铁路客车车体模块化设计技术

铁路客车车体模块化设计技术
铁路客车车体模块化设计技术

铁路客车车体模块化设计技术

作者 廖平

为了适应现代客车的大规模生产,努力提高客车的设计制造水平,近几年来,在客车设计中全面贯彻模块化设计理念,在制动、车电、暖通和车体的设计中广泛展开了模块化设计,在简化设计工作、提高产品质量、缩短组装周期和提升工厂产量方面取得了巨大的成果。本文着重对车体模块化设计技术进行介绍,供相关设计人员学习参考。

※ ※ ※

1模块化概念

所谓模块,实际上就是某一系统集成后所形成的功能单元。一个模块可以具有一种功能,也可以具有多种功能。各模块通过插接或连接即形成一个局部或整机系统,再通过一定的包装和装饰即形成产品。

随着社会的发展和技术的进步,“模块化”概念已广泛应用于各个领域,尤其在电气行业,由简单的线排到大规模集成电路,电器元件的模块化已普遍采用,一个复杂的电气控制系统现在只要一个电路板和几个功能模块插件就可以实现,并使非常复杂的电气系统变得结构简单,条理清晰,维修方便,计算机行业尤其在集成电路方面取得了高速发展。

一般地说,模块化程度越高,产品就越先进。模块本身必须具有技术上的先进性,设计上的合理性,性能上的可靠性,成本方面的经济性和寿命长等优势,才能使该产品具有生命力。当前,铁路客车的设计制造技术正在进入与世界同步发展的轨道,高速动车组设计制造技术已达到世界先进水平,尤其在牵引、制动、控制和转向架等性能方面有了极大的提高,其装备也逐步现代化,舒适度明显改善,但本厂生产的客车在车体结构方面却明显落后,与高速技术的发展和现代化大生产方式不相适应。为了解决这种状况,引入“模块化”的设计理念就显得十分重要。

2 模块化设计的发展

1975以前,钢结构的生产仅有底架和端墙两个胎模,侧墙和车顶的组成均采用散件组装,各梁、柱均采用“搭积木”的方式进行逐件组焊,然后蒙上墙板和顶板。一辆车体钢结构组成,至少要一个星期,最快也要三天左右,这样的生产方式要想大幅度提高产量和产品质量是根本不可能的,直到1985年钢结构的六大片才实现部件设计并按部件生产,组装开始实现胎膜化。实现胎膜组装以后,钢结构组装进度明显加快,可实现日产一辆,最快可达日产两辆,至此钢结构的模块化设计已初见成效。

但是车体内部结构多年来一直采用散组装,所谓散组装就是把各种零部件在车上逐件进行组装然后进行调整、找平,车上似乎变成了一个临时“加工场”,车上配件散乱,加工后杂物满地,这样的组装方式如何能够保证产品的进度和质量。2005年客车设计部开始在内装方面引入模块化设计理念,并着手进行模块化设计研究,并在2005年的屯兵车上进行了试装,取得明显效果。工厂突破日产两辆,2006年日产四辆,经过短短五年的发展,现在25G新造客车的产能已达到日产10辆的水平。虽然日产水平的大幅度提高是工厂各方面组合能力的体现,但可以明显看出模块化设计对推进生产进程所起的主导作用。

本文就车体模块化设计思路、模块的形成和模块化设计中应注意的事项进行简要介绍,供相关人员

学习参考。

3车体模块化设计

3.1车体模块的基本形式

车体的模块化设计实际上是一种结构集成,把客车的散组装设计变为模块化设计,这一过程既是设计思路的转变,也是设计方法的改变。 “思路”和“方法”的确立是模块化设计的关键所在。

对于车体钢结构,其底架、侧墙、端墙和车顶四大部件从整体上来说已实现的模块化设计和生产,但从各部件的细部结构来看,在近几年的模块化设计进程中部分结构虽已体现了模块化设计思想,但对于如何深入实现钢结构各大部件的模块化设计,仍需要进一步研究和探讨。本文重点介绍车体内部结构的模块化设计技术,并对车顶钢结构的初步模块化设计进行简要介绍。

