继电保护三段电流保护

合集下载

电力系统继电保护原理PPT 2-1三段电流保护

电力系统继电保护原理PPT 2-1三段电流保护
继电器 单侧电源网络相间短路时电流量值特征 电流速断保护(I段保护) 限时电流速断保护(II段保护) 定时限过电流保护(III段保护) 阶段式电流保护的配合及应用 反时限特性的电流保护 电流保护的接线方式
电气工程与自动化学院(School of Electrical Engineering & Automation)
电气工程与自动化学院(School of Electrical Engineering & Automation)
线路短,保 护范围内始 端和末端电 流差别不大
电气工程与自动化学院(School of Electrical Engineering & Automation)
终端采用线 路-变压器接 线方式,保
电气工程与自动化学院(School of Electrical Engineering & Automation)
电气工程与自动化学院(School of Electrical Engineering & Automation)
当电路网络中任意点发生三相或两相断路故障时, 其短路工频周期分量近似计算为:
IⅠop
IⅠ set.1
nTA
Kcon
其中 nTA是电流互感器变比。 Kcon 是接线系数,一般取1.0。
电气工程与自动化学院(School of Electrical Engineering & Automation)
保护范围的校验
保护范围:在已知保护的动作电流后,大于一次动作电流的 短路电流对应的短路点区域。最小的保护范围为在系统最小 运行方式下两相短路时出现。
电气工程与自动化学院(School of Electrical Engineering & Automation)

三段式电流保护的时限

三段式电流保护的时限

三段式电流保护的时限一、三段式电流保护的概述在电力系统继电保护中,三段式电流保护是一种常见的保护配置,主要用于切除故障线路,保障电力系统的稳定运行。

三段式电流保护包括瞬时电流速断保护(第Ⅰ段)、限时电流速断保护(第Ⅱ段)和定时限过电流保护(第Ⅲ段)。

这三段保护相互配合,共同构成了完整的主保护、后备保护和辅助保护。

二、三段式电流保护的时限设置1.瞬时电流速断保护(第Ⅰ段):这是一种无时限或具有很小时限的电流保护。

当线路出现严重故障时,它能够瞬时切断电流,以防止事故扩大。

由于其无时限或时限很短,因此只能作为主保护,不能作为后备保护。

2.限时电流速断保护(第Ⅱ段):这是一种具有较短时限的电流保护。

与第Ⅰ段保护相比,它的动作时限稍长,可以切除部分线路故障。

作为主保护和后备保护的结合,第Ⅱ段保护能够在第Ⅰ段保护动作后,迅速切除剩余线路的故障。

3.定时限过电流保护(第Ⅲ段):这是一种具有较长时限的电流保护。

它的动作时限是固定的,通常作为后备保护,在主保护和后备保护拒动时,切除故障线路。

此外,对于某些特定的线路或设备,定时限过电流保护也可以作为主保护或后备保护使用。

三、三段式电流保护的时限配合问题在三段式电流保护的配置中,时限配合是一个关键问题。

为了确保各段保护之间的正确配合,需要遵循以下原则:1.第Ⅰ段与第Ⅱ段保护的配合:第Ⅱ段保护的动作时限应比第Ⅰ段保护的动作时限长一个时间级差Δt,以避免两段保护同时动作。

