物理化学第四版上册课后答案 天津大学 第三章

合集下载

物理化学天津大学第四版答案

物理化学天津大学第四版答案

物理化学天津大学第四版答案【篇一:5.天津大学《物理化学》第四版_习题及解答】ass=txt>目录第一章气体的pvt性质 ....................................................................................................... (2)第二章热力学第一定律 ....................................................................................................... . (6)第三章热力学第二定律 ....................................................................................................... .. (24)第四章多组分系统热力学 ....................................................................................................... . (51)第五章化学平衡 ....................................................................................................... .. (66)第六章相平衡 ....................................................................................................... (76)第七章电化学 ....................................................................................................... (85)第八章量子力学基础 ....................................................................................................... . (107)第九章统计热力学初步 ....................................................................................................... ...... 111 第十一章化学动力学 ....................................................................................................... . (117)第一章气体的pvt性质1.1 物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。

天津大学《物理化学》第四版习题及解答(统计热力学初步)

天津大学《物理化学》第四版习题及解答(统计热力学初步)

第九章统计热力学初步
1.按照能量均分定律,每摩尔气体分子在各平动自由度上的平均动能为。

现有1 mol CO气体于0 ºC、101.325 kPa条件下置于立方容器中,试求:
(1)每个CO分子的平动能;
(2)能量与此相当的CO分子的平动量子数平方和
解:(1)CO分子有三个自由度,因此,
(2)由三维势箱中粒子的能级公式
2.某平动能级的,使球该能级的统计权重。

解:根据计算可知,、和只有分别取2,4,5时上式成立。

因此,该能级的统计权重为g = 3! = 6,对应于状态。

3.气体CO分子的转动惯量,试求转动量子数J为4与3两能级
的能量差,并求时的。

解:假设该分子可用刚性转子描述,其能级公式为
4.三维谐振子的能级公式为,式中s为量子数,即。

试证明能级的统计权重为
解:方法1,该问题相当于将s个无区别的球放在x,y,z三个不同盒子中,每个盒子容纳的球数不受限制的放置方式数。

x盒中放置球数0,y, z中的放置数s + 1
x盒中放置球数1,y, z中的放置数s
……………………………………….
x盒中放置球数s,y, z中的放置数1
方法二,用构成一三维空间,为该空间的一个平面,其与三个轴均相交于s。

该平面上为整数的点的总数即为所求问题的解。

这些点为平
面在平面上的交点:
由图可知,
5.某系统由3个一维谐振子组成,分别围绕着
A, B, C三个定点做振动,总能量为。


列出该系统各种可能的能级分布方式。

解:由题意可知方程组
的解即为系统可能的分布方式。

方程组化简为,其解为。

天津大学物理化学1、2、3章答案

天津大学物理化学1、2、3章答案

第一章 气体pVT 性质1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:1 1TT p V p V V T V V⎪⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂=κα 试导出理想气体的V α、T κ与压力、温度的关系?解:对于理想气体,pV=nRT111 )/(11-=⋅=⋅=⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=T TVV p nR V T p nRT V T V V p p V α 1211 )/(11-=⋅=⋅=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=p p V V p nRT V p p nRT V p V V TT T κ 1-2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时?解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为mol RT pV n 623.1461815.300314.8300106.1213=⨯⨯⨯==每小时90kg 的流量折合p 摩尔数为 133153.144145.621090109032-⋅=⨯=⨯=h mol M v Cl H Cn/v=(14618.623÷1441.153)=10.144小时1-3 0℃、101.325kPa 的条件常称为气体的标准状况。

试求甲烷在标准状况下的密度。

解:33714.015.273314.81016101325444--⋅=⨯⨯⨯=⋅=⋅=m kg M RT p M V n CH CH CH ρ 1-4 一抽成真空的球形容器,质量为25.0000g 。

充以4℃水之后,总质量为125.0000g 。

若改用充以25℃、13.33kPa 的某碳氢化合物气体,则总质量为25.0163g 。

试估算该气体的摩尔质量。

解:先求容器的容积33)(0000.10010000.100000.250000.1252cm cm V l O H ==-=ρ n=m/M=pV/RTmol g pV RTm M ⋅=⨯-⨯⨯==-31.301013330)0000.250163.25(15.298314.841-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。