车体内部结构的模块化设计一般有两种方式:

一种是骨架先组成模块,在车上与钢结构进行组装,然后进行内饰板的安装。目前铁路客车的设计中这种方式也有广泛的应用,我厂T型样板车墙板、软卧车卧室顶板安装采用了这种方式,其它工厂对于这种方式也有较多的应用。这种方式一般对于内饰板采用玻璃钢或金属板材模压成型或者吸塑成型的结构时较为有利。该方式的优点是骨架模块安装时有足够的空间进行操作和调整,内饰板安装时与周边关系容易调整和处理,维修成本相对较低,缺点是骨架模块本身需要有足够的刚度和强度,相对下面要讲的的整体方式对骨架的要求要高一些,对于常规客车来说其制造成本相对较高。

另一种是骨架与蒙板一体化模块,在车上与钢结构一次完成组装。我厂普遍采用的是这种方式。例如我厂设计的25G型车车内墙板、平顶板等都是采用这种方式。该方式的优点是模块的形成比较完整,整体刚度较好,安装简单,大大缩短生产周期,尤其适用于大批量生产,且骨架与蒙板融合成整体,对骨架的要求相对较低,尤其适用于常规客车全木结构的模块化设计。缺点是由于受到安装空间的制约,设计难度相对较大,尤其对于模压成型的蒙板与骨架组成整体模块时需要进行二次加工,也就是要把骨架与内饰板进行可靠的粘结才能形成整体模块,这种方式其制造成本会有所增加。

3.2车顶模块化设计

原来车顶钢结构的设计中,车内风道吊铁、间壁安装和水箱吊铁等都是和车顶钢结构密切相关的,基本上都是靠弯梁进行焊接和把固的,所以弯梁的排列受到吊铁位置和间壁连接的制约,且车种不同弯梁的排列方式就不一样,即使是同一个车种在内部结构发生变化时,弯梁的位置就要随之变化,车顶钢结构就必须重新设计,既增加了设计工作量,又会出现大量不同规格的配件,给配件制作和管理带来难度,且不同的设计在车顶钢结构组成时胎膜工装都要调整一次,这种设计难以适应现代化大生产。

车顶模块化设计思路:

引入模块化设计的理念是解决以上问题的有效途径。首先要设法解除内部结构对车顶钢结构之间的约束,我们在车顶内部设置的两根贯通客室的四面都带T型槽的铝合金纵向梁,在车顶钢结构上的任意位置均可设置吊铁与该纵向梁实现连接,车内主风道和内顶结构也通过铝合金纵向梁进行连接,这两根

纵向梁的设置作为车顶钢结构和内部结构之间的过渡,给车顶部分的模块化设计起到了关键作用。这样就解除了吊铁、间壁与弯梁之间的直接约束关系,为车顶钢结构和车顶内部结构的模块化设计铺平了道路。

车顶钢结构的模块化形成:

对于空调客车来说,车顶钢结构一般由圆顶和平顶组成,圆顶部分由于解除了内部结构的约束,弯梁排列就可以实现均布,两端平顶根据常规客车采用的两种不同外形尺寸的空调机组形成两种不同的平顶,对于常规客车来说,车顶钢结构仅仅是两种平顶的模块和圆顶的不同组合,不再随内部结构的变化而改变,实际上车顶钢结构已向模块化设计大大前进了一大步,这样既减少了设计工作量,又规范了零部件的设计和生产,有效地缩短了配件制作和钢结构组装周期。

内顶结构模块化形成:

车顶内部结构的客室部分是通过设置的两根纵向梁进行悬吊组成的,纵向梁由四面设有T型滑槽的铝合金型材制作,这贯通型的纵向梁起着车顶钢结构与内顶结构之间承上启下的核心作用,图1所示为25G硬座车内顶铝合金纵向梁设置示意图。整个客室内顶可以看成是一个大型模块,通过这两根纵向梁吊起。而这个大型模块又是由内顶结构框架为主的侧顶板和中顶板子模块组合而成。

