得AB∥EF,∴四边形BDEF是平行四边形(两组对边平行的四边形是平行四边形),∴∠DEF=∠B(平行四边形对角相等),∵∠B=∠ADE,∠BDE=2∠B+36°,∴180°﹣∠B=2∠B+36°,∴∠B=48°,∴∠DEF=48°.19.【解答】(1)证明:如图1,∵AE、BF分别平分∠BAC与∠ABC,∴,,在△ABC中,∠ABC+∠ACB+∠C=180°,∠C=60°,∴∠ABC+∠BAC=180°﹣60°=120°,∴∠ABF+∠BAE=∠ABC+∠BAC=(∠ABC+∠BAC)=×120°=60°,∴∠AGB=180°﹣60°=120°;(2)证明:如图2,∵∠BGD是△ABG得一个外角,∴∠BGD=∠BAG+∠ABG,∵∠ADC=∠BAG+∠ABG,∴∠BGD=∠ADC,(3)解:如图3,∵∠BED=∠AEC,∠ACB=∠BDA,∴∠CAE=∠DBE,∵AE平分∠BAC,BF平分∠ABC,设∠ABF=∠CBF=α,∠BAD=∠CAD=∠DBC=β,∴∠AEC=2α+β,∵∠ABC+∠BAE=2∠DKM,∴,∵GK∥AB,∴∠BGK=∠ABG=α,∴∠GKD=∠GBK+∠BGK=2α+β,∴,∵GB∥DM,∠M=16°,∴∠GBK+∠MDK=180°,∵∠GBK+∠GKB+∠BGK+∠MKD+∠KDM+∠M=360°,∠BKG+∠MKD=180°﹣∠GKM,∴180°+180°﹣∠GKM+∠BGK+∠M=360°,∴∠GKM=∠BGK+∠M,∴,∴β=32°,∴∠BAC=2×32°=64°.20.【解答】证明:(1)∵在△ABC中,OB、OC分别是∠ABC、∠ACB的平分线,∴∠1=∠ABC,∠2=∠ACB,∴∠1+∠2=(∠ABC+∠ACB)=(180°﹣∠A)=×(180°﹣x°)=90°﹣∠A,∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°﹣∠A)=90°+∠A;(2)∵∠OCD是△BCO的外角,∴∠O=∠2﹣∠1,又∵BO平分∠ABC,CO平分∠ACD,∴∠1=∠ABC,∠2=∠ACD,∴∠O=(∠ACD﹣∠ABC),∵∠A=∠ACD﹣∠ABC,∴∠O=∠BAC;(3)∵BO、CO为△ABC中∠ABC、∠ACB外角的平分线,∴∠2=∠BCE,∠1=∠DBC,∵∠BCE=∠A+∠ABC,∠DBC=∠A+∠ACB,∴∠2=(∠A+∠ABC)、∠1=(∠A+∠ACB),由三角形内角和定理得,∠BDC=180°﹣∠1﹣∠2=180°﹣[∠A+(∠A+∠ABC+∠ACB)]=180°﹣(∠A+180°)=90°﹣∠A.。

人教版八年级数学上册第十一章《三角形》单元测试题及答案

人教版八年级数学上册第十一章《三角形》单元测试题及答案

人教版八年级数学上册第十一章《三角形》单元测试题及答案一、选择题(每题4分,共40分)1. 在三角形ABC中,a = 3cm,b = 4cm,c = 5cm,那么这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定2. 如果一个三角形的两边长分别是5和10,那么第三边的长度可能是()A. 3B. 6C. 11D. 153. 三角形的一个外角等于与它不相邻的两个内角的和,那么这个外角的度数是()A. 90°B. 120°C. 180°D. 无法确定4. 在三角形ABC中,∠A = 50°,∠B = 60°,那么∠C 的度数是()A. 70°B. 80°C. 90°D. 100°5. 如果一个三角形的两边长分别是8和15,那么第三边的长度可能是()A. 7B. 10C. 17D. 206. 一个等腰三角形的底边长是8cm,腰长是10cm,那么这个三角形的周长是()A. 36cmB. 40cmC. 44cmD. 48cm7. 在三角形ABC中,∠A = 30°,∠B = 45°,那么∠C 的度数是()A. 75°B. 85°C. 90°D. 95°8. 如果一个三角形的两边长分别是6和9,那么第三边的长度可能是()A. 3B. 6C. 12D. 159. 一个等边三角形的周长是15cm,那么这个三角形的边长是()A. 3cmB. 4cmC. 5cmD. 6cm10. 在三角形ABC中,∠A = 40°,∠B = 70°,那么∠C的度数是()A. 20°B. 30°C. 50°D. 60°二、填空题(每题4分,共40分)11. 在三角形ABC中,a = 5cm,b = 7cm,c = 9cm,那么这个三角形的面积是_________。

2022-2023学年度人教版八年级数学上册第十一章三角形定向攻克试卷(含答案详解版)

2022-2023学年度人教版八年级数学上册第十一章三角形定向攻克试卷(含答案详解版)