2.第Ⅱ段与第Ⅲ段保护的配合:第Ⅲ段保护的动作时限应比第Ⅱ段保护的动作时限长一个时间级差Δt,以避免两段保护同时动作。

3.上下级保护的配合:在多级电网中,下一级电网的定时限过电流保护的动作时限应比上一级电网的定时限过电流保护的动作时限短一个时间级差Δt。

通过合理的时限配合,可以避免因误动或拒动导致的事故扩大,确保各段保护能够在合适的时间切除故障线路。

四、结论三段式电流保护作为电力系统的重要保障措施,在电力系统的稳定运行中发挥着至关重要的作用。

继电保护二 三段式电流保护

继电保护二  三段式电流保护

整定值应选取(1),(2)中较大者。 如按照条件(2)整定将使起动电流过大,因而保护范围缩小 时,应使保护装置的动作时间大于断路器三相不同期合闸 的时间(约0.1s) ,则可以不考虑 三相不同时合闸时,相当于出现纵向不对称故障,则必 然出现不对称序分量。
(附)纵向不对称故障分析
(3)当线路上采用单相自动重合闸时,躲非全相运行期 间振荡所造成的最大零序电流整定
电力系统继电保护
——华图乔老师
主要考点:
1.电流继电器的原理及相关概念 2.三段式电流保护的基本原理、整定计算(原则)、灵敏度校验 3.三段式电流保护的接线 4.方向性电流保护基本原理、方向元件设置原则 5.接地故障时零序分量的分布特点 6.零序分量的获取方法 7.三段式零序电流保护原理、整定计算(原则)、灵敏度校验
问题3.相间三段式电流保护的接线
三段式电流保护接线图
三段式电流保护接线图
低压线路保护逻辑框图
Ⅲ Ⅲ
问题5 方向性电流保护 1.双侧电源系统示例及其保护动作分析
按照选择性要求,应由保护区3,4切除故障
I , I I 如果:电流速断定值 I set . 2 m set . 5 n 则电流速断保护2,5误动
问题1 电流继电器 是实现电流保护的基本元件,也是简单继电器的典型
主要特性。 以P代表继电器动作的逻辑状态 继电器动作:P=1 (逻辑“1”) 继电器返回:P=0 (逻辑“0” ) 概念:1)电流继电器动作电流:Idz.j 2)电流继电器返回电流:Ifh.j
• 继电特性
• 继电器的动作明确干脆, 不可能停留在某一个中间位置 保证其动作确切可靠
4、定时限过电流保护
定时限过电流保护一般是作为后备保护使用。要求作为本线路主保护的后 备 以及相邻线路或元件的远后备。 • 动作电流按躲过最大负荷电流整定。 III

继电保护三段式保护

继电保护三段式保护

姓名:李鑫学号:32112117班级:电气121成绩:实验四(单侧电源辐射式输电线路)三段式电流保护一、实验目的1、掌握无时限电流速断保护、带时限电流速断保护及过电流保护的电路原理、工作特性及整定原则。

2、理解输电线路阶段式电流保护的原理图、展开图及保护装置中各继电器的功用。

3、掌握阶段式电流保护的电气接线和操作实验技术。

二、实验原理1、阶段式电流保护的构成无时限电流速断只能保护线路的一部分,带时限电流速断只能保护本线路全长,但却不能作为下一线路的后备保护,还必须采用过电流保护作为本线路和下一线路的后备保护。

由无时限电流速断、带时限电流速断与定时限过电流保护相配合可构成的一整套输电线路阶段式电流保护,叫做三段式电流保护。

图4-1 三段式电流保护各段的保护范围及时限配合输电线路并不一定都要装三段式电流保护,有时只装其中的两段就可以了。

例如用于“线路-变压器组”保护时,无时限电流速断保护按保护全线路考虑后,此时,可不装设带时限电流速断保护,只装设无时限电流速断和过电流保护装置。

又如在很短的线路上,装设无时限电流速断往往其保护区很短,甚至没有保护区,这时就只需装设带时限电流速断和过电流保护装置,叫做二段式电流保护。

在只有一个电源的辐射式单侧电源供电线路上,三段式电流保护装置各段的保护范围和时限特性见图4-1。

XL-1线路保护的第Ⅰ段为无时限电流速断保护,它的保护范围为线路XL-1的前一部分即线路首端,动作时限为t1I,它由继电器的固有动作时间决定。

第Ⅱ段为带时限电流速断保护,它的保护范围为线路XL-1的全部并延伸至线路XL-2的一部分,其动作时限为t1II = t2I +△t。

无时限电流速断和带时限电流速断是线路XL-1的主保护。

第Ⅲ段为定时限过电流保护,保护范围包括XL-1及XL-2全部,其动作时限为t1III ,它是按照阶梯原则来选择的,即t1III = t2III+△t ,t2III 为线路XL-2的过电流保护的动作时限。

