三相异步电动机星三角降压启动单相全波整流能耗制动,正反转功能
三相异步电动机正反转控制

三相异步电动机正反转控制简介三相异步电动机是工业中常用的电动机之一,它具有运行平稳、结构简单、维护方便等优点,在很多领域都得到了广泛应用。
正反转控制是三相异步电动机的基本控制方式之一,通过控制电机的供电方式,可以使电动机实现正向运行和反向运行。
本文将介绍三相异步电动机正反转控制的原理、方法和实现步骤。
原理三相异步电动机的正反转控制实际上是通过改变电源的供电方式来实现的。
电动机的运行方向由电动机的线圈接线方式决定,通常有两种常见的接线方式:正转接线和反转接线。
在正转接线方式下,电动机的三相线圈与电源的三相电压相位相同,电流正弦波形一次通过电动机的三相线圈,从而使得电动机正向旋转。
在反转接线方式下,电动机的三相线圈与电源的三相电压相位相反,电流正弦波形一次通过电动机的三相线圈,从而使得电动机反向旋转。
通过切换电源的供电方式,可以实现电动机的正反转控制。
方法实现三相异步电动机的正反转控制有多种方法,常见的方法有以下几种:1. 交叉接线法交叉接线法是最简单的正反转控制方法之一。
通过将电动机的两个相互对换的线圈连接到电源的正确相位,可以实现电动机的正反转。
在正转时,将电源的L1和L3相连接到电动机的U、V线圈上,将电源的L2相连接到电动机的W线圈上。
在反转时,将电源的L1和L3相连接到电动机的W、V线圈上,将电源的L2相连接到电动机的U线圈上。
2. 利用接触器控制利用接触器控制是一种较为常见的正反转控制方法。
通过控制接触器的通断,可以改变电动机的供电方式,实现正反转控制。
正转时,接触器的U1、V1、W1触点闭合,U2、V2、W2触点断开。
反转时,接触器的U1、V1、W1触点断开,U2、V2、W2触点闭合。
3. 使用可编程控制器(PLC)PLC(Programmable Logic Controller)是一种数字化电子设备,可用于自动化控制系统。
使用PLC控制电动机的正反转可以实现更为灵活的控制。
通过PLC编程,可以控制电源的供电方式,实现电动机的正反转。
三相异步电动机星三角形起动及带能耗制动控制线路的设计及调试

三相异步电动机星三角形起动及带能耗制动控制线路的设计及调试一、引言异步电动机广泛应用于工业领域中。
在启动和制动阶段,设计和调试一个可靠且高效的控制线路是至关重要的。
本文将详细探讨三相异步电动机的星三角形起动和带能耗制动控制的设计和调试方法。
二、三相异步电动机的基本原理异步电动机是一种常用的电动机类型,它通过电磁感应原理将电能转换为机械能。
其中,三相异步电动机是最常见的一种类型。
其基本原理是根据三相电源的旋转磁场,感应转子上的电流,产生电磁转矩,从而驱动机械负载。
三、星三角形起动控制线路的设计3.1 控制线路的基本原理星三角形起动是一种常用的起动方法,其基本原理是在起动阶段降低起动电流,减小对电网的冲击。
具体而言,起动时,电动机的定子绕组接成星形,电动机启动后,通过切换线圈的连接方式,将定子绕组切换为三角形形式,实现正常运行。
3.2 控制线路的设计步骤1.计算电动机的额定电压和额定电流。
2.根据额定电流选择适当的起动器件和控制元件,如继电器和接触器。
3.设计控制电路,包括输入电源、控制按钮和起动器件的连接方式。
4.绘制电路图并进行仿真验证。
5.制作实际电路并进行调试。
3.3 实际控制线路的调试方法1.首先,检查电路连接是否正确,并确保所有的接线牢固可靠。
2.使用万用表等仪器测量电路的电压和电流,确保与设计参数一致。
3.通过模拟控制按钮的按下和松开来模拟实际的起动和停止过程,观察电动机的运行情况。
4.如果电动机无法正常启动,检查电路中的每个元件的工作状态,并逐个排除可能的故障。
5.调整起动器件的参数,如继电器的释放电压和接触器的触点压力,以达到最佳的起动效果。
四、带能耗制动控制线路的设计与调试4.1 控制线路的基本原理能耗制动是一种通过将电动机的转子回路接入到外部负载电阻来实现制动的方法。
根据负载电阻的大小和电动机的惯性,可以实现较快的制动过程,并将制动能量耗散掉。
4.2 控制线路的设计步骤1.根据电动机的参数计算制动电阻的阻值。
三相异步电动机的启动调速反转与制动一PPT课件