人教版八年级数学上册第十一章三角形定向攻克考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,ABC 中,55,B D ∠=︒是BC 延长线上一点,且130ACD ∠=︒,则A ∠的度数是( )A .50︒B .65︒C .75︒D .85︒2、下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容.则回答正确的是( )A .◎代表∠FECB .@代表同位角C .▲代表∠EFCD .※代表AB3、正多边形通过镶嵌能够密铺成一个无缝隙的平面,下列组合中不能镶嵌成一个平面的是() A .正三角形和正方形 B .正三角形和正六边形C .正方形和正六边形D .正方形和正八边形4、下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm5、下列四个选项中不是命题的是( )A .对顶角相等B .过直线外一点作直线的平行线C .三角形任意两边之和大于第三边D .如果a b a c ==,,那么b c =6、下面四个图形中,线段AD 是ABC ∆的高的是( )A .B .C .D .7、如图,在ABC 中,AE 平分BAC ∠,AD BC ⊥于点D .ABD ∠的角平分线BF 所在直线与射线AE 相交于点G ,若3∠=∠ABC C ,且20G ∠=︒,则DFB ∠的度数为( )A .50︒B .55︒C .60︒D .65︒8、如图,ABC 中,80BAC ∠=︒,D 是ABC 外一点,ADC ACD ∠=∠, ADB ABD ∠=∠,则BDC ∠=( ).A .70︒B .60︒C .45︒D .40︒9、若一个正n 边形的每个内角为144°,则这个正n 边形的所有对角线的条数是( )A .9B .12C .35D .4010、如图,在ABC 中,AB =2020,AC =2018,AD 为中线,则ABD △与ACD △的周长之差为( )A .1B .2C .3D .4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个多边形的每一个内角都是120°,则此多边形从一个顶点出发可以引__________条对角线.2、如图,ADF 中,点B ,C 分别在AD ,AF 上,DC 与BF 交于点E ,若:2:1DE CE =,6DEF S =△,4DBE S =△,则ABC 的面积=______.3、如图,将三角形纸片ABC 沿EF 折叠,使得A 点落在BC 上点D 处,连接DE ,DF ,45CDE CED ∠∠==︒.设BDF α∠=,BFD β∠=,则α与β之间的数量关系是________.4、如图,将△ABC 沿BC 方向平移到△DEF (B 、E 、F 在同一条直线上),若∠B =46°,AC 与DE 相交于点G ,∠AGD 和∠DFB 的平分线GP 、FP 相交于点P ,则∠P =______°.5、如图,在ABC 中,6AB =,8AC =,3CD BD =,点E 是AC 的中点,BE 、AD 交于点F ,四边形DCEF 的面积的最大值是______.三、解答题(5小题,每小题10分,共计50分)1、如图,在6×10的网格中,每一小格均为正方形且边长是1,已知△ABC 的每个顶点都在格点上.(1)画出△ABC 中BC 边上的高线AE ;(2)在△ABC 中AB 边上取点D ,连接CD ,使3BCD ACD S S =△△;(3)直接写出△BCD 的面积是__________.2、若一个多边形内角和与外角和的比为9∶2,求这个多边形的边数.3、已知△ABC 中,∠ACB=90°,CD 为AB 边上的高,BE 平分∠ABC,分别交CD 、AC 于点F 、E ,求证:∠CFE=∠CEF.4、若一个多边形的内角和的14比一个四边形的内角和多90°,那么这个多边形的边数是多少? 5、如图,AB CD ,AD 与BC 交于点O ,40C ∠=︒,80AOB ∠=︒,求A ∠的度数.-参考答案-一、单选题1、C【解析】【分析】根据三角形的外角性质求解 .【详解】解:由三角形的外角性质可得:∠ACD=∠B+∠A,∴∠A=∠ACD -∠B=130°-55°=75°,故选C .【考点】本题考查三角形的外角性质,熟练掌握三角形的外角性质定理并能灵活运用是解题关键.2、C【解析】【分析】利用邻补角的概念、等量代换及平行线的判定求解可得.【详解】证明:延长BE 交CD 于点F ,则180BEC FEC EFC C ∠=︒-∠=∠+∠.又BEC B C ∠=∠+∠,得B EFC ∠=∠.故//AB CD (内错角相等,两直线平行).所以※代表CD ,◎代表EFC ∠,▲代表EFC ∠,@代表内错角,故选:C .【考点】本题主要考查平行线的判定,解题的关键是掌握邻补角的概念、等量代换及平行线的判定.3、C【解析】【分析】由正多边形的内角拼成一个周角进行判断,ax +by =360°(a 、b 表示多边形的一个内角度数,x 、y 表示多边形的个数).【详解】解:A 、∵正三角形和正方形的内角分别为60°、90°,3×60°+2×90°=360°,∴正三角形和正方形可以镶嵌成一个平面,故A 选项不符合题意;B、∵正三角形和正六边形的内角分别为60°、120°,2×60°+2×120°=360°,或4×60°+1×120°=360°,∴正三角形和正六边形可以镶嵌成一个平面,故B选项不符合题意;C、∵正方形和正六边形的内角分别为90°、120°,2×90°+1×120°=300°<360°且3×90°+1×120°=390°>360°,∴正方形和正六边形不能镶嵌成一个平面,故C选项符合题意;D、正方形和正八边形的内角分别为90°、135°,1×90°+2×135°=360°,∴正方形和正八边形可以镶嵌成一个平面,故D选项不符合题意;故选:C.【考点】本题主要考查了平面镶嵌,两种或两种以上几何图形向前成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.4、B【解析】【详解】分析:结合“三角形中较短的两边之和大于第三边”,分别套入四个选项中得三边长,即可得出结论.详解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16,16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选B .点睛:本题考查了三角形的三边关系,解题的关键是:用较短的两边长相交于第三边作比较.本题属于基础题,难度不大,解决该题型题目时,结合三角形三边关系,代入数据来验证即可.5、B【解析】【分析】判断一件事情的语句,叫做命题.根据定义判断即可.【详解】解:由题意可知,A 、对顶角相等,故选项是命题;B 、过直线外一点作直线的平行线,是一个动作,故选项不是命题;C 、三角形任意两边之和大于第三边,故选项是命题;D 、如果a b a c ==,,那么b c =,故选项是命题;故选:B .【考点】本题考查了命题与定理:判断一件事情的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.注意:疑问句与作图语句都不是命题.6、D【解析】【分析】根据三角形高的定义进行判断.【详解】解:线段AD 是△ABC 的高,则过点A 作对边BC 的垂线,则垂线段AD 为△ABC 的高.选项A 、B 、C 错误,故选:D .【考点】本题考查了三角形的高:三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.7、C【解析】【分析】由角平分线的定义可以得到CAE BAE ∠=∠,ABF DBF ∠=∠,设CAE BAE x ==∠∠,假设y C =∠,3ABC y =∠,通过角的等量代换可得到3DFB G =∠∠,代入G ∠的值即可.【详解】∵AE 平分BAC ∠,BF 平分ABD ∠∴CAE BAE ∠=∠,ABF DBF ∠=∠设CAE BAE x ==∠∠∵3∠=∠ABC C∴可以假设y C =∠,3ABC y =∠ ∴13(1803)9022ABF DBF CBG y y ===︒-=︒-∠∠∠ ∵AD CD ⊥∴90D ∠=︒ ∴3902DFB DBF y =︒-=∠∠设ABF DBF CBG z ===∠∠∠,则z x G z G x y=+∠⎧⎨+∠=+⎩ ∴12G y =∠ ∴3DFB G =∠∠∵20G ∠=︒∴60DFB ∠=︒故答案选:C【考点】本题主要考查了角平分线的定义以及角的等量代换,三角形的内角和定理,外角的性质,二元一次方程组的应用,灵活设立未知数代换角是解题的关键.8、D【解析】【分析】设2CAD x ∠=︒,则ACD ∠()90x =-︒,BAD ∠802x =︒+︒,ABD ∠()50x =-︒,由BDC ∠=ADC ADB ∠-∠,即可求出BDC ∠.【详解】设2CAD x ∠=︒,则()()11802902ACD ADC x x ∠=∠=︒-︒=-︒, 802BAD BAC CAD x ∠=∠+∠=︒+︒,()()1180802502ABD ADB x x ∠=∠=︒-︒-︒=-︒, 40BDC ADC ADB ∴∠=∠-∠=︒,故选:D .【考点】本题考查了三角形内角和定理的应用,解题关键是灵活运用相关知识进行求解.9、C【解析】【分析】先根据内角的度数求得外角的度数,进而求得多边形的边数,根据对角线的条数为()32n n -即可求得答案.【详解】 解:一个正n 边形的每个内角为144°,则每个外角为36︒, 故3601036n ︒==︒, 则对角线的条数为()10103=352-, 故选C .【考点】 本题考查了正多边形的内角与外角的关系,求正多边形的对角线条数,求得n 是解题的关键.10、B【解析】【分析】由AD 为ABC 的中线,可得:BD CD =,再利用ABD ACD CC -AB AC =-,即可得到答案.【详解】 解:AD 为ABC 的中线,BD CD ∴=,2020,2018AB AC ==,()()ABD ACD C C AB BD AD AC CD AD ∴-++-+=+AB BD AD AC CD AD =++---AB AC =-202020182=-=故选B .【考点】本题考查的是三角形的中线的概念,掌握三角形的中线的含义是解题的关键.二、填空题1、3【解析】【分析】根据多边形的外角和为360°求得多边形的边数,然后根据n 边形从一个顶点出发可以引(n -3)条对角线即可求得答案.【详解】解:∵一个多边形的每个内角都是120°,∴这个多边形的每个外角都是60°∴该多边形的边数为:360°÷60°=6,∴从这个多边形的一个顶点出发可以画对角线条数为:6﹣3=3.故答案为:3.【考点】本题主要考查多边形的外角和与对角线,解此题的关键在于熟练掌握多边形的外角和,多边形从一个顶点出发引对角线条数公式.2、7.5.【解析】【分析】观察三角形之间的关系,利用等高或同高的两个三角形的面积之比等于底之比,利用已知比例关系进行转化求解.【详解】如下图所示,连接AE ,∵:2:1DE CE =,6DEF S =△,4DBE S =△,∴21DEF CEF DBE CBE S S S S DE CE ===△△△△::::, ∴116322CEF S S ==⨯=△△DEF , 114222BEC BDE S S ==⨯=△△, ∴6342AEF DEF ABE DBE S S S S ===△△△△, 21ADE AEC S DE S EC ==△△, 设ABE S x =△,AEC S y =△,∴ 3AEF AEC CEF S S S y =+=+△△△ ,4ADE ABE DBE S S S x =+=+△△△, 由32AEF ABE S =S △△,2ADE AEC S =S △△可得, 33242y x x y⎧+=⎪⎨⎪+=⎩ , 解得592x y =⎧⎪⎨=⎪⎩, ∴5ABE S =△,92AEC S =△, 915527522ABC ABE AEC BEC S S S S =.=+-=+-=△△△△ . 故答案为:7.5.【考点】本题考查的是等高同高三角形,应用等高或同高的两个三角形的面积之比等于底之比进行求解是本题的关键.3、2225αβ+=︒【解析】【分析】由折叠的性质可知:A EDF ∠=∠,再利用三角形内角和定理及角之间的关系证明45180EDF α∠+︒=+︒,180B αβ=∠++︒,即可找出α与β之间的数量关系.【详解】解:由折叠的性质可知:A EDF ∠=∠,∵45CDE CED ∠∠==︒,∴90C ∠=︒,∴90A B ∠+∠=︒,∵45180EDF α∠+︒=+︒,180B αβ=∠++︒,∴452360A B αβ∠+∠+︒++=︒,∴2225αβ+=︒,故答案为:2225αβ+=︒.【考点】本题考查折叠的性质,三角形内角和定理,解题的关键是根据折叠的性质求出A EDF ∠=∠,根据角之间的关系求出45180EDF α∠+︒=+︒,180B αβ=∠++︒.4、67【解析】【分析】设BCA α∠=,A β∠=,根据平移的性质和角平分线的定义可表示出PGD ∠、OFD ∠和GOP ∠,再根据三角形内角和定理得出α和β的和,进而求出∠P 的值.【详解】解:将DG 与PF 的交点标为O ,如图由平移的性质得,DEF ABC ≅,DE AB ∥设BCA α∠=,A β∠=,则D AGD A β∠=∠=∠=,EFD BCA α∠=∠=,GP 平分∠AGD ,122PGD AGD β∴∠=∠= FP 平分∠DFB ,122OFD EFD α∴∠=∠=, 1802FOD αβ∴∠=--,1802GOP αβ∴∠=--,在ABC 中,180134B αβ+=-∠=在GPO 中,180P PGO GOP ∠=-∠-∠1180()2802αββ=----2αβ+=67=. 故答案为:67.【考点】本题主要考查了平移的性质、全等三角形的性质、平行线的性质和三角形内角和定理,牢固掌握以上知识点是做出本题的关键.5、545【解析】【分析】如图,连接CF ,设S △BFD =a ,根据3CD BD =,点E 是AC 的中点可分别表示出S 四边形DCEF 与S △ABC ,根据AB ⊥AC 时S △ABC 最大,即可得答案.【详解】解:如图,连接CF ,设S △BFD =a ,∵3CD BD =,点E 是AC 的中点,∴S △CDF =3S △BDF =3a ,S △BCE =S △BAE ,S △CFE =S △AFE ,∴S △ABF =S △CBF =S △BDF +S △CDF =4a ,∴S △ABD =S △ABF +S △BDF =5a ,∴S △ADC =3S △ABD =15a ,∴S △ABC =S △ABD +S △ADC =20a ,S △CFE =12(S △ADC -S △CDF )=6a ,∴S 四边形DCEF =S △CDF +S △CFE =9a ,∴S 四边形DCEF =920S △ABC , ∵AB =6,AC =8,∴AC 边上的高的最大值为6,∴AB ⊥AC 时S △ABC 最大,即S 四边形DCEF 的值最大,∴S 四边形DCEF 的最大值=920S △ABC =920×12×6×8=545,故答案为:545. 【考点】本题考查三角形的面积及中线的性质,等高的三角形面积比等于它们的底边的比;三角形的中线把三角形分成两个面积相等的两个三角形;熟练掌握相关性质是解题关键.三、解答题1、 (1)画图见解析(2)画图见解析(3)7.5【解析】【分析】(1)利用网格线过A 作BC 的垂线即可;(2)利用网格线的特点,取格点D ,满足3BD AD =,则D 即为所求作的点;(3)利用三角形的面积公式直接计算即可.(1)解:如图,AE 即为BC 上的高.(2)如图,利用网格特点,可得3BD AD =,∴D 即为所求作的点,满足3BCD ACD S S =△△. (3)1537.52BCD S =⨯⨯=. 【考点】本题考查的是画三角形的高,三角形的面积的计算,熟悉等高的两个三角形的面积之间的关系是解本题的关键.2、11【解析】【分析】多边形的内角和公式:(n-2)·180,外角和为360°.根据内角和与外角和的比为9∶2列方程,解方程即可.【详解】设这个多边形的边数是n ,(2)18093602n -⨯︒=︒ 解得:n=11.答:这个多边形是11边形.3、证明见解析.【解析】【详解】试题分析:根据互余、角平分线及对顶角等相关知识即可得出答案.证明:如图,∵∠ACB =90°,∴∠1+∠3=90°,∵CD ⊥AB ,∴∠2+∠4=90°,又∵BE 平分∠ABC ,∴∠1=∠2,∴∠3=∠4,∵∠4=∠5,∴∠3=∠5,即∠CFE =∠CEF .点睛:本题主要考查的知识有直角三角形两锐角互余、角平分线的定义、对顶角相等.利用等量代换是解题的关键.4、见解析【解析】【分析】设这个多边形的边数是n ,再列方程()12180360904n -⨯︒=︒+︒,解方程即可得到答案. 【详解】解:设这个多边形的边数是n , 由题意得:()12180360904n -⨯︒=︒+︒, 解得:12.n =答:这个多边形的边数是12.【考点】本题考查的是多边形的内角和定理,掌握利用一元一次方程解决多边形的内角和问题是解题的关键.5、60︒【解析】【分析】由AB 与CD 平行,利用两直线平行内错角相等求出B 的度数,在AOB 中,利用三角形内角和定理即可求出A ∠的度数.【详解】解:∵AB CD ,40C ∠=︒,∴40B C ∠=∠=︒,∵180A B AOB ∠+∠+∠=︒,∴18060∠=︒-∠-∠=︒A AOB B .【考点】此题考查了平行线的性质以及三角形内角和定理,熟练掌握平行线的性质及三角形内角和定理是解本题的关键.。