三段式电流保护整定的计算方法

三段式电流保护整定的计算方法

三段式电流保护整定的计算方法什么是三段式电流保护?三段式电流保护指的是电流速断保护(第一段)、限时电流速断保护(第二段)、定时限过电流保护(第三段),相互配合构成的一套保护、下面我们就来详细介绍一下三段时电流保护的工作原理和整定计算方法。

一、电流速断保护(第I段)简单网络接线示意图对于仅反应于电流增大而瞬时动作的电流保护,称为电流速断保护。

为优先保证继电保护动作的选择性,就要在保护装置起动参数的整定上保证下一条线路出口处短路时不起动,这在继电保护技术中,又称为按躲过下一条线路出口处短路的条件整定。

以上图1所示的网络接线为例,假定每条线路上均装有电流速断保护,对于安装在A母线处的保护1来讲,其起动电流当被保护线路的一次侧电流达到起动电流这个数值时,安装在A 母线处的保护1就能起动,最后动作于跳断路器1对保护2来讲,按照同样的原则,其起动电流必须整定得大于d4点处短路时,可能出现的最大短路电流,即在最大运行方式下C母线上三相短路时的电流,即:当被保护线路的一次侧电流达到起动电流这个数值时,安装在A 母线处的保护1就能起动,最后动作于跳断路器1对保护2来讲,按照同样的原则,其起动电流必须整定得大于d4点处短路时,可能出现的最大短路电流,即在最大运行方式下C母线上三相短路时的电流,即:当被保护线路的一次侧电流达到起动电流这个数值时,安装在B 母线处的保护2就能起动,最后动作于跳断路器2。

后面几段线路的电流速断保护整定原则同上。

电流速断保护的主要优点是:简单可靠,动作迅速,因而获得了广泛的应用。

但由于引入的可靠系数,所以不难看出,电流速断保护的缺点是:不能保护本线路的全长,且保护范围直接受系统运行方式变化的影响。

运行实践证明,电流速断保护的保护范围大概是本线路的85%~90%。

二、限时电流速断保护(第II段)1、工作原理及整定计算的基本原则由于有选择性的电流速断保护不能保护本线路的全长,因此我们考虑增加一段新的保护,用来切除速断范围以外的故障,保护本线路的全长,同时也能作为电流速断保护的后备保护。

继电保护三段电流保护讲解

继电保护三段电流保护讲解

TA • 继电器的动作电流:
I g.oper

K con
I ope r nTA
(3-17)
KA 三相三继电器完全星形接线
3.4 电流保护的接线方式
3.4.1 三种基本接线方式
1. 定义:指保护中电流继电器与电流互感器二次线圈之间的连接方式。
2. 常用的三种接线方式:三相三继电器完全星形接线、两相两继电器不完 全星形接线和两相电流差接线。
I1.max
动作时限为
t
II 1

t
I 2

t

0.5s
灵敏度校验
K sen
I (2) k .1.min
I II oper.1
600 1.34 1.3 445 符合要求
1.21.590 190.6A 0.85
继电器动作电流
3-11.如图3-21所示,35kV电网线路1的保护拟定为三段式电流保护,已知线路1最 大负荷电流为90A,nTA=200/5,在最大及最小运行方式下各点短路电流见下表。线 路2的定时限过流保护动作时限为1.5s。试对线路1三段式电流保护进行整定计算。
1、保护1的无时限电流速断一次动作电流
K2 K1
K3
I K I I oper.1
(3) rel K .N .max
1.25740 925A
1
2
3
继电器动作电流
II g .oper.1

K con nTA
I
I ope
r
.1
925 200/5
23.125A
图3-21
2、保护1的时限电流速断保护
3.三段式电流保护的评价
优点:简单,可靠,并且一般情况下都能较快切除故障。一般用于35千 伏及以下电压等级的单侧电源电网中。

继电保护课程设计(三段电流保护)

继电保护课程设计(三段电流保护)