天大物理化学教研室天津大学课后答案

天大物理化学教研室天津大学课后答案

天大物理化学教研室天津大学课后答案1. 引言天津大学物理化学课程的教研室提供了一些课后习题的答案,本文档收集整理了部分天大物理化学教研室提供的课后答案。

这些答案可以帮助学生更好地理解和掌握课程的相关知识。

本文档以Markdown文本格式输出,方便学生们阅读和使用。

2. 答案列表2.1 第一章:热力学1.问题:什么是热力学第一定律?请用文字简要描述。

答案:热力学第一定律,也被称为能量守恒定律,它规定了能量的总量在一个封闭系统中是恒定的。

能量可以从一个形式转化为另一个形式,但不能被创造或销毁。

2.问题:什么是熵?请用文字简要描述。

答案:熵是热力学中用来描述系统混乱程度的物理量。

熵越高,系统越混乱无序;熵越低,系统越有序。

3.问题:请简要描述理想气体状态方程并给出其表达式。

答案:理想气体状态方程是描述理想气体行为的方程。

它表明了理想气体的压强、体积和温度之间的关系。

理想气体状态方程的表达式为:PV = nRT其中,P为气体的压强,V为气体的体积,n为气体物质的物质量,R为气体常数,T为气体的温度。

2.2 第二章:动力学1.问题:什么是反应速率?请用文字简要描述。

答案:反应速率是化学反应进行的快慢程度的物理量。

它表示单位时间内反应物消失或生成的物质量。

2.问题:请简要描述反应速率与浓度之间的关系。

答案:反应速率与反应物的浓度之间存在正相关关系。

当反应物浓度增加时,反应速率也会增加。

3.问题:什么是活化能?请用文字简要描述。

答案:活化能是化学反应发生的能垒,它表示反应物要经过的能量障碍。

只有克服了活化能,化学反应才能进行。

3. 结论本文档介绍了部分天大物理化学教研室提供的课后答案,涵盖了热力学和动力学等物理化学的相关知识点。

学生们可以通过阅读和学习这些答案,加深对课程内容的理解和掌握。

希望这些答案对学生们的学习有所帮助!。

物理化学(简明版)作者天津大学物理化学教研室习题答案

物理化学(简明版)作者天津大学物理化学教研室习题答案

。重复上面的过程,第 n 次充氮气后,系统的摩尔分数
设系统为理想气体混合物, 则
1.11 有某温度下的 2dm3 湿空气,其压力为 101.325kPa,相对湿度为 60%。设空气中 O2 与 N2 的体积分数 分别为 0.21 与 0.79,求水蒸气、O2 与 N2 的分体积。已知该温度下水的饱和蒸汽压为 20.55kPa(相对湿 度即该温度下水蒸气的分压与水的饱和蒸汽压之比)。
3
n = 5mol
CV,m = 3/2R
QV =ΔU = n CV,mΔT = 5×1.5R×50 = 3.118kJ
却使体积缩小至 25dm 。求整个过程的 W,Q,ΔH 和 ΔU。 解:过程图示如下
由于
,则
,对有理想气体

只是温度的函数
该途径只涉及恒容和恒压过程,因此计算功是方便的
根据热力学第一定律
1.7 如图所示,一带隔板的容器内,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。
(1)
保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试 求两种气体混合后的压力。
(2) (3)
隔板抽取前后,H2 及 N2 的摩尔体积是否相同? 隔板抽取后,混合气体中 H2 及 N2 的分压立之比以及它们的分体积各为若干?
也可以用直接迭代法,
,取初值
,迭代十次结果 1.15 试由波义尔温度 TB 的定义式,证明范德华气体的 TB 可表示为 TB=a/(bR)
式中 a,b 为范德华常数。
1.16 把 25℃的氧气充入 40dm3 的氧气钢瓶中,压力达 202.7×102kPa。试用普遍化压缩因子图求钢瓶中 氧气的质量。 解:氧气的 TC=-118.57℃,PC=5.043MPa 氧气的 Tr=298.15/(273.15-118.57)=1.93, Pr=20.27/5.043=4.02 Z=0.95 PV=ZnRT n=PV/ZRT=202.7×105×40×10-3/(8.314×298.15)/0.95=344.3(mol) 氧气的质量 m=344.3×32/1000=11(kg)

物理化学(天津大学第四版)上册答案完整版

物理化学(天津大学第四版)上册答案完整版

一章气体的pVT关系1.1 物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。

解:根据理想气体方程1.2 气柜内贮有121.6 kPa,27℃的氯乙烯(C2H3Cl)气体300 m3,若以每小时90 kg的流量输往使用车间,试问贮存的气体能用多少小时?解:假设气柜内所贮存的气体可全部送往使用车间。

1.3 0℃,101.325kPa的条件常称为气体的标准状况,试求甲烷在标准状况下的密度?解:将甲烷(M w=16g/mol)看成理想气体: PV=nRT , PV =mRT/ M w甲烷在标准状况下的密度为=m/V= PM w/RT=101.32516/8.314273.15(kg/m3)=0.714 kg/m31.4 一抽成真空的球形容器,质量为25.0000g充以4℃水之后,总质量为125.0000g。

若改充以25℃,13.33 kPa的某碳氢化合物气体,则总质量为 25.0163g。

试估算该气体的摩尔质量。

水的密度1g·cm3计算。

解:球形容器的体积为V=(125-25)g/1 g.cm-3=100 cm3将某碳氢化合物看成理想气体:PV=nRT , PV =mRT/ M wM w= mRT/ PV=(25.0163-25.0000)8.314300.15/(1333010010-6)M w =30.51(g/mol)1.5 两个容积均为V 的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。