第十一章 三角形 素养综合测试 2022-2023学年 人教版数学八年级上册

第十一章    三角形   素养综合测试  2022-2023学年 人教版数学八年级上册

2022-2023学年度人教版初中数学八年级上册知识点过关及能力提升训练班级姓名第十一章三角形素养综合检测一、选择题(每小题3分,共30分)1.如图所示,∠BAC为钝角,AD⊥BC于D,BE⊥AC于E,CF⊥AB于F,△ABC中AC边上的高为()A.ADB.BEC.CFD.AF2.(2019贵州毕节中考)在下列长度的三条线段中,不能组成三角形的是()A.2 cm,3 cm,4 cmB.3 cm,6 cm,6 cmC.2 cm,2 cm,6 cmD.5 cm,6 cm,7 cm3.(2020辽宁沈阳中考)如图,直线AB∥CD,且AC⊥CB于点C,若∠BAC=35°,则∠BCD 的度数为()A.65°B.55°C.45°D.35°4.(2021湖北仙桃、潜江、天门、江汉油田中考)如图,在△ABC中,∠C=90°,点D在AC 上,DE∥AB,若∠CDE=160°,则∠B的度数为()A.40°B.50°C.60°D.70°5.如图,若∠A=70°,∠B=40°,∠C=32°,则∠BDC=()A.102°B.110°C.142°D.148°6.(2022独家原创)如图,在△ABC中,AD平分∠BAC,点E在射线BC上,EF⊥AD于F,∠B=40°,∠ACE=72°,则∠E的度数为()A.68°B.56°C.34°D.32°7.(2021台湾省中考改编)如图,四边形ABCD中,∠1、∠2、∠3分别为四边形ABCD 的外角.判断下列大小关系何者正确.()A.∠1+∠3=∠ABC+∠DB.∠1+∠3<∠ABC+∠DC.∠1+∠2+∠3=360°D.∠1+∠2+∠3>360°8.如图,在△ABC 中,AE 平分∠BAC 交BC 于点E,过点A 作AD ⊥BC,垂足为D,过点E 作EF ⊥AC,垂足为F.若∠DAE=15°,∠AEF=50°,则∠B 的度数为( )A.55°B.65°C.75°D.80°9.(2020黑龙江牡丹江期中)如图,△ABC 的面积是1,AD 是△ABC 的中线,AF=12FD,CE=12EF,则△DEF 的面积为( )A.12B.34C.827D.2910.(2020山东青岛市北期末)如图,已知△ABC 中,∠B=α,∠C=β(α>β),AD 是BC 边上的高,AE 是∠BAC 的平分线,则∠DAE 的度数为( )A.α-βB.2(α-β)C.α-2βD.12(α-β) 二、填空题(每小题3分,共24分)11.(2022江西南昌十中期末)如图,邱叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是.12.(2021湖南郴州中考)一个多边形的每一个外角都等于60°,则这个多边形的内角和为度.13.(2021江苏淮安中考)一个三角形的两边长分别是1和4,若第三边的长为偶数,则第三边的长是.14.(2021天津南开田家炳中学期中)将一副分别含有30°和45°角的两个直角三角板拼成如图所示的图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是.15.(2021河南郑州五校联考)如图,三角形纸片ABC中,∠A=75°,∠B=72°.将三角形纸片的一角折叠,使点C落在△ABC内,如果∠1=32°,那么∠2=.16.(2021福建厦门三中期末)如图,在△ABC中,∠ACB=90°,AD平分∠CAB,交边BC于点D,过点D作DE⊥AB,垂足为E.若∠CAD=20°,则∠EDB的度数是.17.(教材P12变式题)在△ABC中,∠ABC=∠C=2∠A,BD是∠ABC的平分线,则∠ADB 的度数为.18.(2022福建泉州七中期中)如图,在△ABC中,∠ACB=90°,CE是△ABC的角平分线,CD⊥AB,垂足为D,延长CE与外角∠ABG的平分线交于点F.若∠A=60°,则∠DCE+∠F=.三、解答题(共46分)19.(6分)如图所示,已知AD是△ABC的边BC上的中线.(1)作出△ABD的边BD上的高;(2)若△ABC的面积为10,求△ADC的面积;(3)若△ABD的面积为6,且BD边上的高为3,求BC的长.20.(6分)如图,已知△ABC的周长为33 cm,AD是BC边上的中线,AB=3AC.2(1)当AC=10 cm时,求BD的长;(2)若AC=12 cm,能否求出DC的长?为什么?21.(6分)如图,在△ABC中,BD是AC边上的高,∠A=70°.(1)求∠ABD的度数;(2)CE平分∠ACB交BD于点E,∠BEC=118°,求∠ABC的度数.22.(8分)如图,在△ABC中,∠B=2∠C,AD⊥BC于点D,AE平分∠BAC交BC于点E.(1)若∠C=40°,求∠DAE的度数;(2)若EF⊥AE交AC于点F,求证:∠C=2∠FEC.23.(2022吉林临江期末)(10分)我们探究过三角形内角和等于180°,四边形内角和等于360°,请解决下面的问题:(1)如图1,∠A+∠B+∠C+∠D=180°,则∠AOB+∠COD=(直接写出结果);(2)连接AD、BC,若AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线.①如图2,如果∠AOB=110°,求∠COD的度数;②如图3,若∠AOD=∠BOC,AB与CD平行吗?请写出理由.24.(2022山东济南外国语学校期末)(10分)已知∠MON=90°,点A、B分别在OM、ON 上运动(不与点O重合).(1)如图1,AE、BE分别是∠BAO和∠ABO的平分线,随着点A、点B的运动,∠AEB=;(2)如图2,若BC是∠ABN的平分线,BC的反向延长线与∠OAB的平分线交于点D.①若∠BAO=70°,则∠D=°;②随着点A、B的运动,∠D的大小会变吗?如果不会,求∠D的度数;如果会,请说明理由;(3)在图2的基础上,如果∠MON=α,其余条件不变,随着点A、B的运动(如图3),求∠D 的度数.(用含α的式子表示)答案全解全析1.B三角形的高是过一个顶点作垂直于它对边所在的直线的线段,所以△ABC中,AC 边上的高是线段BE.故选B.2.C选项A,2+3>4,能组成三角形;选项B,3+6>6,能组成三角形;选项C,2+2<6,不能组成三角形;选项D,5+6>7,能组成三角形.故选C.3.B∵AC⊥CB,∴∠ACB=90°,∴∠ABC=90°-∠BAC=90°-35°=55°,∵AB∥CD,∴∠BCD=∠ABC=55°,故选B.4.D∵∠CDE=160°,∴∠ADE=180°-160°=20°,∵DE∥AB,∴∠A=∠ADE=20°,∴∠B=180°-∠A-∠C=180°-20°-90°=70°.故选D.5.C如图,连接AD并延长,则∠BDE=∠BAD+∠B,∠CDE=∠CAD+∠C,∴∠BDC=∠BDE+∠CDE=∠BAD+∠B+∠CAD+∠C=∠BAC+∠B+∠C=142°,故选C.6.C 由题图知∠ACE=∠B+∠BAC,∠B=40°,∠ACE=72°, ∴∠BAC=∠ACE-∠B=72°-40°=32°. ∵AD 平分∠BAC,∴∠BAD=12∠BAC=12×32°=16°, ∴∠ADE=∠BAD+∠B=16°+40°=56°. ∵EF ⊥AD,∴∠E=90°-∠ADE=90°-56°=34°. 7.A 如图,连接BD,∵∠1=∠ABD+∠ADB,∠3=∠DBC+∠BDC,∴∠1+∠3=∠ABD+∠ADB+∠DBC+∠BDC=∠ABC+∠ADC, ∵四边形的外角和是360°, ∴∠1+∠2+∠3<360°.故选A. 8.B ∵AD ⊥BC,∠DAE=15°, ∴∠AED=90°-15°=75°, ∵∠AEF=50°,∴∠FEC=180°-∠AEF-∠AED=55°, ∵EF ⊥AC,∴∠EAF=90°-∠AEF=40°,∠C=90°-∠FEC=35°, ∵AE 平分∠BAC,∴∠BAC=2∠EAC=80°, ∵∠B+∠C+∠BAC=180°,∴∠B=180°-∠BAC-∠C=180°-80°-35°=65°. 