继电保护课程设计(三段电流保护)
三段电流保护是用于保护高压设备的继电保护,其功能是当电网中电流大于设定值时,快速切断电源,以限制设备受到电流损害的事故发生。

在设备类型复杂,功率范围较大的
系统中,设置三段电流保护具有良好的保护模式和灵敏度,具有选择性的和安全的动作效果,可以更快更有效地保护设备不受损害。

三段电流保护主要包括三个段落:由一个定值控制开关和两个分断开关组成。

当电网
电流越过上限值设定时,定值控制开关会发出开关控制命令,第一段断路器会被触发,将
电流切断,随后第二段断路器也会被触发,最终实现彻底的断开。

这样,无论是误动作还
是正常操作,都能够及时保护设备不受到电流损害的危险。

三段电流保护的控制器采用“零、声发仪”的原理,它可以检测电网的三相电流,并
与设定值比较,当电流超出设定值时,就会发出报警信号,从而触发定值控制开关。

它还
能够对电流、流向等指标进行记录,提供便于统计的数据。

在安装三段电流保护的过程中,要把握其灵敏度和安全技术标准,确保正确的安装和
接线结构,同时保证器件的稳健性和可靠性,避免因灵敏度过高、错误操作等原因而出现
误动作,影响电流保护的正确动作。

总之,三段电流保护具有良好的保护模式和灵敏度,能够有效地保护高压设备,确保
高压设备误动作最小化,切断电流并实现设备安全保护。

继电保护课程设计(三段电流保护)

继电保护课程设计(三段电流保护)

继电保护原理课程设计报告专业:电气工程及其自动化班级:电气1103姓名:郭振学号:201109318指导教师:徐金阳兰州交通大学自动化与电气工程学院2014 年7月11日1 设计原始资料1.1 具体题目如图1.1所示网络,系统参数为ϕE =115/3kV ,1G X =15Ω,2G X =10Ω,3G X =10Ω,1L =60km ,3L =40km ,C B L -=50km ,D C L -=30km ,E D L -=20km ,线路阻抗0.4Ω/km ,Irel K =1.2,II relK =IIIrel K =1.15,max C B I -=300A ,max D C I -=200A ,max E D I -=150A ,ss K =1.5,re K =0.85。

AL1L39584BCDE321图1.1 系统网络图试对线路进行三段电流保护的设计。

(说明:本报告将完成对2和5处的保护设计)1.2 要完成的内容(1)短路电流计算(系统运行方式的考虑、短路类型的考虑); (2)保护配合及整定计算; (3)对保护的评价。

2 设计要考虑的问题2.1 短路电流计算规程在决定保护方式前,必须较详细地计算各短路点短路时,流过有关保护的短路电流, 然后根据计算结果,在满足《继电保护和自动装置技术规程》和题目给定的要求条件下,尽可能采用简单的保护方式。

其计算步骤及注意事项如下:(1)系统运行方式的考虑需考虑发电容量的最大和最小运行方式。

(2)短路类型的考虑相间短路保护的整定计算应取系统最大运行方式下三相短路电流,以作动作电流整定之用;而在系统最小运行方式下计算两相短路电流,以作计算灵敏度之用。

2.2 保护方式的选取及整定计算选用保护方式时,可先选择主保护,然后选择后备保护。

通过整定计算,检验能否满足灵敏性和速动性的要求。

当灵敏度不能满足要求时,在满足速动性的前下,可考虑利用保护的相继动作,以提高保护的灵敏性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

继电保护三段电流保护3.5阶段式电流保护P74~77电流速断保护只能保护线路的一部分,限时电流速断保护能保护线路全长,但却不能作为下一相邻线路的后备保护,因此,必须采用定时限过电流保护作为本条线路和下一段相邻线路的后备保护。