图2为25G硬座车内顶结构示意图。这种设计结构简单,条理清晰,调整容易,安装方便快捷,适于现代化大生产。

图1 25G硬座车内顶铝合金纵向梁设置结构示意图

3.3侧墙模块化设计

原侧墙内装结构完全是散组装状态,内墙板的横向接缝处均设有木立柱,各木立柱与钢结构立柱把固,纵向接缝处设置木拉条,木拉条和木立柱固定,木结构组装后须进行调平处理,然后逐块安装内墙板。各车型由于窗开档、横向和纵向接缝不同,木结构的布置也不相同,即使是同一车种,内部结构稍

图2 25G硬座车内顶结构示意图

有变动,其钢木结构就必须重新设计,造成图样繁多,木结构配件繁多,给设计、配件制作、管理和安装带来极大难度。

侧墙模块设计思路:

a) 要解决侧墙内部结构散组装问题,首先必须解除侧墙内部结构对钢结造成的约束,理顺内部结构与钢结构之间的直接连接关系;

b) 侧墙内装结构必须自成体系形成独立框架或单元模块,然后通过若干支点与钢结构连接;

c) 与模块相连接的钢结构立柱上必须具有方便安装的眼孔(本厂采用的是钥匙孔,并配有特制防转螺栓进行连接把固),确保安装的工艺性和可靠性;

d) 模块上的连接铁和钢结构立柱之间的连接必须方便横向纵向的调整,确保模块安装到位。

侧墙模块形成:

对于常规客车,侧墙内装基本上采用的是木结构,所以其侧墙模块也采用木结构方式。对于客室部分,标准模块一般为每窗一组。每个模块由四部分组成:内饰板(贴面胶合板)模块+框架模块+防寒材+连接铁。

其制作工序为:内饰板模块按设计图样要求加工成形后与框架模块粘结形成基体模块(背面须进行防腐防火处理),再填粘防塞材,最后安装连接铁。

框架模块采用20㎜厚胶合板拼装制作。内饰板模块为6㎜厚,由5㎜胶合板和1㎜贴面板粘合而成。为了减少变形和工艺制作方便,框架采用20㎜厚胶合板制作;连接铁由3~4㎜厚钢板制作,设安装调节长圆孔;防塞材采用20㎜厚聚乙烯板材,用以提高防寒性能和控制模块的变形。侧墙内装模块的形成过程示意图见图3所示。

3.4平顶模块化设计

平顶包括客车两端小走廊平顶、餐车和卧车大走廊平顶及通过台平顶。

常规客车平顶均为木制结构,原平顶设计采用木骨架+贴面胶合板方式,木骨架为散组装方式,部分采用框架设计。

在现车安装过程一般采用先安装间壁后安装平顶的办法,往往造成平顶安装空间尺寸不能保证,所

图3 侧墙内装模块的形成过程示意图

以在平顶结构安装时需要进行再加工,框架结构往往需要拆散后重新调整尺寸再进行安装。内饰板采用20㎜厚胶合板+1㎜贴面板粘合而成。在木结构安装后再安装内饰板,并用木螺钉进行固定。由于实际空间误差,板材经常需要通过现车再加工进行安装。

可以看出,平顶的安装尺寸由于受到周边结构的影响而不可能得到保证,如何才能改变这种费时费力又难以保证质量不合理的状态,实践证明通过平顶的模块化设计后问题可基本得到解决。

平顶模块设计思路:

a) 优先保证平顶安装空间(开档和高度),确保模块的整体制作和安装;

b) 周边结构尺寸采用可调设计,在优先对平顶模块定位的情况下也能使其相邻结构合理安装到位,尤其是间壁结构,其位置尺寸在安装过程中均可实现调整,这也反过来为平顶模块化的实现提供了可行性。

c) 采用铝合金框架和贴面胶合板一体化设计模块,结构统一规范;

d) 采用铝合金型材整体框架,重量轻,连接、安装方便,自然缝处理规范。

平顶模块形成:

平顶模块采用铝木混合结构,由骨架模块、内饰板模块和安装连接铁组成。

骨架模块由铝型材制作,各型材交接处采用厚2~4㎜铁板连接,利用型材上的滑槽连接成框;内饰板模块的材料及其组成方式与内墙板完全一致。骨架模块与内饰板模块进行粘接形成平顶模块。型材断面的设计具有适合连接、吊挂和安装的多重功能,并适应各型客车的平顶模块结构。