9.D ∵△ABC 的面积是1,AD 是△ABC 的中线, ∴S △ACD =12S △ABC =12,∵AF=12FD,∴DF=23AD,∴S △CDF =23S △ACD =23×12=13,∵CE=12EF,∴EF=23CF,∴S △DEF =23S △CDF =23×13=29,故选D.10.D 在△ABC 中,∠B=α,∠C=β,∴∠BAC=180°-∠B-∠C=180°-α-β,∵AE 是∠BAC 的平分线,∴∠EAC=12∠BAC=90°-12(α+β).在Rt △ADC 中,∠DAC=90°-∠C=90°-β,∴∠DAE=∠DAC-∠EAC=90°-β-90°+12(α+β)=12(α-β),故选D. 11.三角形的稳定性解析 给凳子加了两根木条之后形成了三角形,所以“这样凳子就比较牢固了”的数学原理是三角形的稳定性. 12.720解析 ∵多边形的每一个外角都等于60°, ∴它的边数为360°÷60°=6, ∴它的内角和为180°×(6-2)=720°, 故答案为720. 13.4解析设第三边长为a,根据三角形的三边关系知,4-1<a<4+1,即3<a<5,又∵第三边的长是偶数,∴a为4.故答案为4.14.15°解析∵Rt△CDE中,∠C=90°,∠E=30°,∴∠BDF=∠C+∠E=90°+30°=120°,∵△BDF中,∠B=45°,∠BDF=120°,∴∠BFD=180°-45°-120°=15°.故答案为15°.15.34°解析如图,延长AE、BF交于点C',连接CC'.在△ABC'中,∠AC'B=180°-72°-75°=33°,∵∠ECF=∠AC'B,∠1=∠ECC'+∠EC'C,∠2=∠FCC'+∠FC'C,∴∠1+∠2=∠ECC'+∠EC 'C+∠FCC'+∠FC'C=2∠AC'B=66°,∵∠1=32°,∴∠2=66°-32°=34°,故答案为34°.16.40°解析∵AD平分∠CAB,∠CAD=20°,∴∠CAB=2∠CAD=40°,∵∠ACB=90°,∴∠B=90°-40°=50°,∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°-50°=40°,故答案为40°.17.108°解析∵在△ABC中,∠ABC=∠C=2∠A,∴令∠A=x,则∠ABC=∠C=2x,∵∠A+∠ABC+∠C=180°,∴x+2x+2x=180°,解得x=36°,∴∠A=36°,∠ABC=72°.∵BD是∠ABC的平分线,∠ABC=36°,∴∠ABD=12∴∠ADB=180°-∠A-∠ABD=180°-36°-36°=108°.18.45°解析∵CD⊥AB,∠A=60°,∴∠ADC=90°,∠ACD=30°,∵CE平分∠ACB,∠ACB=90°,∴∠ACE=∠ECB=1∠ACB=45°,2∴∠DCE=∠ACE-∠ACD=45°-30°=15°,∵∠ABG=∠A+∠ACB=150°,BF平分∠ABG,∠ABG=75°,∴∠FBG=12∵∠FBG=∠F+∠FCB,∴∠F=75°-45°=30°.∴∠DCE+∠F=15°+30°=45°.19.解析(1)如图所示,虚线即为所求.×10=5.(2)∵AD是△ABC的边BC上的中线,△ABC的面积为10,∴△ADC的面积=12(3)∵AD是△ABC的边BC上的中线,∴BD=CD,∵△ABD的面积为6,∴△ABC的面积为12,∵BD边上的高为3,∴BC=12×2÷3=8.20.解析(1)∵AB=3AC,AC=10 cm,∴AB=15 cm.2又∵△ABC的周长是33 cm,∴BC=33-10-15=8(cm).BC=4 cm.∵AD是BC边上的中线,∴BD=12(2)不能.理由如下:∵AB=3AC,AC=12 cm,∴AB=18 cm.2又∵△ABC的周长是33 cm,∴BC=33-12-18=3(cm).∵AC+BC=15<18,∴不能构成三角形,则不能求出DC的长.21.解析(1)∵BD是AC边上的高,∴∠ADB=∠BDC=90°,∵∠A=70°,∴∠ABD=90°-70°=20°.(2)∵∠BEC=∠BDC+∠DCE,且∠BEC=118°,∠BDC=90°,∴∠DCE=118°-90°=28°,∵CE平分∠ACB,∴∠DCB=2∠DCE=56°,∴∠DBC=90°-56°=34°,∴∠ABC=∠ABD+∠DBC=20°+34°=54°. 22.解析 (1)∵∠C=40°,∠B=2∠C, ∴∠B=80°,∴∠BAC=180°-80°-40°=60°, ∵AE 平分∠BAC,∴∠EAC=12∠BAC=30°, ∵AD ⊥BC,∴∠ADC=90°, ∴∠DAC=90°-40°=50°,∴∠DAE=∠DAC-∠EAC=50°-30°=20°. (2)证明:如图,∵EF ⊥AE,∴∠AEF=90°, ∴∠AED+∠FEC=90°,∵∠DAE+∠AED=90°,∴∠DAE=∠FEC, ∵AE 平分∠BAC,∴∠EAC=12∠BAC=12(180°-∠B-∠C)=12(180°-3∠C)=90°-32∠C, ∵∠DAE=∠DAC-∠EAC,∴∠DAE=∠DAC-(90°-32∠C)=90°-∠C-90°+32∠C=12∠C, ∴∠FEC=12∠C,∴∠C=2∠FEC.23.解析(1)∵∠AOB+∠COD+∠A+∠B+∠C+∠D=180°×2=360°,∠A+∠B+∠C+∠D=180°, ∴∠AOB+∠COD=360°-180°=180°. 故答案为180°.(2)①∵AO 、BO 、CO 、DO 分别是四边形ABCD 的四个内角的平分线, ∴∠OAB=12∠DAB,∠OBA=12∠CBA,∠OCD=12∠BCD,∠ODC=12∠ADC, ∴∠OAB+∠OBA+∠OCD+∠ODC=12×360°=180°, 在△OAB 中,∠OAB+∠OBA=180°-∠AOB, 在△OCD 中,∠OCD+∠ODC=180°-∠COD, ∴180°-∠AOB+180°-∠COD=180°, ∴∠AOB+∠COD=180°.∵∠AOB=110°,∴∠COD=180°-110°=70°. ②AB ∥CD.理由如下:∵AO 、BO 、CO 、DO 分别是四边形ABCD 的四个内角的平分线, ∴∠OAB=12∠DAB,∠OBA=12∠CBA,∠OCD=12∠BCD,∠ODC=12∠ADC, ∴∠OAB+∠OBA+∠OCD+∠ODC=12×360°=180°, 在△OAB 中,∠OAB+∠OBA=180°-∠AOB, 在△OCD 中,∠OCD+∠ODC=180°-∠COD, ∴180°-∠AOB+180°-∠COD=180°, ∴∠AOB+∠COD=180°.∴∠AOD+∠BOC=360°-(∠AOB+∠COD)=360°-180°=180°, ∵∠AOD=∠BOC,∴∠AOD=∠BOC=90°.在△AOD 中,∠DAO+∠ADO=180°-∠AOD=180°-90°=90°,∵∠DAO=12∠DAB,∠ADO=12∠ADC,∴12∠DAB+12∠ADC=90°, ∴∠DAB+∠ADC=180°,∴AB ∥CD.24.解析 (1)∵∠MON=90°,∴∠OAB+∠OBA=90°, ∵AE 、BE 分别是∠BAO 和∠ABO 的平分线, ∴∠BAE=12∠BAO,∠ABE=12∠ABO, ∴∠BAE+∠ABE=12(∠BAO+∠ABO)=45°, ∴∠AEB=180°-45°=135°, 故答案为135°.(2)①∵∠AOB=90°,∠BAO=70°, ∴∠ABO=20°,∠ABN=160°, ∵BC 是∠ABN 的平分线,∴∠OBD=∠CBN=12×160°=80°,∵AD 平分∠BAO,∴∠DAB=35°,∴∠D=180°-∠ABD-∠BAD=180°-∠OBD-∠ABO-∠BAD=180°-80°-20°-35°=45°, 故答案为45.②∠D 的度数不随A 、B 的移动而发生变化. 设∠BAD=x,∵AD 平分∠BAO,∴∠BAO=2x, ∵∠AOB=90°,∴∠ABN=180°-∠ABO=∠AOB+∠BAO=90°+2x, ∵BC 平分∠ABN,∴∠ABC=12∠ABN=45°+x, ∵∠ABC=180°-∠ABD=∠D+∠BAD, ∴∠D=∠ABC-∠BAD=45°+x-x=45°. (3)设∠BAD=x,∵AD 平分∠BAO,∴∠BAO=2x, ∵∠AOB=α,∴∠ABN=180°-∠ABO=∠AOB+∠BAO=α+2x, ∵BC 平分∠ABN,∴∠ABC=12α+x, ∵∠ABC=180°-∠ABD=∠D+∠BAD, ∴∠D=∠ABC-∠BAD=12α+x -x=12α.。