1.三段式电流保护:由电流速断保护,限时电流速断保护及定时限过电流保护相配合构成的一整套保护。

或或或或或出口继电器I段保护不完全星形接法ABCII段保护III段保护三段式电流保护原理图I段保护II段保护或III段保护或梯形图三段式电流保护展开图2.三段式电流保护的保护特性及时限特性由I段保护切除由I段保护切除由II段保护切除由II段保护切除由III段作后备保护切除3.三段式电流保护的评价优点:简单,可靠,并且一般情况下都能较快切除故障。

一般用于35千伏及以下电压等级的单侧电源电网中。

缺点:灵敏度和保护范围直接受系统运行方式和短路类型的影响,此外,它只在单侧电源的网络中才有选择性。

3.4电流保护的接线方式P63~683.4.1三种基本接线方式1.定义:指保护中电流继电器与电流互感器二次线圈之间的连接方式。

2.常用的三种接线方式:三相三继电器完全星形接线、两相两继电器不完全星形接线和两相电流差接线。

1)三相三继电器完全星形接线的特点:①每相上均装有TA和KA、Y形接线②KA的触点并联(或)或③能反映所有单相接地故障接线系数:KAKconIg流入继电器电流=1(Y形接法)I2TA的二次电流继电器的动作电流:TAIg.operKconIopernTA(3-17)三相三继电器完全星形接线3.4电流保护的接线方式3.4.1三种基本接线方式1.定义:指保护中电流继电器与电流互感器二次线圈之间的连接方式。

2.常用的三种接线方式:三相三继电器完全星形接线、两相两继电器不完全星形接线和两相电流差接线。

1)三相三继电器完全星形接线的特点:2)两相两继电器不完全星形接线的特点:①某一相上不装设TA和KA、Y形接线或②KA的触点并联(或)(通常接A、C相)③不能反映B相接地故障KA接线系数:流入继电器电流KconIgI2=1TA的二次电流TA继电器的动作电流:Ig.operKconIopernTA(3-17)两相两继电器不完全星形接线3.4电流保护的接线方式3.4.1三种基本接线方式1)三相三继电器完全星形接线的特点:2)两相两继电器不完全星形接线的特点:3)两相电流差接线的特点:①某一相上不装设TA(通常接A、C相);②只装一个KA,反映A、C两相电压差。

两相电流差接线IgIaIc在对称运行和三相短路情况下:Ig3Ia3Ic在A、C两相短路时:Ig2Ia在AB或BC两相短路时:接线系数:流入继电器电流KAKconIgI2IgIa或IgIc继电器的动作电流:TA的二次电流TA(3-17)Ig.operKconIopernTA③性能较差,仅用于10kV线路保护和电动机保护3.4电流保护的接线方式3.4.2两种星形接线方式的性能分析1、对各种相角短路,两种接线方式均能正确反映2、在小接地电流系统中,在不同线路的不同相上发生两点接地时,一般只要求切除一个接地点,而允许带一个接地点继续运行一段时间。

(1)在串联线路上三相星形接线:保护1和保护2之间有配合关系,100%切除NP线两相星形接线:2/3机会切除NP线。

(即1/3机会无选择性动作)MNP(2)在并联线路上三相星形接线:保护2和保护3同时动作,切除线路Ⅱ、Ⅲ。

两相星形接线:2/3机会只切一条线路。

(2)在并联线路上三相星形接线:保护2和保护3同时动作,切除线路Ⅱ、Ⅲ。

两相星形接线:2/3机会只切一条线路。

能保证有2/3的机会只切除一条线路。

3.4.2两种星形接线方式的性能分析3、Y/△接线变压器后两相短路时设a、b相短路时:三相星行接线灵敏度是两相星行接线的两倍(3-18)(3-19)据式(3-17)Ig.operKconIopernTA据式(3-2)据式(3-5)据式(3-17)据式(3-17)据式(3-17)据式(3-9)’据式(3-9)’3-11.如图3-21所示,35kV电网线路1的保护拟定为三段式电流保护,已知线路1最大负荷电流为90A,nTA=200/5,在最大及最小运行方式下各点短路电流见下表。