6
(2)Y-Δ降压启动
适用范围: 正常运行时定子绕组为三角形连接。
优点: 启动电流为全压启动时的1/3。
缺点:
TstY
1 3 TSt
不适合高启动转矩场合,适合空载或轻载启动
A
L1 L2 L3
UP' Z X
启 正常
QS1 FU
CY
B 动 运行
UP Z A
C
X
YB
U1 V W1
1
U2 V2 W2
Δ运行时,首尾相接构成闭环
回馈制动常用于高速且要求匀速下放重物的场合,另外在变极或变频调速过 程中,也会产生回馈制动。
16
•4
1、全压启动(直接启动)
全压启动是将电动机直接接到额定电压上的启动方式,又叫直 接启动。 优点:设备简单,操作方便,启动时间短。 缺点:启动电流较大,将使线路电压下降,影 响负载正常工作。
适用范围:电动机容量在10kW以下
5
2、降压启动
(1)定子串电阻启动
缺点:
外接启动电阻上有较大的功率损耗,经 济性较差。
——三相异步电动机的启动、 调速、反转与制动
1
三相异步电动机的启动、调速、反转与制动 能力目标:
1、能根据交流电动机的类型和使用场合,分析交流电动机 的启动、调速和制动
知识目标:
1、了解交流电机的结构,熟悉交流电机的工作原理 2、掌握交流电机的启动、调速与制动
任务一、认识交流异步电动机 任务二、三相异步电动机的启动、调速、反转与制动
流电通入两相绕组,产生固定不动的磁场n0。
电动机由于惯性仍在运转。
n1 0 N
转子导体切割固定磁场感应电流,载 流导体受到与转子惯性方向相反的电
三相异步电动机的自动正反转

三相异步电动机的自动正反转
三相异步电动机的自动正反转是通过改变三相电源的相序来实现的。
有多种方法可以实现三相异步电动机的自动正反转,下面是其中一些常见的方法:
- 配置两个交流接触器分别以不同的相序接线,通过控制切换两个交流接触器的吸合来控制电机的正反转。
- 安装顺反开关,可直接实现电机的正反转切换。
- 安装逆变器和逆变接触器,也可实现电机的正反转。
- 使用三相倒顺开关代替原先的负荷开关,可以实现电机的正反转。
这些方法都可以实现三相异步电动机的自动正反转,但具体的应用场景和实现方式可能会因电动机的型号和应用需求而有所不同。
在实际应用中,需要根据具体情况选择合适的方法。
如果你需要更详细的信息或技术支持,建议咨询专业的电气工程师或设备制造商。
三相异步电动机星-三角降压启动控制电路中功能指令的应用

三菱FX2N系列PLC功能指令的应用
三相异步电动机星-三角降压启动控制电路中功能指令的应用 三、任务分析
利用功能指令实现三相异步电动机星---三角降压启动控制电路的设计, 首先必须掌握数制和编码的知识,在电动机星---三角降压启动控制电路中把 接触器的得电和失电两种状态可以使用二进制数码来表示,就可以利用功能 指令设计出控制电路。
2021/8/13
三菱FX2N系列PLC功能指令的应用
三相异步电动机星-三角降压启动控制电路中功能指令的应用 四、相关理论
1、 功能指令的表示方法 功能指令用编号FN00——FN294表示,并给出对应的助记符,一 般用指令的英文名称或缩写作为助记符,有的功能指令只需要指定功 能号,大多数功能指令在指定功能号的同时还需要指定操作元件。图 中的[S]别表示源(Source)操作数,[D]表示目标(Destnation)操作数。
序步;循环结束指令NEXT,编号为FNC09,占用1个程序步,无操作数。
2021/8/13
三菱FX2N系列PLC功能指令的应用
三相异步电动机星-三角降压启动控制电路中功能指令的应用
10、比较指令 比较指令包括CMP(比较)和ZCP(区间比较)二条。
(1)比较指令CMP指令的编号为FNC10,是将源操作数[S1.] 和源操作数[S2.]的数据进行比较,比较结果用目标元件[D.]的状 态来表示。
果)仍保持跳转前的状态,因为跳转期间根本FX2N系列PLC功能指令的应用
三相异步电动机星-三角降压启动控制电路中功能指令的应用 使用跳转指令时应注意:
④如果在跳转开始时定时器和计数器已经开始工作,则在跳转执行期 间它们将停止工作,到跳转条件不满足后又继续工作。但对于正在工作的 定时器T192~T199和高速计数器C235~C255不管有无跳转仍连续工作。
三相异步电动机的可逆运转控制及星-三角降压起动控制