人教版八年级数学上《第11章三角形》单元测试含答案解析

人教版八年级数学上《第11章三角形》单元测试含答案解析

《第11章三角形》一、填空题1.如果三角形的一个角等于其它两个角的差,则这个三角形是三角形.2.已知△ABC中,AD⊥BC于D,AE为∠A的平分线,且∠B=35°,∠C=65°,则∠DAE的度数为.3.△ABC中,如果∠A=∠B=3∠C,则∠A= .4.已知,如图,∠ACD=130°,∠A=∠B,那么∠A的度数是°.5.如图所示,图中有个三角形,个直角三角形.6.四边形ABCD中,若∠A+∠B=∠C+∠D,若∠C=2∠D,则∠C= .7.某足球场需铺设草皮,现有正三角形、正四边形、正五边形、正六边形、正八边形、正十边形6种形状的草皮,请你帮助工人师傅选择两种草皮来铺设足球场,可供选择的两种组合是.8.若一个n边形的边数增加一倍,则内角和将增加.9.如图,BC⊥ED于O,∠A=27°,∠D=20°,则∠B= ,∠ACB= .10.如图,由平面上五个点A、B、C、D、E连接而成,则∠A+∠B+∠C+∠D+∠E= .二、选择题11.如果一个三角形的三个外角之比为2:3:4,则与之对应的三个内角度数之比为()A.4:3:2 B.5:3:1 C.3:2:412.三角形中至少有一个内角大于或等于()A.45° B.55° C.60° D.65°13.如图,下列说法中错误的是()A.∠1不是三角形ABC的外角B.∠B<∠1+∠2C.∠ACD是三角形ABC的外角D.∠ACD>∠A+∠B14.如图,C在AB的延长线上,CE⊥AF于E,交FB于D,若∠F=40°,∠C=20°,则∠FBA的度数为()A.50° B.60° C.70° D.80°15.三条线段a=5,b=3,c的值为整数,由a、b、c为边可组成三角形()A.1个B.3个C.5个D.无数个16.多边形每一个内角都等于150°,则从此多边形一个顶点发出的对角线有()A.7条B.8条C.9条D.10条17.如图,△ABC中,D为BC上的一点,且S△ACD =S△ABD,则AD为()A.高B.中线 C.角平分线 D.不能确定18.现有长度分别为2cm、4cm、6cm、8cm的木棒,从中任取三根,能组成三角形的个数为()A.1 B.2 C.3 D.4三、解答题(共46分)19.如图,在三角形ABC中,∠B=∠C,D是BC上一点,且FD⊥BC,DE⊥AB,∠AFD=140°,你能求出∠EDF的度数吗?20.如图,有甲、乙、丙、丁四个小岛,甲、乙、丙在同一条直线上,而且乙、丙在甲的正东方,丁岛在丙岛的正北方,甲岛在丁岛的南偏西52°方向,乙岛在丁岛的南偏东40°方向.那么,丁岛分别在甲岛和乙岛的什么方向?21.已知等腰三角形的周长是16cm.(1)若其中一边长为4cm,求另外两边的长;(2)若其中一边长为6cm,求另外两边长;(3)若三边长都是整数,求三角形各边的长.22.如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,试问BE∥DF吗?为什么?《第11章三角形》参考答案与试题解析一、填空题1.如果三角形的一个角等于其它两个角的差,则这个三角形是三角形.【考点】三角形内角和定理.【分析】三角形三个内角之和是180°,三角形的一个角等于其它两个角的差,列出两个方程,即可求出答案.【解答】解:设三角形的三个角分别为:a、b、c,则由题意得:解得:a=90°故这个三角形是直角三角形.【点评】本题考查直角三角形的有关性质,可利用方程进行求解.2.已知△ABC中,AD⊥BC于D,AE为∠A的平分线,且∠B=35°,∠C=65°,则∠DAE的度数为.【考点】三角形内角和定理.【分析】首先根据三角形的内角和定理和角平分线的定义求出∠EAC的度数,再根据三角形的内角和定理求出∠DAC的度数,进而求∠DAE的度数.【解答】解:∵∠B=35°,∠C=65°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣35°﹣65°=80°.∵AE为∠BAC的平分线,∴∠EAC=∠BAC=×80°=40°.∵AD⊥BC,∴∠ADC=90°,在△ADC中,∵∠DAC=180°﹣∠ADC﹣∠C=180°﹣90°﹣65°=25°,∴∠DAE=∠EAC﹣∠DAC=40°﹣25°=15°.故答案为:15°.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.3.△ABC中,如果∠A=∠B=3∠C,则∠A= .【考点】三角形内角和定理.【分析】根据题意可得出2∠A=∠B=6∠C,设∠C=x,则∠B=6x,∠A=3x,再由三角形内角和定理即可得出x的值,进而得出结论.【解答】解:∵ABC中,∠A=∠B=3∠C,∴2∠A=∠B=6∠C,设∠C=x,则∠B=6x,∠A=3x,∵∠A+∠B+∠C=180°,∴3x+6x+x=180°,解得x=18°,∴∠A=3x=54°.故答案为:54°.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.4.已知,如图,∠ACD=130°,∠A=∠B,那么∠A的度数是°.【考点】三角形的外角性质.【分析】直接根据三角形内角与外角的性质解答即可.【解答】解:∵∠ACD是△ABC的外角,∴∠ACD=∠A+∠B,∵∠ACD=130°,∠A=∠B,∴∠A==65°.【点评】本题比较简单,考查的是三角形外角的性质,即三角形的外角等于不相邻的两个内角的和.5.如图所示,图中有个三角形,个直角三角形.【考点】三角形.【分析】三角形有:△ABC、△ADE、△ADB、△ADC、△CDE;根据直角三角形性质,直角三角形有:△ADE、△ADB、△ADC、△CDE.【解答】解:由分析知:图中有5个三角形,4个直角三角形.【点评】本题考查三角形和直角三角形的判定,认真列举即可.6.四边形ABCD中,若∠A+∠B=∠C+∠D,若∠C=2∠D,则∠C= .【考点】多边形内角与外角.【分析】先根据任意四边形的内角和为360°及∠A+∠B=∠C+∠D,∠C=2∠D列出关于∠D的关系式,求出∠D的度数,再由∠C=2∠D即可求解.【解答】解:∵任意四边形的内角和为360°,∴∠A+∠B+∠C+∠D=360°,∵∠A+∠B=∠C+∠D,∠C=2∠D,∴∠A+∠B+∠C+∠D=6∠D=360°,∴∠D=60°,∴∠C=2×60°=120°.【点评】本题考查的是四边形的内角和定理,解答此题的关键是根据四边形的内角和定理及四个角之间的关系列出关于∠D的关系式,再求出∠C的度数即可.7.某足球场需铺设草皮,现有正三角形、正四边形、正五边形、正六边形、正八边形、正十边形6种形状的草皮,请你帮助工人师傅选择两种草皮来铺设足球场,可供选择的两种组合是.【考点】平面镶嵌(密铺).【专题】开放型.【分析】选择两种草皮来铺设足球场,共15种可能.根据正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个角之和能否为360°:若能,则说明能铺满;反之,则说明不能铺满.依此得出可供选择的两种组合.【解答】解:正三角形、正四边形内角分别为60°、90°,当60°×3+90°×2=360°,故能铺满;正三角形、正五边形内角分别为60°、108°,显然不能构成360°的周角,故不能铺满;正三角形、正六边形内角分别为60°、120°,当60°×2+120°×2=360°,故能铺满;正三角形、正八边形内角分别为60°、135°,显然不能构成360°的周角,故不能铺满;正三角形、正十边形内角分别为60°、144°,显然不能构成360°的周角,故不能铺满;正四边形、正五边形内角分别为90°、108°,显然不能构成360°的周角,故不能铺满;正四边形、正六边形内角分别为90°、120°,显然不能构成360°的周角,故不能铺满;正四边形、正八边形内角分别为90°、135°,当90°+135°×2=360°,故能铺满;正四边形、正十边形内角分别为90°、144°,显然不能构成360°的周角,故不能铺满;正五边形、正六边形内角分别为108°、120°,显然不能构成360°的周角,故不能铺满;正五边形、正八边形内角分别为108°、135°,显然不能构成360°的周角,故不能铺满;正五边形、正十边形内角分别为108°、144°,当108°×2+144°=360°,故能铺满;正六边形、正八边形内角分别为120°、135°,显然不能构成360°的周角,故不能铺满;正六边形、正十边形内角分别为120°、144°,显然不能构成360°的周角,故不能铺满;正八边形、正十边形内角分别为135°、144°,显然不能构成360°的周角,故不能铺满.故可供选择的两种组合是:正三角形和正四边形、正三角形和正六边形、正四边形和正八边形、正五边形、正十边形中任选两种即可.【点评】解决此类题,可以记住几个常用正多边形的内角,及能够用两种正多边形镶嵌的几个组合.8.若一个n边形的边数增加一倍,则内角和将增加.【考点】多边形内角与外角.【分析】n边形的内角和是(n﹣2)•180°,将n边形的边数增加一倍就变成2n边形,2n边形的内角和是(2n﹣2)•180°,据此即可求得增加的度数.【解答】解:∵n边形的内角和是(n﹣2)•180°,∴2n边形的内角和是(2n﹣2)•180°,∴将n边形的边数增加一倍,则它的内角和增加:(2n﹣2)•180°﹣(n﹣2)•180°=n×180°.故答案为n×180°.【点评】本题主要考查了多边形的内角和公式,整式的化简,都是需要熟练掌握的内容.9.如图,BC⊥ED于O,∠A=27°,∠D=20°,则∠B= ,∠ACB= .【考点】直角三角形的性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BEO=∠A+∠D,再根据直角三角形两锐角互余列式计算即可求出∠B,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACB=∠D+∠COD.【解答】解:∵∠A=27°,∠D=20°,∴∠BEO=∠A+∠D=27°+20°=47°,∵BC⊥ED,∴∠B=90°﹣∠BEO=90°﹣47°=43°;在Rt△COD中,∠ACB=∠D+∠COD=20°+90°=110°.故答案为:43°;110°.【点评】本题考查了直角三角形两锐角互余的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.10.如图,由平面上五个点A、B、C、D、E连接而成,则∠A+∠B+∠C+∠D+∠E= .