线路2的定时限过流保护动作时限为1.5。

试对线路1三段式电流保护进行整定计算。

1、保护1的无时限电流速断一次动作电流I(3)Ioper.1KrelIK.N.ma某K112K2K331.25740925AI继电器动作电流Ig.oper.1925KconI23.125AIoper.1200/5nTA短路点2、保护1的时限电流速断保护先求出相邻线路保护2的无时限电流速断一次动作电流最大运行方式下三相短路电流(A)最小运行方式下两相短路电流(A) I(3)Ioper.2KrelIK.2.ma某1.25310387.5AIIIIoper.1KrelIoper.21.151.25310445.625A3、过电流保护保护1的过电流保护动作电流:继电器动作电流I动作时限为IIg.oper.1KrelK445.625KconIIIIII1.ma某11.14AIoperIoper.1200/5KrenTA IIt1tIt0.52灵敏度校验Ken(2)Ik.1.min600II1.341.3Ioper.1445符合要求1.21.590190.6A0.85继电器动作电流3-11.如图3-21所示,35kV电网线路1的保护拟定为三段式电流保护,已知线路1最大负荷电流为90A,nTA=200/5,在最大及最小运行方式下各点短路电流见下表。

线路2的定时限过流保护动作时限为1.5。

试对线路1三段式电流保护进行整定计算。

K23、过电流保护K3K1保护1的过电流保护动作电流:123KrelKIIIIoper.1I1.ma某1.21.590190.6A图3-21Kre0.85继电器动作电流K1K2K3短路点IIIIg.oper.1KIIIconIoper.1190.64.76AnTA200/5最大运行方式下三相短路电流(A)最小运行方式下两相短路电流(A) 35202420740600310300III动作时限为t1tIIIt1.50.52.02灵敏度校验:作本线路的近后备保护Ken作相邻线路2的远后备保护Ken(2)Ik.1.min600III3.151.5Ioper.1190.6(2)Ik.2.min300III1.571.2Iop er.1190.63-11.如图3-21所示,35kV电网线路1的保护拟定为三段式电流保护,已知线路1最大负荷电流为90A,nTA=200/5,在最大及最小运行方式下各点短路电流见下表。

线路2的定时限过流保护动作时限为1.5。

试对线路1三段式电流保护进行整定计算。

K1K2K31、保护1的无时限电流速断一次动作电流I(3)Ioper.1KrelIK.N.ma某1.2535204400A 4400KII110AIg.oper.1conIoper.1继电器动作电流200/5nTA32、保护1的时限电流速断保护先求出相邻线路保护2的无时限电流速断一次动作电流I(3)Ioper.2KrelIK.2.ma某短路点最大运行方式下三相短路电流(A)最小运行方式下两相短路电流(A)K2740600K33103001.25740925A3、过电流保护IIIIoper.1KrelIoper.21.151.257401064A保护1的过电流保护动作电流:IIIIoper继电器动作电流I动作时限为灵敏度校验IIg.oper.11064KII26.6AconIoper.1200/5nTAIIt1tIt0.52Ken(2)Ik.1.min2420II2.271.3Ioper.11064KrelKI1.ma某Kre1.21.590190.6A0.85继电器动作电流3-11.如图3-21所示,35kV电网线路1的保护拟定为三段式电流保护,已知线路1最大负荷电流为90A,nTA=200/5,在最大及最小运行方式下各点短路电流见下表。

线路2的定时限过流保护动作时限为1.5。

试对线路1三段式电流保护进行整定计算。

K1K2K33、过电流保护保护1的过电流保护动作电流:IIIIoper.1KrelKI1.ma某1.21.590190.6AKre0.85短路点3继电器动作电流IIIIg.oper.1K2740600K3310300KIIIconIoper.1190.64.76AnTA200/5最大运行方式下三相短路电流(A)最小运行方式下两相短路电流(A) III动作时限为t1tIIIt1.50.52.02灵敏度校验:作本线路的近后备保护作相邻线路2的远后备保护KenIk(2).min2420.1III12.31.5Ioper.1190.6Ik(2).min600.2III3.151.2Io per.1190.6Ken。

相关文档
最新文档