实验一三相异步电动机的可逆运转控制及Y—Δ降压起动控制【实验目的】(1)了解复合按钮、接触器和时间继电器的工作原理及使用方法;(2)加深对电气控制系统各种保护、自锁、互锁等环节的理解;(3)学会分析、排除继电--接触控制线路故障的方法;(4)掌握由电气原理图接成实际操作电路的方法,提高分析解决实际工程问题的能力。
【实验要求】(1)实验前认真阅读实验指导书,熟悉实验电路;(2)接线时合理安排挂箱位置,接线要求牢靠、整齐、清楚、安全可靠;(3)操作时要谨慎,不许用手触及各电器元件导电部分及电动机转动部分,以免触电及意外损伤;(4)通电观察继电器动作情况时,要注意安全,防止碰触带电部位,严禁带电操作;(5)按要求完成实验操作,做好实验记录,认真做好实验报告和思考题;(6)实验结束,整理好实验工具,保持实验室整洁卫生。
【实验器材】(1)THSMS模拟实验台S32和S33挂箱;(2)三相笼型异步电动机一台;(3)连接导线若干。
【实验原理和电路】一、三相异步电动机的可逆运转控制在笼型电动机正反转控制线路中,只要改变电动机的三相电源进线的任意两相的相序,电动机即可反转。
本实验给出电动机的“正-反-停”控制线路如图1所示,具有如下特点:1、电气互锁实验电路中采用了两个接触器KM1和KM2,分别进行正转和反转的控制。
为了避免接触器KM1、KM2同时得电吸合造成三相电源短路,在KM1(KM2)线圈支路中串接有KM2(KM1)辅助常闭触头,保证了线路工作时KM1、KM2不会同时得电,电路能够可靠工作。
2、机械互锁实验电路中采用了复合按钮SB1为正转按钮,复合按钮SB2为反转按钮,停止按钮SB3。
采用按钮SB1与SB2组成机械互锁环节,以求线路能够方便操作。
(a)主电路(b)控制电路图1 三相异步电动机正反转控制实验电路二、三相异步电动机的Y—Δ降压起动控制笼型异步电动机降压起动方法有多种,本实验给出电动机的Y-△降压起动线路如图2所示,采用时间设计原则。
三相异步电动机的正反转控制

U ---L3 V ---L2 W---L1
KM2 KM1
KM1 KM2
三、按钮、接触器双重联锁正反转控制线路
QS FU1
L1 L2 L3
合上电源 开关QS
KM1
FU2 FR
SB3
KM2
KM1
KM2
SB1
SB2
FR
UV W
M 3~
KM2 KM1
KM1 KM2
三、按钮、接触器双重联锁正反转控制线路
KM2联锁动断触
UV W
点闭合,解除对
M
KM1联锁
3~
SB3
KM2
SB1
KM1
KM2 SB2
KM2
KM1
KM1
KM2
二、接触器联锁正反转控制线路
反转停止
QS FU1
FU2
L1
L2
FR
L3
松开SB3、电 KM1 机停转
SB3 KM2
SB1 KM1 SB2 KM2
FR
UV W M 3~
KM2
KM1
KM1
三相异步电动机的 正反转控制线路
若改变电动机转动方向,将接至交流电动机 的三相交流电源进线中任意两相对调,电动机就 可以反转。
一、 倒顺开关正反转控制线路
倒顺开关,又叫可 逆转换开关,利用 改变电源相序来实 现电动机手动正反 转控制。
一、倒顺开关正反转控制线路
L1 L2 L3
熔断器 倒顺开关
电动机
正转起动
QS FU1
FU2
L1
L2
FR
L3
合上电源开关 KM1 QS
SB3 KM2
SB1 KM1 SB2 KM2
三相异步电动机星三角降压起动单相全波整流能耗制动实训报告