【考点】三角形的外角性质;三角形内角和定理.【分析】延长CE交AB于F,再根据三角形内角与外角的关系求出∠BFC=∠A+∠C,∠D+∠DEG=∠EGB,再根据三角形内角和定理解答即可.【解答】解:延长CE交AB于F,∵∠BFC是△ACF的外角,∴∠BFC=∠A+∠C,∵∠EGB是△EDG的外角,∴∠EGB=∠D+∠DEG,∵∠B+∠BFC+∠EGB=180°,∴∠A+∠B+∠C+∠D+∠E=180°.【点评】此题比较简单,解答此题的关键是延长CE交AB于F,构造出△BGF,利用三角形外角的性质把所求的角归结到一个三角形中,再根据三角形内角和定理求解.二、选择题11.如果一个三角形的三个外角之比为2:3:4,则与之对应的三个内角度数之比为()A.4:3:2 B.5:3:1 C.3:2:4【考点】三角形的外角性质.【分析】已知三角形三个外角的度数之比,可以设一份为k°,根据三角形的外角和等于360°列方程求三个内角的度数,确定三角形内角的度数,然后求出度数之比.【解答】解:设一份为k°,∵三个外角之比为2:3:4,∴三个外角的度数分别为2k°,3k°,4k°,∵2k°+3k°+4k°=360°,解得k°=40°,∴三个外角分别为80°,120°和160°,∵三角形外角与它相邻的内角互补,与之对应的三个内角的度数分别是100°,60°和20°,即三个内角的度数的比为5:3:1.故选B.【点评】本题考查三角形外角的性质及三角形的外角与它相邻的内角互补的知识,解答的关键是沟通外角和内角的关系.12.三角形中至少有一个内角大于或等于()A.45° B.55° C.60° D.65°【考点】三角形内角和定理.【分析】根据三角形的内角和为180°解答即可.【解答】解:∵三角形的内角和为180°,∴当三个内角均小于60°时不能构成三角形,∴三角形中至少有一个内角大于或等于60°.故选C.【点评】此题比较简单,考查的是三角形的内角和为180°.13.如图,下列说法中错误的是()A.∠1不是三角形ABC的外角B.∠B<∠1+∠2C.∠ACD是三角形ABC的外角D.∠ACD>∠A+∠B【考点】三角形的外角性质.【分析】根据三角形的外角等于和它不相邻的两个内角的和,判断A正确,D错误;由三角形外角的定义,判断C正确;三角形的外角大于和它不相邻的任何一个内角,判断B正确.【解答】解:A、∠1不是三角形ABC的外角,正确;B、∠B<∠1+∠2,正确;C、∠ACD是三角形ABC的外角,正确;D、∠ACD=∠A+∠B,故D错误.故选D.【点评】本题考查三角形外角的性质以及考查三角形内角与外角的关系.14.如图,C在AB的延长线上,CE⊥AF于E,交FB于D,若∠F=40°,∠C=20°,则∠FBA的度数为()A.50° B.60° C.70° D.80°【考点】三角形的外角性质;三角形内角和定理.【分析】先根据三角形内角和定理求出∠EDF的度数,再根据对顶角的性质求出∠CDB的度数,由三角形外角的性质即可求出∠FBA的度数.【解答】解:∵CE⊥AF于E,∴∠FED=90°,∵∠F=40°,∴∠EDF=180°﹣∠FED﹣∠F=180°﹣90°﹣40°=50°,∵∠EDF=∠CDB,∴∠CDB=50°,∵∠C=20°,∠FBA是△BDC的外角,∴∠FBA=∠CDB+∠C=50°+20°=70°.故选C.【点评】本题考查的是三角形内角和定理及外角的性质,解答此题的关键是熟知以下知识:(1)三角形的内角和为180°;(2)三角形的外角等于与之不相邻的两个内角的和.15.三条线段a=5,b=3,c的值为整数,由a、b、c为边可组成三角形()A.1个B.3个C.5个D.无数个【考点】三角形三边关系.【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边c的范围,根据c的值为整数,即可确定c的值.从而确定三角形的个数.【解答】解:c的范围是:2<c<8,因而c的值可以是:3、4、5、6、7共5个数,因而由a、b、c为边可组成5个三角形.故选C.【点评】本题需要理解的是如何根据已知的两条边求第三边的范围.16.多边形每一个内角都等于150°,则从此多边形一个顶点发出的对角线有( )A .7条B .8条C .9条D .10条【考点】多边形内角与外角;多边形的对角线.【分析】多边形的每一个内角都等于150°,多边形的内角与外角互为邻补角,则每个外角是30度,而任何多边形的外角是360°,则求得多边形的边数;再根据不相邻的两个顶点之间的连线就是对角线,则此多边形从一个顶点出发的对角线共有(n ﹣3)条,即可求得对角线的条数.【解答】解:∵多边形的每一个内角都等于150°,∴每个外角是30°,∴多边形边数是360°÷30°=12,则此多边形从一个顶点出发的对角线共有12﹣3=9条.故选C .【点评】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.多边形从一个顶点出发的对角线共有(n ﹣3)条.17.如图,△ABC 中,D 为BC 上的一点,且S △ACD =S △ABD ,则AD 为( )A .高B .中线C .角平分线D .不能确定【考点】三角形的面积.【分析】过A 作AE ⊥BC ,分别计算S △ACD 、S △ABD ,根据S △ACD =S △ABD 即可求得BD=DC ,即可解题.【解答】解:过A 作AE ⊥BC ,则S △ACD =BD •AE ,S △ABD =BC •AE ,∵S △ACD =S △ABD ,∴BD=BC ,∴AD 为中线.故选B .【点评】本题考查了三角形面积的计算,考查了三角形中线的定义.本题中求证BD=DC 是解题的关键.18.现有长度分别为2cm 、4cm 、6cm 、8cm 的木棒,从中任取三根,能组成三角形的个数为( ) A .1 B .2 C .3 D .4【考点】三角形三边关系.【分析】根据三角形的三边关系定理,只要满足任意两边的和大于第三边,即可确定有哪三个木棒组成三角形.【解答】解:能组成三角形的三条线段是:4cm 、6cm 、8cm .只有一种结果.故选A .【点评】考查三角形的边时,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.三、解答题(共46分)19.如图,在三角形ABC 中,∠B=∠C ,D 是BC 上一点,且FD ⊥BC ,DE ⊥AB ,∠AFD=140°,你能求出∠EDF 的度数吗?【考点】等腰三角形的性质.【分析】由于DF ⊥BC ,DE ⊥AB ,所以∠FDC=∠FDB=∠DEB=90°,又因为△ABC 中,∠B=∠C ,所以∠EDB=∠DFC ,因为∠A FD=140°,所以∠EDB=∠DFC=40°,所以∠EDF=90°﹣∠EDB=50°.【解答】解:∵DF ⊥BC ,DE ⊥AB ,∴∠FDC=∠FDB=∠DEB=90°,又∵∠B=∠C,∴∠EDB=∠DFC,∵∠AFD=140°,∴∠EDB=∠DFC=40°,∴∠EDF=90°﹣∠EDB=50°.【点评】本题考查了等腰三角形的性质;利用三角形的内角和定理求解角的度数是正确解答本题的关键.20.如图,有甲、乙、丙、丁四个小岛,甲、乙、丙在同一条直线上,而且乙、丙在甲的正东方,丁岛在丙岛的正北方,甲岛在丁岛的南偏西52°方向,乙岛在丁岛的南偏东40°方向.那么,丁岛分别在甲岛和乙岛的什么方向?【考点】方向角;垂线;平行线的性质.【专题】应用题.【分析】根据方向角的定义即可求解.分别作AM∥CD,NB∥CD,根据两直线平行,内错角相等即可求得∠1与∠2的度数.【解答】解:设甲岛处的位置为A,乙岛处的位置为B,丙岛处的位置为D,丁岛处的位置为C.作AM∥CD,NB∥CD,如图:∵丁岛在丙岛的正北方,∴CD⊥AB.∵甲岛在丁岛的南偏西52°方向,∴∠ACD=52°.又∵AM∥CD,∴∠1=∠ACD=52°.∴丁岛在甲岛的北偏东52°方向.∵乙岛在丁岛的南偏东40°方向,∴∠BCD=40°.又∵BN∥CD,∴∠2=∠BCD=40°,∴丁岛在乙岛的北偏西40°方向.【点评】本题主要考查了方向角的定义和平行线的性质,是一个基础的内容.21.已知等腰三角形的周长是16cm.(1)若其中一边长为4cm,求另外两边的长;(2)若其中一边长为6cm,求另外两边长;(3)若三边长都是整数,求三角形各边的长.【考点】等腰三角形的性质;三角形三边关系.【分析】(1)(2)由于未说明已知的边是腰还是底,故需分情况讨论,从而求另外两边的长.(3)根据三边长都是整数,且周长是16cm,还是等腰三角形,所以可用列表法,求出其各边长.【解答】解:(1)如果腰长为4cm,则底边长为16﹣4﹣4=8cm.三边长为4cm,4cm,8cm,不符合三角形三边关系定理.所以应该是底边长为4cm.所以腰长为(16﹣4)÷2=6cm.三边长为4cm,6cm,6cm,符合三角形三边关系定理,所以另外两边长都为6cm;(2)如果腰长为6cm,则底边长为16﹣6﹣6=4cm.三边长为4cm,6cm,6cm,符合三角形三边关系定理.所以另外两边长分别为6cm和4cm.如果底边长为6cm,则腰长为(16﹣6)÷2=5cm.三边长为6cm,5cm,5cm,符合三角形三边关系定理,所以另外两边长都为5cm;(3)因为周长为16cm,且三边都是整数,所以三角形的最长边小于8cm且是等腰三角形,我们可用列表法,求出其各边长如下:7cm,7cm,2cm;6cm,5cm,5cm;6cm,6cm,4cm,共有这三种情况.【点评】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.当题目指代不明时,一定要分情况讨论,把符合条件的保留下来,不符合的舍去.22.如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,试问BE∥DF吗?为什么?【考点】平行线的判定;多边形内角与外角.【专题】探究型.【分析】要证BE∥DF,需证∠FDC=∠BEC,由于已知里给出了两条角平分线,四边形ABCD内角和为360°,∠A=∠C=90°,可得:∠FDC+∠EBC=90°,在△BCE中,∠BEC+∠E BC=90°,等角的余角相等,就可得到∠FDC=∠BEC,即可证.【解答】解:平行.∵∠A=∠C=90°,四边形ABCD的内角和为360°,∴∠ADC+∠ABC=180°,∵BE平分∠ABC,DF平分∠ADC,∴∠FDC+∠EBC=90°.又∵∠C=90°,∴∠BEC+∠EBC=90°,∴∠FDC=∠BEC,∴BE∥DF.【点评】本题利用了角平分线性质和判定,四边形的内角和为360°,同角的余角相等.。