对于多重模块的设计,其思路应该是采用主模块和子模块逐级组合的方式设计,由车下整体配套制

作,现车逐级组装。利用模块型材的滑槽设置连接铁或吊装结构,完成平顶模块的安装。

图4为通过台模块的基本形式及其形成过程。通过台平顶模块的内饰板模块由两端子模块和中间活门模块三部分组成。两端子模块采用插接方式安装,中间活门采用锁定方式安装,并加设安全带。

图5所示为通过台平顶模块的安装关系。

图4 通过台模块的基本形式及其形成过程

以上重点介绍了车顶钢结构、车顶和侧墙内部结构及平顶结构的模块化设计的思路和形成。其共性的思路是一致的,就是通过对各部分结构、功能及其周边关系的综合分析,找出问题,然后结合安装工艺对结构进行有效的集成,最后完成模块化设计工作。

图5 通过台平顶模块的安装关系

4模块设计的基本要求

a) 模块本身要自成一体,模块与基体的连接简单;

b) 各模块之间及模块与周边结构关系处理合理,各自然缝协调一致,保证达到工业设计外观效果;

c) 模块本身应具有足够的刚度,连接模块的连接铁也应具有足够的强度和刚度;

d) 模块的结构及选材应有利于控制模块的变形;

e) 模块应便于安装,其周边应有一定的调整空间;

f) 模块与车体结构的连接应设置不同方向的长圆孔,便于安装和调整;

g) 模块设计一定要考虑通用性,不同车种同一部位同一结构同一材料其模块应统一型式;

h) 模块的外形尺寸要进行控制,要能自由进入车厢,在安装过程中要便于在车厢内进行位置的调整,并要符合组装工艺流程;

i) 要控制模块的整体重量,要考虑搬运和安装过程中的劳动强度。

5 车体模块化设计的初步成效

经过近几年的努力,常规客车的车体模块化设计已初见成效,尤其在车体侧墙、车顶和平顶结构的模块化设计方面效果明显,通过模块化设计,车体结构的规范化、标准化和通用化程度进一步提高,在此列举以下几个方面来说明模块化的发展给客车设计产生的积极效果和影响。

a)地板梁

由于制动模块、中间管排和电气线槽采用了模块化设计,解除了该部分的结构对底架的约束,使底架从无序的眼孔和管卡设置中解放出来,尤其是枕内已趋于规范和统一,正常情况下枕内横梁可完全实现均布,且断面一致。常规客车各品种枕内横梁基本实现了通用和规范。

b)侧墙立柱

由于侧墙内部结构采用了模块化设计,解除了原散组装的木梁安装对立柱的约束,使立柱上的眼孔设置规范有序,同时兼顾到其它常规客车的安装要求,统一进行了安装孔的设置,使得同一侧墙立柱既

可适用于全车,还适用于同型客车多个品种,侧墙内装结构的模块化设计使得侧墙立柱实现了通用和规范。

c)车顶钢结构

由于采用了模块化设计方法,解除了内顶结构对车顶钢结构的约束,车顶钢结构得到了解放,使得车顶钢结构完全可以根据自身的需要来进行设计,它不仅可以实现弯梁的均布,更重要的是使得常规客车各品种的车顶钢结构的基本形式和结构趋于统一和规范,弯梁等主要配件实现了通用。对于空调机组安装方式相同的不同车种,其车顶钢结构基本一致,即使对于餐车厨房这样有特殊要求的,也仅需要作局部的针对性改动。

d) 侧墙结构

由于侧墙内装结构采用了模块化设计,解除了内部结构的约束,使得各车种侧墙钢结构的结构、梁柱和基本形式得到统一和规范。原侧墙钢结构上的各种内部结构的安装设置进行了彻底清理,取消了安装连接铁和巴爪,各种安装孔进行了规范。在常规客车设计中,对于不同的平面布置仅需对窗立柱开档进行适当调整,对于不同的外部门,仅需对局部结构进行调整。