若将其中的一个球加热到 100℃,另一个球则维持 0℃,忽略连接细管中气体体积,试求该容器内空气的压力。

解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。

标准状态:因此,1.6 0℃时氯甲烷(CH 3Cl )气体的密度ρ随压力的变化如下。

试作p p-ρ图,用外推法求氯甲烷的相对分子质量。

1.7 今有20℃的乙烷-丁烷混合气体,充入一抽成真空的200 cm3容器中,直至压力达101.325 kPa,测得容器中混合气体的质量为0.3897 g。

《物理化学》课后习题答案(天津大学第四版)

《物理化学》课后习题答案(天津大学第四版)
Compound -238.66 0 -379.07 -285.83 -726.51 0 -979.5 0
因此,由标准摩尔生成焓
由标准摩尔燃烧焓
2.37 已知25 °C甲酸甲脂(HCOOCH3, l)的标准摩尔燃烧焓 为 ,甲酸(HCOOH, l)、甲醇(CH3OH, l)、水 (H2O, l)及二氧化碳(CO2, g)的标准摩尔生成焓 分别 为 、 、 及 应用这些数据求25 °C时下列反应的标准摩尔反应焓。 解:显然要求出甲酸甲脂(HCOOCH3, l)的标准摩尔生成焓
2.14 容积为27 m3的绝热容器中有一小加热器件,器壁上有一小孔与 100 kPa的大气相通,以维持容器内空气的压力恒定。今利用加热器 件使器内的空气由0 °C加热至20 °C,问需供给容器内的空气多少 热量。已知空气的 假设空气为理想气体,加热过程中容器内空气的温度均匀。 解:在该问题中,容器内的空气的压力恒定,但物质量随温度 而改变
-46.11
NO2(g) 33.18
90.25
HNO3(l) -174.10
-241.818
Fe2O3(s) -824.2
-285.830 CO(g) -110.525
(1) (2) (3)
2.35 应用附录中有关物资的热化学数据,计算 25 °C时反应 的标准摩尔反应焓,要求: (1) 应用25 °C的标准摩尔生成焓数据; (2) 应用25 °C的标准摩尔燃烧焓数据。 解:查表知
可由
表出(Kirchhoff公式)
设甲烷的物质量为1 mol,则 最后得到



第三章 热力学第二定律
3.1 卡诺热机在 的高温热源和 的低温热源间工作。 求(1) 热机效率 ; (2) 当向环境作功 时,系统从高温热源吸收的热 及 向低温热源放出的热 。