第11章 三角形 单元测试题 2022—2023学年人教版数学八年级上册(含答案)

第11章 三角形 单元测试题   2022—2023学年人教版数学八年级上册(含答案)

第十一章《三角形》单元检测题一、选择题(每小题3分,共30分)1.下列各组数作为三条线段的长,能作为三角形的三条边的一组是()A.2,6,3 B.5,6,13 C.2,2,4 D.4,4,7 2.如图所示,一扇窗户打开后,用窗钩AB即可固定,这里所用的几何原理是()A.两点之间线段最短B.垂线段最短C.两定确定一条直线D.三角形的稳定性3.如图,在证明“△ABC内角和等于180°”时,延长BC至D,过点C作CE∥AB,得到∠ABC=∠ECD,∠BAC=∠ACE,由于∠BCD=180°,可得到∠ABC+∠ACB+∠BAC=180°,这个证明方法体现的数学思想是()A.数形结合B.特殊到一般C.一般到特殊D.转化4.下列说法中,错误的是()A.三角形中至少有一个内角不小于60°B.三角形的角平分线、中线、高均在三角形的内部C.三角形两边之差小于第三边D.多边形的外角和等于360°5.等腰三角形的周长为13 cm,其中一边长为3 cm,则该等腰三角形的底边长为( )A.7 cm B.3 cm C.9 cm D.5 cm6.如图,在△ABC中,AD⊥BC于点D,BE⊥AC于点E,AD与BE相交于点F,若BF=AC,∠CAD=25°,则∠ABE的度数为()A.30°B.15°C.25°D.20°7.已知△ABC中,∠A=80°,∠B、∠C的平分线的夹角是()A.130°B.60°C.130°或50°D.60°或120°8.有下列说法:①由许多条线段连接而成的图形叫做多边形;②从一个多边形(边数为n)的同一个顶点出发,分别连接这个顶点与其余与之不相邻的各顶点,可以把这个多边形分割成()2n-个三角形;③角的边越长,角越大;④一条射线就是一个周角.其中正确的结论有()A.1个B.2个C.3个D.0个9.将一个四边形ABCD的纸片剪去一个三角形,则剩下图形的内角和为().A.180°B.180°或360°C.360°或540°D.180°或360°或540°10.如图,在四边形ABCD中,∠ABC与∠BCD的平分线的交点E恰好在AD边上,则∠BEC=()A.∠A+∠D﹣45°B.12(∠A+∠D)+45°C.180°﹣(∠A+∠D)D.12∠A+12∠D二、填空题(每题3分,共24分)11.已知等腰三角形的两边长是5和12,则它的周长是______________;12.△ABC中,∠B=40°,D在BA的延长线上,AE平分∠CAD,且AE∥BC,则∠BAC= .13.如图中,若BD、CD为角平分线,且∠A=50︒,∠E=130︒,∠则∠D=___ 度.14.如图,在5×5的方格纸中,每个小正方形边长为1,点O 、A 、B 在方格纸的交点(格点)上,在第四象限内的格点上找点C ,使△ABC 的面积为3,则这样的点C 共有个_____个.15.如图,五边形ABCDE 中,AE ∥CD ,∠A=147°,∠B=121°,则∠C= .16.图中共有三角形 个,其中以AE 为边的三角形有 个.17.如图,在ABC ∆中,已知D ,E ,F 分别为BC ,AD ,CE 的中点,且28ABC S cm ∆=,则图中阴影部分BEF ∆的面积等于__2cm .18.用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE.图中,BAC∠=____度.三.解答题(共46分,19题6分,20 ---24题8分)19.如图所示,直线AD和BC相交于O,AB∥CD,∠AOC=95°,∠B=50°,求∠A 和∠D.20.如果一个三角形的外角等于与它相邻内角的3倍,另有一内角为32°,求这个三角形的各内角度数.21.如图,在△ABC中,BD是∠ABC的平分线,CE是AB边上的高,且∠ACB=60°,∠ADB=97°,求∠A和∠ACE的度数.22.如图,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B;求证:CD⊥AB;23.如图,在Rt△ABC中,∠A=90°,E为边AC上一点(不与点A,C重合),连接BE,在BE的延长线上取点D,连接DC.∠ABE的邻补角的角平分线和∠DCE的邻补角的角平分线交于点P.(1)当∠D=90°时,求证:①∠ABE=∠DCE;②BP⊥CP;(2)判断∠D与∠P的数量关系,并说明理由.24.在△ABC中,BD是△ABC的角平分线,E为边AC上一点,EF⊥BC,垂足为F,EG平分∠AEF交BC于点G.(1)如图1,若∠BAC=90°,延长AB、EG交于点M,∠M=α.①用含α的式子表示∠AEF为;②求证:BD∥ME;(2)如图2,∠BAC<90°,延长DB,EG交于点N,请用等式表示∠A与∠N 的数量关系,并证明.答案一、选择题二、填空题11.29解:当5为腰长时,∵5+5<12,故不能组成三角形,当12为腰长时,边长分别为:5,12,12,∵5+12>12,故能组成三角形,故周长为:5+12+12=29;故答案为:29.12.100°13.90解:∵BD、CD是∠ABE和∠ACE的角平分线,∴∠DBE=12∠ABE,∠DCE=12∠ACE,∵∠ABE+∠ACE=360°-∠A-(360°-∠E)=130°-50°=80°∴∠DBE+∠DCE=40°∴∠D=∠E-(∠DBE+∠DCE)= 130°-40°=90°故答案为:9014.3解:AB=3,设C 到AB 的距离是a ,则12×3a=3, 解得a=2,则C 在到AB 的距离是2,且与AB 平行是直线上,则在第四象限满足条件的格点有3个. 故答案为:3.15.92°16.解:(1)①△BDO ,△ABO ,△AOE ,共3个; ②△ABD ,△ADC ,2个; ③△ABE ,△BCE ,2个; ④△ABC ,1个;综上,图中共有共8个三角形;(2)以AE 为边的三角形有:△AOE ,△ABE ,2个; 故答案为:8;2. 17.2解:∵E 是AD 的中点,∴S △BDE =12S △ABD ,S △CDE =12S △ACD ,∴S △BDE + S △CDE =12S △ABC =1842⨯= (cm 2),即S △BCE =4(cm 2). ∵F 为CE 中点,∴S △BEF =12S △BCE =1422⨯=(cm 2).故答案为2. 18.36°. 解:(52)1801085ABC -⨯︒∠==︒,ABC ∆是等腰三角形, 36BAC BCA ∴∠=∠=度.三、解答题19.解:在△ABO 中,∵∠AOC=95°,∠B=50°, ∴∠A=∠AOC ﹣∠B=95°﹣50°=45°; ∵AB ∥CD , ∴∠D=∠A=45°.20.解:设三角形的一个内角为x . ∴3x+x=180°⇒x=45°. 又∵三角形另一内角为32°,∴180°﹣45°﹣32°=103°.∴三角形个内角度数分别为45°,32°,103°.21.解:∵∠ADB=∠DBC+∠ACB,∴∠DBC=∠ADB-∠ACB=97°-60°=37°.∵BD是∠ABC的平分线,∴∠ABC=74°,∴∠A=180°-∠ABC-∠ACB=46°.∵CE是AB边上的高,∴∠AEC=90°,∴∠ACE=90°-∠A=44°.22.【分析】(1)利用三角形三边关系进而得出c的取值范围,进而得出答案;(2)①根据偶数的定义,以及x的取值范围即可求解;②利用等腰三角形的判定方法得出即可.【解答】解:(1)因为a=4,b=6,所以2<c<10.故周长x的范围为12<x<20.(2)①因为周长为小于18的偶数,所以x=16或x=14.当x为16时,c=6;当x为14时,c=4.②当c=6时,b=c,△ABC为等腰三角形;当c=4时,a=c,△ABC为等腰三角形.综上,△ABC是等腰三角形.【点评】此题主要考查了等腰三角形的判定和三角形三边关系,得出c的取值范围是解题关键.23.(1)证明:①∵∠A=90°,∠D=90°,∴∠A=∠D,∵∠A+∠ABE+∠AEB=∠D+∠DCE+∠DEC=180°,∠AEB=∠DEC,∴∠ABE=∠DCE;②记AB,DC的延长线上分别有M,N点,∵∠ABE=∠DCE,∠ABE+∠MBE=∠DCE+∠NCE,∴∠MBE=∠NCE,∵BP平分∠MBE,CP平分∠NCE,∴∠MBE=2∠MBP,∠NCE=2∠PCE,∴∠MBP=∠PCE,∵∠MBP+∠ABP=180°,∴∠PCE+∠ABP=180°,∵∠A+∠ABP+∠P+∠PCE=360°,∠A=90°,∴∠P=90°,∴BP⊥CP;(2)∠D+2∠P=270°,理由:设∠PBE=x,∠PCE=y,则∠DBM=2x,∠ACN=2y,∴∠ABE=180°﹣2x,∠DCE=180°﹣2y,由(1)①得∠ABE+∠A=∠DCE+∠D,∴∠D=∠ABE+∠A﹣∠DCE=180°﹣2x+90°﹣(180°﹣2y)=90°﹣2x+2y,由(1)②得∠A+∠ABP+∠P+∠ACP=360°,且∠ABP=∠ABE+∠PBE=180°﹣2x+x=180°﹣x,∴∠P=360°﹣∠A﹣∠ABP﹣∠ACP=360°﹣90°﹣(180°﹣x)﹣y=90°+x﹣y,∴∠D+2∠P=90°﹣2x+2y+2(90°+x﹣y)=270°.24.解:(1)①∵∠A=90°,∠M=α,∴∠AEM=180°﹣90°﹣α=90°﹣α,∵EM平分∠AEF,∴∠AEF=2∠AEM=180°﹣2α,故答案为:180°﹣2α;②证明:∵EF⊥BC,∴∠EFC=90°,∴∠C+∠FEC=90°,∵∠A=90°,∴∠C+∠ABC=90°,∴∠CEF=∠ABC,∵∠AEF=180°﹣2α,∴∠CEF=2α,∴∠ABC=2α,∵BD是△ABC的角平分线,∴∠ABD=∠ABC=α,∴∠ABD=∠M,∴BD∥ME;(2)2∠N+∠A=90°,证明:∵BD平分∠ABC,EG平分∠AEF,设∠ABD=x,∠AEG=y,∴∠ABC=2x,∠AEF=2y,∵∠ABD+∠A=180°﹣∠ADB,∠ADB=∠N+∠AEG,∴x+∠A=180°﹣∠N﹣y,∴x+y=180°﹣∠A﹣∠N①,Rt△FEG中,∠EGF=∠BGN=90°﹣y,△BNG中,∠DBG=∠N+∠BGN,∴x=∠N+90°﹣y,∴x+y=∠N+90°②,由①和②得:180°﹣∠A﹣∠N=∠N+90°,∴∠A+2∠N=90°.。

第十一章三角形单元测试题2022-2023学年人教版八年级数学上册(含答案)

第十一章三角形单元测试题2022-2023学年人教版八年级数学上册(含答案)