在内部结构方面,侧墙模块基本形式得到了统一,对于不同的窗开档,只要对模块的尺寸进行调整便可完成设计。硬座车客室、餐车餐厅、软卧车和硬卧车的走廊侧墙模块其形式基本一致,也是常规客车设计中的标准模块之一。对于硬卧车和软卧车客室侧墙模块,其基本形式与标准模块是基本相同,仅仅因周边结构不同而有所差异。

d)平顶结构

由于采用了平顶优先的设计思路,使得平顶结构、安装及其周边结构的设计概念产生了根本性的变化,原来难以保证的平顶安装空间及安装质量得到了保证,并促使了周边结构的改进,使得间壁等结构安装变为可调,有效地化解了原平顶与其周边结构之间在安装过程难以解决的矛盾。

尽管在屯兵车的设计和生产中,为了降本增效,对25G型客车的部分模块进行材料替代,例如平顶骨架由木结构代替铝型材结构等,但模块化设计和安装的思路并没有改变。

6.结束语

模块化设计给客车设计所产生的影响是积极而深远的,从传统的设计方法到模块化设计概念的应用,既是一种创新,也是一次革命。这项工作才走完第一步,要想在客车设计中全面实现模块化设计仍需要在今后的设计工作中不断研究、进一步探索,以上所介绍的仅仅是模块化设计的一部分,仅供相关设计师学习和参考。

随着我国铁路的快速发展,对高速列车技术的引进、消化、吸收再创新的同时,铁路客车经历了一个由非模块化到模块化再到模块集成化的发展历程,每一次的发展,对于铁路客车的生产、质量以及价格优势都是一次飞跃。集成化技术如何应用到铁路客车上,将是今后研究的一项新课题。集成化的程度在一定程度上将决定工厂的实力,它是一个工厂设计能力,工艺水平,生产能力的综合体现。

模块化设计方法的设计流程

BJ-EPM240T100学习板实验教程 模块化设计方法的设计流程 将这种模块化设计思路运用于FPGA/CPLD设计,将大规模复杂系统按照一定规则划分成若干模块,然后对每个模块进行设计输入、综合,并将实现结果约束在预先设置好的区域内,最后将所有模块的实现结果有机地组织起来,就能完成整个系统的设计。 (1)顶层模块的设计:项目管理者需要完成顶层模块的设计输入与综合,为进行Modular Design实现阶段的第一步—初始预算阶段(Initial Budgeting Phase)做准备。 (2)子模块的设计:每个项目成员相对独立地并行完成各自子模块的设计输入和综合,为进行Modular Design实现阶段的第二步—子模块的激活模式实现(ActiveModule Implementation)做准备。 模块化设计的实现步骤是整个模块化设计流程中最重要、最特殊的,它包含: (1)初始预算–本阶段是实现步骤的第一步,对整个Modular Design起着指导性的作用。在初始预算阶段,项目管理者需要为设计的整体进行位置布局,只有布局合理,才能够在最大程度上体现Modular Design的优势;反之,如果因布局不合理而在较后的阶段需要再次进行初始预算,则需要对整个实现步骤全面返工。 (2)子模块的激活模式实现(Active ModuleImplementation)--在该阶段,每个项目成员并行完成各自子模块的实现。 (3)模块的最后合并(Final Assembly)--在该阶段项目管理者将顶层的实现结果和所有子模块的激活模式实现结果有机地组织起来,完成整个设计的实现步骤。 模块化设计中模块划分的基本原则为: 子模块功能相对独立,模块内部联系尽量紧密,而模块间的连接尽量简单。

汽车车身设计开发技术与方法

第三章汽车车身设计开发技术与方法 3.1车身设计方法学 3.1.1车身设计开发主要工作内容及流程(程序) 1)车身总布置设计及安全法规计算校核(或三维数字虚拟样机Archetype) 2)造型设计 3)三维曲面和造型面设计 4)1:5或1:4 模型及1:1外模型制作或数控加工(或三维数字模型) 5)1:1内模型(或三维数字模型) 6)1:1发动机舱模型(或三维数字模型) 7)1:1地板模型(或三维数字模型) 8)测量与曲面光顺 9)白车身结构详细设计(BIW) (9.1)1:1外模型光顺后数据分块 (9.2) 车身设计断面的定义与尺寸确定 (9.3) 密封结构确定与密封件选择 (9.4) 确定分块线 (9.5) 与车身有关的设计硬点的确定 (9.6) 左右侧围设计(A, B, C, D柱设计, 前后翼子板设计)