天津大学《物理化学》第四版上、下册部分习题解答

天津大学《物理化学》第四版上、下册部分习题解答

面向21世纪课程教材 天津大学物理化学教研室编 高等教育出版社《物理化学》(上、下册)第四版习题解答上册P94(热力学第一定律):15.恒容绝热,ΔU=Q V =0ΔU=ΔU Ar +ΔU Cu =(nC V ,m ΔT)Ar +(nC p,m ΔT)Cu =4(20.786-R)(T -273.15)+2×24.435(T -423.15)=0 T=347.38KΔH=ΔH Ar +ΔH Cu =(nC p,m ΔT)Ar +(nC p,m ΔT)Cu =4×20.786(347.38-273.15)+2×24.435(347.38-423.15)=2469J 19.恒压绝热,ΔH=Q p =0ΔH=ΔH A +ΔH B =(nC p,m ΔT)A +(nC p,m ΔT)B =2×2.5R(T -273.15)+5×3.5R(T -373.15)=0 T=350.93KW=ΔU=ΔU A +ΔU B =(nC V ,m ΔT)A +(nC V ,m ΔT)B =2×1.5R(350.93-273.15)+5×2.5R(350.93-373.15)= -369.2J 35.(1) Δr H øm =Δf H øm,酯+2Δf H øm,水-2Δf H øm,醇-Δf H øm,氧= -379.07+2(-285.83)-2(-238.66)-0= -473.41kJ .mol -1 (2) Δr H øm =2Δc H øm,醇+Δc H øm,氧-Δc H øm,酯-2Δc H øm,水=2(-726.51)+0-(-979.5)-0= -473.52 kJ .mol -137.由 HCOOCH 3+2O 2==2CO 2+2H 2OΔc H øm,酯=Δr H øm =2Δf H øm,二氧化碳+2Δf H øm,水-Δf H øm,酯 Δf H øm,酯=2Δf H øm,二氧化碳+2Δf H øm,水-Δc H øm,酯=2(-393.509)+2(-285.83)-(-979.5)= -379.178 kJ .mol -1由 HCOOH+CH 3OH==HCOOCH 3+H 2O Δr H øm =Δf H øm,酯+Δf H øm,水-Δf H øm,酸-Δf H øm,醇= -379.178+(-285.83)-(-424.72)-(-238.66)= -1.628 kJ .mol -1P155(热力学第二定律):1. (1) η=1-T 2/T 1=1-300/600=0.5(2) η= -W/Q 1Q 1= -W/η=100/0.5=200kJ 循环 ΔU=0,-W=Q=Q 1+Q 2 -Q 2=Q 1+W=200-100=100kJ10.理想气体恒温 ΔU=0,ΔS 系统=nR ln (p 1/p 2)=1×8.3145ln (100/50)=5.763J .K -1(1) Q= -W=nRT ln (p 1/p 2) =1×8.3145×300ln (100/50)=1729J 可逆 ΔS 总=0(2) Q= -W=p ex ΔV=22111247J 2nRT nRT p nRT p p -==⎛⎫⎪⎝⎭-11247 4.157J K 300Q Q S T T--∆====-⋅环境环境环境ΔS 总=ΔS 系统+ΔS 环境=5.763-4.157=1.606J .K -1 (3) Q= -W=0 ΔS 环境=0ΔS 总=ΔS 系统+ΔS 环境=5.763J .K -1 19.恒压绝热,ΔH=Q p =0ΔH=ΔH 冷+ΔH 热=(C p ΔT)冷+(C p ΔT)热 =100×4.184(T -300.15)+200×4.184(T -345.15)=0 T=330.15KΔS=ΔS 冷+ΔS 热=C p,冷ln (T/T 1)+C p,热ln (T/T 1) =100×4.184ln (330.15/300.15)+200×4.184 ln (330.15/345.15)=2.678J .K -1 23.恒压 Q=ΔH=n Δvap H m =(1000/32.042)×35.32=1102.3kJW= -p ex ΔV= -p(V g -V l )= -pV g = -nRT= -(1000/32.042)×8.3145×337.80= -87655J ΔU=Q+W=1102.3-87.655=1014.6kJ可逆相变 ΔS=ΔH/T=1102.3/337.80=3.2632kJ .K -136. H 2O(l) 101.325kPa ,393.15K H 2O(g)ΔH 1=C p ΔT=1×4.224(-20)= -84.48kJ ΔH 3=C p ΔT=1×2.033×20= 40.66kJ ΔS 1=C p ln (T 2/T 1)=4.224ln (373.15/393.15) ΔS 3=C p ln (T 2/T 1)=2.033ln (393.15/373.15)=-0.2205kJ .K -1 =0.1061kJ .K -1H 2O(l) 101.325kPa,373.15KH 2O(g)ΔH 2=2257.4kJΔS 2=ΔH 2/T=2257.4/373.15=6.0496kJ .K -1ΔH=ΔH 1+ΔH 2+ΔH 3= -84.48+2257.4+40.66=2213.58kJ ΔS=ΔS 1+ΔS 2+ΔS 3= -0.2205+6.0496+0.1061=5.9352kJ .K -1 ΔG=ΔH -T ΔS=2213.58-393.15×5.9352= -119.84kJ或由22112211T T T p T T p T T T H H C dTC dT S S T∆=∆+∆∆∆=∆+⎰⎰计算40.(1) Δr H øm =2Δf H øm,CO +2Δf H øm,H2-Δf H øm,CH4-Δf H øm,CO2=2(-110.525)+0-(-74.81)-(-393.509)=247.269kJ .mol -1 Δr S øm =2S øm,CO +2S øm,H2-S øm,CH4-S øm,CO2=2×197.674+2×130.684-186.264-213.74=256.712J .K -1.mol -1 Δr G øm =Δr H øm -T Δr S øm =247.269-298.15×256.712/1000=170.730 kJ .mol -1 (2) Δr G øm =2Δf G øm,CO +2Δf G øm,H2-Δf G øm,CH4-Δf G øm,CO2=2(-137.168)+0-(-50.72)-(-394.359)=170.743kJ .mol -1(3) 反应物(150kPa) 产物(50kPa)ΔS 1=nR ln (p 1/p 2)=2R ln (150/100)=6.742 ΔS 2=nR ln (p 1/p 2)=4R ln (100/50)=23.053 ΔG 1=-nRT ln (p 1/p 2)=-2010 ΔG 1=-nRT ln (p 1/p 2)=-6873反应物(100kPa) 产物(100kPa)Δr S øm Δr G ømΔr S m =Δr S øm +ΔS 1+ΔS 2=256.712+6.742+23.053=286.507J .K -1.mol -1Δr G m =Δr G øm +ΔG 1+ΔG 2=170.743-2.010-6.873=161.860 kJ .mol -1 或 先求出各压力下的S m 、Δf G m 值或 由等温方程Δr G m =Δr G øm +RT ln J p (见第五章化学平衡) P208(多组分系统热力学):2. (1)/////(1)/0.095/0.1801580.01040.095/0.180158(10.095)/0.0180153B B BB BB B AB B A AB B B An m M mw M x n n m M m M mw M m w M ===+++-==+-(2) -3/0.0951036.5546mol m /0.180158B B B B B Bn m M w c V m M ρρ⨯=====⋅(3) -1//0.095/0.1801580.583mol kg (1)10.095B B BB B B AAB n m M mw M b m m m w =====⋅--7. k B =p B /x B =101.325/0.0425=2384kPa由 p=p A +p B =p A *x A +k B x B 101.325=10.0(1-x B )+2384x B x B =0.03847//36.4610.03847///36.461100/78.114B B BB B B AB B A AB n m M m x n n m M m M m ====+++m B =1.867g24.b B =ΔT f /K f =0.200/1.86=0.1075mol .kg -1**1000/18.01533.167 3.161kPa 1000/18.01530.1075A A A A A A Bn p p p x p n n ===⋅=⨯=++25.