三相异步电动机星三角降压起动单相全波整流能耗制动实训报告实训目的:通过实际操作,了解三相异步电动机星三角降压起动和单相全波整流能耗制动的原理,掌握实施这两种控制方法的步骤和要点。
实训步骤:一、三相异步电动机星三角降压起动1.搭建实验电路:将三相异步电动机连接到电源上,接上电流表和电压表,并将三个电压表的相线连接到电源的三相线。
2.确保电源和电动机开关都处于关闭状态。
3.将电源开关连接到电动机的Y/Δ切换器上,将电动机的连线连接到电源开关的输出端。
4.打开电源开关,调节电源的电压为额定电压,并观察电动机的运行情况。
5.观察电动机在起动时的电流波形和电压波形,验证降压起动的效果。
6.测试电动机的额定转速和电动机的额定电流,记录测试结果。
二、单相全波整流能耗制动1.搭建实验电路:将电源连接到单相全波整流电路的输入端,然后将电路的输出端与电动机的两个相线连接。
2.调节电源的电压为额定电压,并观察电动机的运行情况。
3.观察电动机在制动时的电流波形和电压波形,验证能耗制动的效果。
4.测试电动机在制动时的电流和转速变化情况,记录测试结果。
实训要点:1.在进行三相异步电动机星三角降压起动前,需要确保电源和电动机开关都处于关闭状态,以免发生安全事故。
2.在进行单相全波整流能耗制动前,需要调节电源的电压为额定电压,以保证实验的准确性。
3.在观察电动机在起动和制动时的电流波形和电压波形时,要注意观察波形的稳定性和正常性,以判断控制方法的有效性。
4.在测试电动机的额定转速和电流时,要使用专业的仪器进行测量,并将测试结果记录下来。
结论:通过本次实训,我对三相异步电动机星三角降压起动和单相全波整流能耗制动的原理和操作步骤有了更深入的了解。
这两种控制方法具有一定的实际应用价值,可以在工程实践中发挥重要作用。
在以后的学习和实践中,我将更加注重动手实操,提高对电动机控制技术的熟练度和应用水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三相异步电动机星三角降压启动单相全波整流能
耗制动,正反转功能
三相异步电动机星三角降压启动是一种常见的起动方法,它在实际应用中广泛使用。
在启动过程中,需要使用单相全波整流电路实现能耗制动,并实现正反转功能。
下面是详细的撰写:
三相异步电动机星三角降压启动:
将三相异步电动机的绕组分为两组,每组分别称为星形绕组和三角形绕组。
首先,将电动机的绕组接成星形连接,在电源线上接入限流电阻。
启动时,利用接线盒中的切换装置将星形绕组切换为三角形绕组,同时继续接入限流电阻。
这样电动机在起动阶段功率较低,电流也相对较小,可以有效降低起动时对电网的冲击。
单相全波整流电路能耗制动:
单相全波整流电路包括一个整流桥,由4个二极管组成,用于将交流电转换为直流电。
其中,二极管的导通状态由外部触发控制。
在能耗制动过程中,将电机回馈给整流桥,使电机输出电流反向,形成能耗制动。
在正常运行时,通过控制整流桥的触发角,可以调整电机输出的电流大小,实现对电机的速度和制动力矩的控制。
正反转功能:
为了实现电机的正反转功能,需要借助一个外部的切换装置,例如接线盒中的切换开关。
在正转时,将电机的星三角切换装置设置为正转状态,使电动机按照正向旋转。
在反转时,将电机的星三角切换装置设置为反转状态,使电动机按照反向旋转。
希望对您有所帮助!。