(9.7) 顶盖设计(外板, 横梁与纵边梁设计) (9.8) 发动机前围板设计 (9.9) A柱下段设计 (9.10) 发动机舱与前轮包设计 (9.11) 前后灯具设计(反射面与灯具厂共同设计) (9.12) 格栅设计 (9.13) 前围板设计 (9.14) 前保险杠设计 (9.15) 地板总成设计(前中后) (9.16) 后门总成设计 (9.17) 前门总成设计 (9.18) 尾门总成设计 (9.19) 前发动机罩设计 (9.20)前风当总成设计 10)内饰、外饰设计 11)先行车, 螺钉车或概念车的(Prototype)试制,第二轮试验样车(定型车)试制 12)碰撞与结构分析及结构优化设计 13)成型过程仿真 14) 模具与工艺工装设计 如图3.1.1为车身详细设计阶段面向对象的产品模型(OPM)并行设

《汽车车身结构与设计》习题与解答要点

《汽车车身结构与设计》习题与解答 第一章车身概论 1、汽车的三大总成是什么? 答:底盘、发动机、车身。 2、简述车身在汽车中的重要性。 答:整车生产能力的发展取决与车身的生产能力,汽车的更新换代在很大程度上也决定与车身,我们所看到的汽车概念大多指车身概念,汽车的改型或改装主要依赖于车身。 3、车身有什么特点? 答:a:汽车车身是运载乘客或货物的活动建筑物,由于其在运动中载人、载物的特殊性,所以汽车车身的设计与制造需要综合运用空气动力、空气调节、结构设计、造型艺术、机械制造、仪器仪表、复合材料、电子电器、防音隔振、装饰装潢、人体工程等不同领域的知识。 b:自1885年德国人卡尔·弗里德里希·本茨研制出世界上第一辆马车式三轮汽车,并成立了世界上第一家汽车制造公司——奔驰汽车公司以来,汽车车身的造型随着时代的推移和科技的进步经历了19世纪末20世纪初的马车车厢形车身;20世纪20、30年代的薄板冲压焊接箱形车身;第二次世界大战后50、60年代冷冲压技术生产的体现流线型、挺拔大方的车身。而到了20世纪70、80年代现代汽车的各种车身造型已初具雏形,新材料、新工艺的使用更使得汽车车身的设计制造得到了飞速发展。 4、简介车身材料。 答:现代汽车车身使用的材料品种很多,除金属(主要是高强度钢板)和轻合金(主要是铝合金)以外,还大量使用各种非金属材料如:塑料、橡胶、玻璃、木材、油漆、纺织品、皮革、复合材料等。随着汽车车身制造技术的发展,为了轻量化以及提高安全性、舒适性,非金属材料、复合材料在汽车车身的加工制造中得到日益广泛的应用。 5、车身主要包括哪些部分? 答:一般说,车身包括白车身及其附件。白车身通常是指已经装焊好但未喷涂油漆的白皮车身,主要是车身结构件和覆盖件的焊接总成,并包括前后板制件与车门。车身结构件和覆盖件焊(铆)接在一起即成为车身总成,该总成必须保证车身的强度与刚度,它可划分为地板、顶盖、前围板、后围板、侧围板、门立柱和仪表板总成。车身前板制件一般是指车头部分的零部件,包括水箱框架和前脸、前翼子板、挡泥板、发动机罩以及各种加强板、固定件。6、车身有哪些承载形式? 答:车身按照承载形式的不同,可以分为非承载式、半承载式、承载式三大类。