-30.400010000.16136mol m 8.3145298.15B c RT∏⨯===⋅⨯4-13/10 6.2010g mol0.16136110B B BB B B B n m M c VV m M c V-=====⨯⋅⨯⨯27.b B =ΔT f /K f =0.56/1.86=0.301mol .kg -1(1) Π=c B RT=ρb B RT=1000×0.301×8.3145×310.15=7.76×105Pa(2) /B B B BB An n m M b m m Vρ=≈=30.301100010342.30103g B B B m b VM ρ-==⨯⨯⨯=P245(化学平衡):5. 反应之间的关系为:(3)=2(2)-(1)故 Δr G øm,3=2Δr G øm,2-Δr G øm,1-RTlnK ø3=2(-RTlnK ø2)-(-RTlnK ø1) K ø3=( K ø2)2/ K ø16. SO 2Cl 2 == SO 2 + Cl 2开始压力 0 44.786 47.836 平衡压力 p 44.786-p 47.836-p平衡总压Σ=p+44.786-p+47.836-p=86.096 得p=6.526kPa22222222(44.786 6.526)(47.836 6.526)2.4226.526100SOCl SO ClSO Cl SO Cl p p p p ppK p p ppφφφφφ⋅⋅--====⋅⨯8. (1) PCl 5 == PCl 3 + Cl 2开始量 1 0 0平衡量 1-a a a 平衡总量Σ=1+a摩尔分数 1 111αααααα-+++ 325210.31211PCl ClPCl p p p p p p K p pppφφφφφφαααα⋅⋅+===-⋅+⎛⎫ ⎪⎝⎭代入p=200kPa ,p ø=100kPa ,得a =0.367 (2) PCl 5 == PCl 3 + Cl 2 开始量 1 0 5平衡量 1-a a 5+a 平衡总量Σ=6+a摩尔分数 15 666αααααα-++++ 3255660.31216PClClPCl p p p p pp p p K p pppφφφφφφφαααααα+⋅⋅⋅++===-⋅+⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭代入p=101.325kPa ,p ø=100kPa ,得a =0.26810.32266.66/20.1111100NH H Sp p K p p φφφ=⋅==⎛⎫ ⎪⎝⎭(1) NH 4HS (s) == NH 3 + H 2S 开始压 0 39.99平衡压 p 39.99+p 平衡总压Σ=39.99+2p 3239.990.111110010018.87kPa39.99277.73kPaNH H Sp p p p K ppp p φφφ+=⋅=⋅==∑=+=(2) 即要求Δr G m >0,也即J p =32NH H Sp p ppφφ⋅>K ø6.6660.1111100100p⨯> p>166.7kPa17.AgCl 的溶度积即反应AgCl==Ag ++Cl -的平衡常数Δr G øm =Δf G øm,Ag++Δf G øm,Cl --Δf G øm,AgCl=77.107+(-131.22)-(-109.789)=55.676kJ .mol -1105-355.6761000ln 22.4598.3145298.151.7610 1.3310mol dmr m G K RTK s c c φφφ--+-∆⨯=-=-=-⨯=⨯====⨯⋅下册P46(电化学): 10.Λm =κ/c=0.0368/(0.05×1000)=0.000736Ω-1.m 2.mol -1Λm ∞=λ+∞+λ-∞=0.034982+0.00409=0.039072Ω-1.m 2.mol -1 a =Λm /Λm ∞=0.000736/0.039072=0.018842250.050.01884 1.80910110.01884c K φαα-⨯===⨯--19.(1) Pb + Hg 2SO 4 == PbSO 4 + 2Hg(2) Δr G m = -zFE= -2×96485×0.9647= -186.16×103J .mol -1 Δr S m =zF(∂E/∂T)p =2×96485×1.74×10-4=33.58J .K -1.mol -1 Δr H m =Δr G m +T Δr S m = -186.16×103+298.15×33.58= -176.15×103 J .mol -1 Q r,m =T Δr S m =298.15×33.58=10.01×103 J .mol -1 21.Ag + 0.5Hg 2Cl 2 == AgCl + HgΔr S m =S m,AgCl +S m,Hg -S m,Ag -0.5S m,Hg2Cl2=96.2+77.4-42.55-0.5×195.8=33.15J .K -1.mol -1 Δr G m =Δr H m -T Δr S m =5435-298.15×33.15= -4449J .mol -14-144490.04611V19648533.15 3.43610V K 196485r m r m pG E zFS E T zF -∆=-==⨯∆∂===⨯⋅∂⨯⎛⎫ ⎪⎝⎭35.负极反应:2Sb+3H 2O -6e →Sb 2O 3+6H +6*21210.05916lg 0.05916lg 0.05916pH60.05916pH 0.05916pH 0.34510.228pH pH 3.98 5.960.059160.05916H H a a E E E E φφφφϕϕϕϕϕϕϕϕ++----+-+-=+=+=-=-=-+=+--=+=+=37.(1) 反应Fe 2++Ag +==Fe 3++Ag 相应电池为:Pt|Fe 2+,Fe 3+||Ag +|AgE ø=φ+ø-φ-ø=0.7994-0.770=0.0294V1964850.0294ln 1.1448.3145298.153.14zFE K RTK φφφ⨯⨯===⨯=(2) Fe 2+ + Ag + == Fe 3+ + Ag 开始浓度 0 0 0.05 平衡浓度 x x 0.05-x2-30.05 3.140.0439mol dmx K xx φ-===⋅40.(1) 溴化银电极的标准电势即银电极的非标准电势,||||130.05916lg 0.05916lg4.88100.79940.05916lg0.07105V1sp Ag AgBr Br Ag Ag Ag Ag Ag Ag Ag BrK a a φφφϕϕϕϕ-++++--==+=+⨯=+=(2) AgBr 的Δf G øm 即反应Ag+0.5Br 2==AgBr 的Δr G øm该反应相应电池为:Ag,AgBr|Br -|Br 2,Pt E ø=φ+ø-φ-ø=1.065-0.07105=0.99395V Δr G m ø= -zFE ø= -1×96485×0.99395= -95.901×103J .mol -1 P191(界面现象):3.汞γ乙醚-汞=γ水-汞+γ乙醚-水cos θ 0.379=0.375+0.0107cos θ θ=68.050 4. 02lnr p Mp RTrγρ=920.072750.018015ln1.07722.337998.38.3145293.15106.863kPar r p p -⨯⨯==⨯⨯⨯=6. 对水中气泡,66220.05885 1.17710Pa 0.110p r γ-⨯∆===-⨯-⨯ 对空中水滴,66220.05885 1.17710Pa 0.110p rγ-⨯∆===⨯⨯P289(化学动力学):7. CH 3NNCH 3 == C 2H 6 + N 2t=0 21.332 0 0 t=1000s p 21.332-p 21.332-p 总压Σ= p+(21.332-p)+(21.332-p)=22.732得 p=19.932kPa一级反应5-10141/2511121.332l n l n 6.78810s100019.932l n 2l n 21.02110s 6.78810p k t p t k --===⨯===⨯⨯9. 由题意 r 0=k 1c 0=1×10-3r=k 1c=0.25×10-3 两式相除,得 c 0/c=4一级反应 -1011/2111ln ln 40.0231min60ln 2ln 230.0min0.0231c k t c t k ======c 0=1×10-3/k 1=1×10-3/0.0231=0.0433mol .dm -313.二级反应 3-1-1201111110.0333d m m o l m i n1010.251k t c c =-=-=⋅⋅-⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ 23.由题意,半衰期与初压成反比,可知该反应为二级反应-1-1201/2110.00493kPa s 101.3252k p t ===⋅⨯30.1111lna E k k R T T =--⎛⎫⎪⎝⎭-1103.3100011ln1.56060.2928.3145353.15338.151.390minkk ⨯=--==⎛⎫⎪⎝⎭由速率常数的单位可知反应为一级反应,故1/2ln 2ln 20.4987min 1.390t k === 37.由动力学方程()11001ln1nnc kt cc kt c n --=-=-或可知:反应从某相同初始浓度c 0到达某一定浓度c 时,k 与t 成反比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章热力学第二定律3.1卡诺热机在的高温热源和的低温热源间工作。