第十一章三角形单元测试题时间90分钟 分值120分一.选择题(每题3分)1.一个三角形中最多可以有( )个直角.A.3B.2C.1D.02.以下列各组线段为边,能组成三角形的是( )A.1cm,2cm,4cmB.4cm,6cm,8cmC.5cm,6cm,12cmD.2cm,3cm,5cm3.如图,AB//CD.DB⊥BC,则∠2的度数是( )A.40°B.50°C.60°D.140°4.如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.不能确定5.(淄博博山六中月考)在ΔABC 中,若∠A=12∠B=12∠C,则此三角形按角分是( )A.锐角三角形B.直角三角形C.钝角三角形D.不能确定6.一个三角形的两边长分别为3和7,且第三边长为偶数,这样的三角形的周长最小值是( )A.14B.15C.16D.1737.如果等腰三角形的两边长是6cm和4cm,那么它的周长是( )A.16cmB.14cmC.16cm或14cmD.10cm8.(长春中考)如图,在ΔABC中,∠ACB的平分线CD交AB于点D,过点D作DE//BC交AC于点E.若∠A=54°,则∠CDE的大小为()A.44°B.40°C.39°D.38°9.(营口中考)如图,AD是ΔABC的外角∠EAC的平分线,AD//BC,∠B=32°,则∠C的度数是()A.32°B.42°C.52°D .64°10.如图,方格纸中的每个小正方形的边长为1,则图中的格点四边形ABCD的面积为()A.3.5B.5C.5.5D.4.511.如图,在ΔABC中,AD⊥BC于点D,BE⊥AC于点E,AD,BE相交于点如果BF=AC,那么∠ABC=( )A.40°B.45°C.50°D.60°8 910 1112.如图,直线l//m//n、等边ΔABC 的顶点B,C 分别在直线n 和m 上,边BC 与直线n 所夹锐角25°,则∠a 的度数为( )A.25°B.45°C.35°D.30°二.填空题(每题3分)13.如图:∠1+∠2+∠3+∠4=_______14.AD 是ΔABC 中BC 边上的中线,若AB=4,AC=6,则AD 的取值范围是_________________________15.如图,已知ΔABC 为直角三角形,∠C =90,若沿图中虚线剪去∠C,则∠1+∠2=____________16.如图,ΔABC 三边的中线AD,BE.CF 的公共点为点G,若S△ABC=12,则图中阴影部分的面积是______________ 12 16 15 13。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章《三角形》单元检测题一、选择题(每小题3分,共30分)1.边长为1、2、3、4、5、6的木棍各一根.随意组成三角形,共有()种取法.A.20 B.15 C.10 D.72.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点之间,线段最短B.直角三角形的两个锐角互余C.三角形三个内角和等于180︒D.三角形具有稳定性3.如图,在△ABC中,点D、E分别是B C、AB的中点,若△AED的面积为3,则△ABC的面积为()A.6 B.12 C.4 D.84.如图,Rt△ABC中,90∠︒=,BD⊥AC于点D,DE⊥BC于点E,则下列说法中正确的ABC是()A.DE是△ACE的高B.BD是△ADE的高C.AB是△BCD的高D.AB是△ABC的高5.等腰三角形的周长为13 cm,其中一边长为3 cm,则该等腰三角形的底边长为( )A.7 cm B.3 cm C.9 cm D.5 cm6.如图,在△ABC中,AD⊥BC于点D,BE⊥AC于点E,AD与BE相交于点F,若BF=AC,∠CAD=25°,则∠ABE的度数为()A.30°B.15°C.25°D.20°7.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有()A.2对B.3对C.4对D.6对8.已知某个正多边形的一个外角为40°,这个正多边形内角和等于()A.1080°B.1260°C.1440°D.1620°9.如图,在△ABC中,∠C=78°,沿图中虚线截去∠C,则∠1+∠2=()A.282°B.180°C.360°D.258°10.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠BDC=∠BAC;③∠ADC=90°﹣∠ABD;④BD平分∠ADC.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共24分)9.用正三角形和正方形镶嵌平面,每一个顶点处有个正三角形和个正方形.11.若正n边形的一个外角为45°,则n=.12.三角形的两边长分别为5cm和12cm,第三边与前两边中的一边相等,则三角形的周长为.15.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为9:2,则这个多边形的边数为.15.如图,五边形ABCDE中,AE∥CD,∠A=147°,∠B=121°,则∠C= .16.依据题设,写出结论,想一想,为什么?已知:如图,△ABC中,∠ACB=90°,则:(1)∠A+∠B=.即∠A与∠B互为;(2)若作CD⊥AB于点D,可得∠BCD=∠,∠ACD=∠.17.如图,D是△ABC的边BC上的一点,则在△ABC中,∠C所对的边是;在△ACD 中,∠C所对的边是.18.如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,若∠CBA=32°,则∠FED=度,∠EFD=度.三.解答题(共46分,19题6分,20 ---24题8分)19.如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=42°,∠DAE=16°.求∠BAE和∠C的度数.20.如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于点E,∠BAC=60°,∠ABE=25°.求∠DAC的度数.21.如图,在△ABC中,BD是∠ABC的平分线,CE是AB边上的高,且∠ACB=60°,∠ADB =97°,求∠A和∠ACE的度数.22.如图,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B;求证:CD⊥AB;23. (1)如图4,有一块直角三角形XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ABC中,∠A=30°,则∠ABC+∠ACB=_______,∠XBC+∠XCB=_______.(4) (5)(2)如图5,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY、XZ•仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.24.将一块直角三角板DEF放置在锐角△ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C.(1)如图①,若∠A=40°时,点D在△ABC内,则∠ABC+∠ACB= 度,∠DBC+∠DCB= 度,∠ABD+∠ACD= 度;(2)如图②,改变直角三角板DEF的位置,使点D在△ABC内,请探究∠ABD+∠ACD与∠A之间存在怎样的数量关系,并验证你的结论.(3)如图③,改变直角三角板DEF的位置,使点D在△ABC外,且在AB边的左侧,直接写出∠ABD、∠ACD、∠A三者之间存在的数量关系.答案一、选择题二、填空题11.用正三角形和正方形镶嵌平面,每一个顶点处有 3 个正三角形和 2 个正方形.【分析】分别求出各个正多边形的每个内角的度数,结合镶嵌的条件即可求出答案.【解答】解:正三角形的每个内角是60°,正方形的每个内角是90°,∵3×60°+2×90°=360°,∴用正三角形和正方形镶嵌平面,每一个顶点处有3个正三角形和2个正方形.12.若正n边形的一个外角为45°,则n=8 .【分析】根据正多边形的外角和的特征即可求出多边形的边数.【解答】解:n=360°÷45°=8.所以n的值为8.故答案为:8.13.三角形的两边长分别为5cm和12cm,第三边与前两边中的一边相等,则三角形的周长为29cm.【分析】分两种情况讨论,利用三角形的三边关系确定周长即可.【解答】解:当第三边为5cm时,此时三角形的三边分别为:5cm,5cm和12cm,∵5+5<12,∴不能组成三角形;当第三边为12cm时,此时三角形的三边分别为:5cm,12cm和12cm,∵5+12>12,∴能组成三角形;此时周长为5+12+12=29cm,故答案为:29cm.14.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为9:2,则这个多边形的边数为11 .【分析】先根据多边形的内角和外角的关系,求出一个外角.再根据外角和是固定的360°,从而可代入公式求解.【解答】解:设多边形的一个内角为9x度,则一个外角为2x度,依题意得9x+2x=180°解得x=()°360°÷[2×()°]=11.答:这个多边形的边数为11.15.92°16.依据题设,写出结论,想一想,为什么?已知:如图,△ABC中,∠ACB=90°,则:(1)∠A+∠B=90°.即∠A与∠B互为互余;(2)若作CD⊥AB于点D,可得∠BCD=∠A,∠ACD=∠.【分析】(1)根据直角三角形两锐角互余解决问题即可.(2)利用等角的余角相等,证明即可.【解答】解:(1)∵∠ACB=90°,∴∠A+∠B=90°,故答案为:90°,余角.(2)∵CD⊥AB,∴∠CDA=∠CDB=90°,∵∠ACB=90°,∴∠BCD=∠A,∵∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B,故答案为:A,B17.如图,D是△ABC的边BC上的一点,则在△ABC中,∠C所对的边是AB;在△ACD 中,∠C所对的边是AD.【分析】根据三角形的边和角有关概念解答即可.【解答】解:在△ABC中,∠C所对的边是AB;在△ACD中,∠C所对的边是AD,故答案为:AB;AD.18.如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,若∠CBA=32°,则∠FED=32 度,∠EFD=58 度.【分析】由两个长度相同的滑梯,所在的两个三角形△ABC,△DEF,又有AC=DF,∠BAC=∠EDF,即可以判断这两个三角形全等.利用互余关系求出另外一个角的度数.【解答】解:∵AC=DF,AB=DE,∠BAC=∠EDF=90°,∴Rt△ABC≌△DEF,∴∠FED=∠CBA=32°,∴∠EFD=90°﹣32°=58°.故答案为:32,58.三、解答题19.解:∵AD是BC边上的高,∴∠ADE=90°.∵∠ADE+∠AED+∠DAE=180°,∴∠AED=180°﹣∠ADE﹣∠DAE=180°﹣90°﹣16°=74°.∵∠B+∠BAE=∠AED,∵AE是∠BAC平分线,∴∠BAC=2∠BAE=2×30°=64°.∵∠B+∠BAC+∠C=180°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣42°﹣64°=74°.20. 解:∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°.∵AD是BC边上的高,∴∠BAD=90°-∠ABC=90°-50°=40°,∴∠DAC=∠BAC-∠BAD=60°-40°=20°.21.解:∵∠ADB=∠DBC+∠ACB,∴∠DBC=∠ADB-∠ACB=97°-60°=37°.∵BD是∠ABC的平分线,∴∠ABC=74°,∴∠A=180°-∠ABC-∠ACB=46°.∵CE是AB边上的高,∴∠AEC=90°,∴∠ACE=90°-∠A=44°.22.【分析】(1)利用三角形三边关系进而得出c的取值范围,进而得出答案;(2)①根据偶数的定义,以及x的取值范围即可求解;②利用等腰三角形的判定方法得出即可.【解答】解:(1)因为a=4,b=6,所以2<c<10.故周长x的范围为12<x<20.(2)①因为周长为小于18的偶数,所以x=16或x=14.当x为16时,c=6;当x为14时,c=4.②当c=6时,b=c,△ABC为等腰三角形;当c=4时,a=c,△ABC为等腰三角形.综上,△ABC是等腰三角形.【点评】此题主要考查了等腰三角形的判定和三角形三边关系,得出c的取值范围是解题关键.23. (1)150°;90°(2)不变化.∵∠A=30°,∴∠ABC+∠ACB=150°,∵∠X= 90°,∴∠XBC+∠XCB=90°,∴∠ABX+∠ACX=(∠ABC-∠XBC)+(∠ACB-∠XCB)=(∠ABC+ ∠ACB)-(∠XBC+∠XCB)=150°-90°=60°.点拨:此题注意运用整体法计算.24.解:(1)在△ABC中,∵∠A=40°,∴∠ABC+∠ACB=180°﹣40°=140°,在△DBC中,∵∠BDC=90°,∴∠DBC+∠DCB=180°﹣90°=90°,∴∠ABD+∠ACD=140°﹣90°=50°;故答案为:140;90;50.(2)∠ABD+∠ACD与∠A之间的数量关系为:∠ABD+∠ACD=90°﹣∠A.证明如下:在△ABC中,∠ABC+∠ACB=180°﹣∠A.在△DBC中,∠DBC+∠DCB=90°.∴∠ABC+∠ACB﹣(∠DBC+∠DCB)=180°﹣∠A﹣90°.∴∠ABD+∠ACD=90°﹣∠A.(3)∠ACD﹣∠ABD=90°﹣∠A.。

相关文档
最新文档