模块化设计方法及其在机械设计中的应用

模块化设计方法及其在机械设计中的应用 摘要:随着社会经济的发展,为了提高企业生产效率,模块化设计理念在机械设计领域日益广泛,其对于整合市场、优化结构具有重要意义。我们要树立创新意识,加强其在机械设计中的研究运用,实现模块化的转变。 关键词:模块化;设计方法;机械设计 随着技术的发展和经验的总结,在机械设计中,越来越多的设计方相继出现,并逐渐得到广泛的运用。在实际工作中传统的机械包装方法的弊端日益显现,越来越多不适应机械设计的需要,而模块化设计方法逐渐得到广泛的运用。 1 机械产品模块化涵义 模块化就是以它的观点去对产品或者系统进行策划和生产方案,在某个限度内的一样或者存在差异的功能、相异规格的产品探究讨论,区分并设计。机械产品的模块化主要可从以下几方面进行分析: (1)功能需求集,指的是市场和客户对模块化产品基本功能要求的合集。产品的功能需求是进行产品模块化的重要内容,是产品发展的重要方向。 (2)功能模块,强调的为产品里所能够充分发挥其性能因素的作用. (3)结构模块,指的是功能模块的具体结构,一般由部件或子结构模块组成。 (4)模块接口,指的是描述结构模块组合时相互间的几何、物理关系的结合面,模块接口是模块组合的重要依据。 (5)基础模块,通用型接口模块,能够满足基本功能,而得以实现的定向模块功能演进的模块形式。 2 模块化设计 2.1 模块划分标准 为了让人们对模块化设计方法在机械设计中运用有更为详细的了解,对模块化的设计进行划分,在数控立式车床设计中,运用模块化设计方法,其中最为关键的内容是进行功能与结构分析,这是决定设计效果的关键内容。因此,设计开始前,要对模块进行处理,详细划分模块。当前,还没有任何一种标准可以作为模块划分原则。这里,依据不同侧重点,对不同模块进行划分。模块具有独立性,

产品模块化设计

当今制造业企业一方面必须利用产品的批量化、标准化和通用化来缩短上市周期、降低产品成本、提高产品质量,另一方面还要不断地进行产品创新使产品越来越个性化,满足客户的定制需求。这样,如何平衡产品的标准化、通用化与定制化、柔性化之间的矛盾,成为赢得竞争的关键能力。平台化、模块化的产品设计和生产可以在保持产品较高通用性的同时提供产品的多样化配置,因此平台化、模块化的产品是解决定制化生产和批量化生产这对矛盾的一条出路。 以下总结了推行模块设计过程需要关注的要点: 1 产品模块化设计各个部门远景目标: 1)产品开发:产品开发过程分解为平台开发和产品开发过程,专门的团队进行平台的设计和优化,新产品的开发由平台通过 变量配置实现; 2)产品制造:产品制造部门按照产品平台分配产线和装配资源; 3)供应链管理:实现零库存,根据模块的要求选择能够承接模块设计和开发的供应商; 4)市场部门:实现按订单制定产品开发和制造计划。 2 模块化实施过程: 1)产品系列平台划分,采用“产品型号组方法”则是对整个目标 市场划分所进行的全部变型型号的规划和开发。新产品规划要

定义一组变型型号。配置应当与市场定位关联,其实际定义应 当与产品性能的部分关联,并体现出不同变型型号之间的差异。 2)产品模块划分,可以采用MFD方法进行模块划分,步骤包括: a 定义客户需求,利用卡诺模型区分客户需求与满意度关 系、使用QFD方法定义客户需求与产品性能的对应关系; b 选择技术方法,定义产品功能树,使用波氏方法选择 技术方法;使用DPM矩阵描述技术方法与产品性能的对 应关系; c 产生模块概念,定义模块驱动与技术解决方案的对应关 系,最理想的模块技术解决方法是可以自己组合成一个模 块,至少可以作为一个模块的基础; 不够优化的技术解决 方法应该和其他技术解决方法整合在一起组成模块。 d 评估模块概念,定义模块接口,优化模块接口。 e 模块优化,创建模块规格说明,进行模块优化,进行 经济和技术上的评价。 3)选项变量定义;在一个平台上定义许可的选项/选项集,定义选项之间的关系和约束。 3 模块化设计考核指标 1)部署通用产品结构的型号组/ 全部型号组; 2)通用模块实例/ 全部的模块实例; 3)CAD/PDM系统中零部件族的利用率;