求(1)热机效率;(2)当向环境作功时,系统从高温热源吸收的热及向低温热源放出的热。

解:卡诺热机的效率为根据定义3.5高温热源温度,低温热源。

今有120 kJ的热直接从高温热源传给低温热源,龟此过程的。

解:将热源看作无限大,因此,传热过程对热源来说是可逆过程3.6不同的热机中作于的高温热源及的低温热源之间。

求下列三种情况下,当热机从高温热源吸热时,两热源的总熵变。

(1)可逆热机效率。

(2)不可逆热机效率。

(3)不可逆热机效率。

解:设热机向低温热源放热,根据热机效率的定义因此,上面三种过程的总熵变分别为。

3.7已知水的比定压热容。

今有1 kg,10 C的水经下列三种不同过程加热成100 C的水,求过程的。

(1)系统与100 C的热源接触。

(2)系统先与55 C的热源接触至热平衡,再与100 C的热源接触。

(3)系统先与40 C,70 C的热源接触至热平衡,再与100 C的热源接触。

解:熵为状态函数,在三种情况下系统的熵变相同在过程中系统所得到的热为热源所放出的热,因此, g)的摩尔定压热容与温度的函数关系为3.8已知氮(N2(g)置于1000 K的热源中,将始态为300 K,100 kPa下1 mol的N2求下列过程(1)经恒压过程;(2)经恒容过程达到平衡态时的。

解:在恒压的情况下在恒容情况下,将氮(N, g)看作理想气2体将代替上面各式中的,即可求得所需各量3.9始态为,的某双原子理想气体1 mol,经下列不同途径变化到,的末态。

求各步骤及途径的。

(1)恒温可逆膨胀;(2)先恒容冷却至使压力降至100 kPa,再恒压加热至;(3)先绝热可逆膨胀到使压力降至100 kPa,再恒压加热至。

解:(1)对理想气体恒温可逆膨胀,U = 0,因此(2)先计算恒容冷却至使压力降至100 kPa,系统的温度T:(3)同理,先绝热可逆膨胀到使压力降至100 kPa时系统的温度T:根据理想气体绝热过程状态方程,各热力学量计算如下2.12 2 mol双原子理想气体从始态300 K,50 dm3,先恒容加热至400 K,再恒压加热至体积增大到100 dm3,求整个过程的。

解:过程图示如下先求出末态的温度因此,两个重要公式对理想气体3.17组成为的单原子气体A与双原子气体B的理想气体混合物共10 mol,从始态,绝热可逆压缩至的平衡态。

求过程的。

解混合理想气体的绝热可逆状态方程推导如下容易得到3.18单原子气体A与双原子气体B的理想气体混合物共8 mol,组成为,始态。

今绝热反抗恒定外压不可逆膨胀至末态体积的平衡态。

求过程的。

解:先确定末态温度,绝热过程,因此3.19常压下将100 g,27 C的水与200 g,72 C的水在绝热容器中混合,求最终水温t及过程的熵变。

已知水的比定压热容。

解:321绝热恒容容器中有一绝热耐压隔板,隔板一侧为2 mol的200 K,50 dm3的单原子理想气体A,另一侧为3 mol的400 K,100 dm3的双原子理想气体B。

今将容器中的绝热隔板撤去,气体A与气体B混合达到平衡。

求过程的。

解系统的末态温度T可求解如下系统的熵变注:对理想气体,一种组分的存在不影响另外组分。

即A和B的末态体积均为容器的体积。

322绝热恒容容器中有一绝热耐压隔板,隔板两侧均为N2(g)。

一侧容积50 dm3,内有200 K的N2(g) 2 mol;另一侧容积为75 dm3, 内有500 K的N2(g)4 mol;N2(g)可认为理想气体。

今将容器中的绝热隔板撤去,使系统达到平衡态。

求过程的。

解:过程图示如下同上题,末态温度T确定如下经过第一步变化,两部分的体积和为即,除了隔板外,状态2与末态相同,因此注意21与22题的比较。

3.23常压下冰的熔点为0 C,比熔化焓,水的比定压热熔。

在一绝热容器中有1 kg,25 C的水,现向容器中加入0.5 kg,0 C的病,这是系统的始态。

求系统达到平衡后,过程的。

解:将过程看作恒压绝热过程。

由于1 kg,25 C的水降温至0 C为只能导致克冰融化,因此3.27已知常压下冰的熔点为0 C,摩尔熔化焓,苯的熔点为5.5 1C,摩尔熔化焓。

液态水和固态苯的摩尔定压热容分别为及。

今有两个用绝热层包围的容器,一容器中为0 C的8 mol H2O(s)与2 mol H2O(l)成平衡,另一容器中为5.51 C的5 mol C6H6(l)与5 mol C6H6(s)成平衡。

现将两容器接触,去掉两容器间的绝热层,使两容器达到新的平衡态。

求过程的。

解:粗略估算表明,5 mol C6H6(l) 完全凝固将使8 mol H2O(s)完全熔化,因此,过程图示如下总的过程为恒压绝热过程,,因此3.28将装有0.1 mol乙醚(C2H5)2O(l)的小玻璃瓶放入容积为10 dm3的恒容密闭的真空容器中,并在35.51 C的恒温槽中恒温。

35.51 C为在101.325 kPa下乙醚的沸点。

已知在此条件下乙醚的摩尔蒸发焓。

今将小玻璃瓶打破,乙醚蒸发至平衡态。

求(1)乙醚蒸气的压力;(2)过程的。

解:将乙醚蒸气看作理想气体,由于恒温各状态函数的变化计算如下忽略液态乙醚的体积O成气液平衡。

已知80 C,3.30.容积为20 dm3的密闭容器中共有2 mol H2100 C下水的饱和蒸气压分别为及,25 C水的摩尔蒸发焓;水和水蒸气在25 ~ 100 C间的平均定压摩尔热容分别为和。

今将系统从80 C的平衡态恒容加热到100C。

求过程的。

解:先估算100 C时,系统中是否存在液态水。

设终态只存在水蒸气,其物质量为n, 则显然,只有一部分水蒸发,末态仍为气液平衡。

因此有以下过程:设立如下途径第一步和第四步为可逆相变,第二步为液态水的恒温变压,第三步为液态水的恒压变温。

先求80 C和100 C时水的摩尔蒸发热3.31.O2(g)的摩尔定压热容与温度的函数关系为已知25 C下O2(g)的标准摩尔熵。

求O2(g)在 100 C,50 kPa下的摩尔规定熵值。

解:由公式知3.32.若参加化学反应的各物质的摩尔定压热容可表示为试推导化学反应的标准摩尔反应熵与温度T的函数关系式,并说明积分常数如何确定。

解:对于标准摩尔反应熵,有式中3.33.已知25 C时液态水的标准摩尔生成吉布斯函,水在25 C时的饱和蒸气压。

求25 C时水蒸气的标准摩尔生成吉布斯函数。

解:恒温下对凝聚相恒温过程,因此3.34.100 C的恒温槽中有一带有活塞的导热圆筒,筒中为2 mol N(g)及2O(l)。

环境的压力即系统的压力维持120 kPa不变。

装与小玻璃瓶中的3 mol H2今将小玻璃瓶打碎,液态水蒸发至平衡态。

求过程的。

已知:水在100 C时的饱和蒸气压为,在此条件下水的摩尔蒸发焓。

O(g)的摩尔分数为3/5 = 0.6,因此解:将气相看作理想气体。

系统终态H2HO(g)的分压为23.35.已知100 C水的饱和蒸气压为101.325 kPa,此条件下水的摩尔蒸发焓。

在置于100 C恒温槽中的容积为100 dm3的密闭容器中,有压力120 kPa的过饱和蒸气。

此状态为亚稳态。

今过饱和蒸气失稳,部分凝结成液态水达到热力学稳定的平衡态。

求过程的。

解:凝结蒸气的物质量为热力学各量计算如下3.36 已知在101.325 kPa下,水的沸点为100 C,其比蒸发焓。

已知液态水和水蒸气在100 ~ 120 C范围内的平均比定压热容分别为及。

今有101.325 kPa下120 C的1 kg过热水变成同样温度、压力下的水蒸气。

设计可逆途径,并按可逆途径分别求过程的及。

解:设计可逆途径如下3.36.已知在100 kPa下水的凝固点为0 C,在-5 C,过冷水的比凝固焓,过冷水和冰的饱和蒸气压分别为,。

今在100 kPa下,有-5 C 1 kg的过冷水变为同样温度、压力下的冰,设计可逆途径,分别按可逆途径计算过程的及。

解:设计可逆途径如下第二步、第四步为可逆相变,,第一步、第五步为凝聚相的恒温变压过程,,因此该类题也可以用化学势来作,对于凝聚相,通常压力下,可认为化学势不随压力改变,即因此,3.37.已知在-5 C,水和冰的密度分别为和。

在-5 C,水和冰的相平衡压力为59.8 MPa。

今有-5 C的1 kg水在100 kPa下凝固成同样温度下的冰,求过程的。

假设,水和冰的密度不随压力改变。

解:相平衡点为,由于温度不变,因此3.38.若在某温度范围内,一液体及其蒸气的摩尔定压热容均可表示成的形式,则液体的摩尔蒸发焓为其中,为积分常数。

试应用克劳修斯-克拉佩龙方程的微分式,推导出该温度范围内液体的饱和蒸气压p的对数ln p与热力学温度T的函数关系式,积分常数为I。

解:设置一下途径设液态水的摩尔体积与气态水的摩尔体积可忽略不计,且气态水可看作理想气体,则,对于克劳修斯-克拉佩龙方程3.40化学反应如下:(1)利用附录中各物质的数据,求上述反应在25 C时的;(2)利用附录中各物质的数据,计算上述反应在25 C时的;(3)25 C,若始态CH4(g)和H2(g)的分压均为150 kPa,末态CO(g)和H2(g)的分压均为50 kPa,求反应的。

解:(1)(2)(3)设立以下途径3.41 已知化学反应中各物质的摩尔定压热容与温度间的函数关系为这反应的标准摩尔反应熵与温度的关系为试用热力学基本方程推导出该反应的标准摩尔反应吉布斯函数与温度T的函数关系式。

说明积分常数如何确定。

解:根据方程热力学基本方程4.42 汞Hg在100 kPa下的熔点为-38.87 C,此时比融化焓;液态汞和固态汞的密度分别为和。

求:(1)压力为10MPa下汞的熔点;(2)若要汞的熔点为-35 C,压力需增大之多少。

解:根据Clapeyron方程,蒸气压与熔点间的关系为3.43 已知水在77 C是的饱和蒸气压为41.891 kPa。

水在101.325 kPa下的正常沸点为100 C。

求(1)下面表示水的蒸气压与温度关系的方程式中的A和B值。

(2)在此温度范围内水的摩尔蒸发焓。

(3)在多大压力下水的沸点为105 C。

解:(1)将两个点带入方程得(2)根据Clausius-Clapeyron方程(3)3.44 水(H2O)和氯仿(CHCl3)在101.325 kPa下的正常沸点分别为100 C和61.5 C,摩尔蒸发焓分别为和。

求两液体具有相同饱和蒸气压时的温度。

解:根据Clausius-Clapeyron方程设它们具有相同蒸气压时的温度为T,则3.45 略。

3.46 求证:(2) 对理想气体证明:对理想气体,3.47求证:(2) 对理想气体证明:用Jacobi行列式证对理想气体,3.48证明:(1)(2)对理想气体证明:对于理想气体,3.49求证:(1)(2)对van der Waals气体,且为定值时,绝热可逆过程方程式为证明:对于绝热可逆过程 d S = 0,因此就van der Waals气体而言积分该式3.50证明(1)焦耳-汤姆逊系数(2)对理想气体证明:对理想气体。

相关文档
最新文档