家具模块化设计方法实例分析

家具模块化设计方法实例分析 1前言 当前,消费者对家具的个性化需求日益凸显,如何满足这种需求已经成为越来越多家具企业发展的关键。要做到既符合现代机械化生产的发展主流,又节约成本,且能提高产品的市场竞争力。这确实为难了不少的家具企业。有一坐企业尝试通过从销售终端满足个性化,但众多形态各异、尺寸繁多的家具定单从销售端传送至生产和设计部门,却带来了新的矛盾:设计任务艰巨、生产设计难排、产品质量难以保证,甚至由于部件尺寸的相近导致出错率增加、生产效率低下。有一些敢于吃螃蟹的企业尝试从设计入手,通过标准零部件的设计、组合成新产品来满足这种“个性化”“的需求。但遗憾的是,这种做法并未带来预期的效果,单一的产品导致了销售客额和顾客满意率的下降。所以,如何实现产品的个性化?是从销售端,还是从设计与生产端着手呢?这是家具企业必须根据企业现状做出回答的问题。定制是从销售端解决问题,而模块化设计是从设计端解决问题,旨在通过设计具有标准性和通用性的功能模块,达到组合成多样化的家具的目的。毫无疑问,模块化设计在家具业具有很大的发展潜力,它既能解决个性化需求的问题,还能做到低成本与高效率。 模块化设计属于方法学的范畴,在其他工业行业中已经得到了长足的发展。由于家具消费环塘和制造环境的变化,模块化设计以其特有的优势,开始在家具行业尤其是办公家具中应用。而对于民用家具,

近年来个性化需求与家具企业的生产矛盾日益突出,有关模块化设计的探索才刚刚开始。鉴于国内尚无系统的家具模块化设计理论来指导企业的实践,本文着重以衣橱为例,详细具体地分析单个家具的非模块化设计过程,以进一步明确家具模块化设计的必要性和可操作性。 2 设计概念及设计方法 家具模块化设计指的是在对家具进行功能分析的基础上,划分并设计出一系列的家具功能模块,通过功能模块的选择与组合构成不同的家具,以满足市场多样化需求的设计方法。与传统的设计方法相比较,家具模块化设计呈现出许多新特征。首先,它是针对模块和家具产品系统的设计,既要设计模块,又要设计家具成品。其次,它以标准化、通用化的零部件快速组合成家具,能实现家具的多样化。模块化设计不同于标准化设计,标准化设计带来的是单一的产品,而模块化设计则不然,在设计之初就考虑模块可组合成产品的多样性。因此模块化设计是在标准化设计基础之上,实现产品多样化的一种方法。 根据家具模块化设计的概念,笔者提出从三个层次展开家具的模块化设计。第一层次是家具模块化总体设计。这个阶段主要是进行模块化系统的总体策划,确定模块化实施的范围。良好的模块化总体设计,是模块化设计得以实现的基础。第二层次是家具模块设计,这是模块化设计系统具体化的过程,是承上启下的环节。模块化设计的好坏,直接影响到模块化家具组合的最终效果。第三层次是家具模块化产品设计。这个阶段主要是选择模块,评价模块可能组合方式的合理

新一代高速动车组车体结构创新设计 惠美玲

新一代高速动车组车体结构创新设计惠美玲 摘要:为满足固速度提升带来的车体评价标准改变,新一代高速动车组车体在CRHs型动车组成熟结构基础上进行结构优化设计。仿真和试验结果表明,新一代高速动车组车体结构在轻量化、强度、振动模态、空气动力学和动应力测试等方 面具有优异的性能,结构安全可靠。 关键词:高速动车组;车体结构;轻量化;振动模态;空气动力学 1车体结构优化设计 车体由司机室(仅头车)、底架、侧墙、车顶和端墙组成。司机室采用接近旋转抛物体特征的流线形造型,车体表面进行平顺化设计,具有空气动力学性能;底架 为边梁承载的无中梁形式铝合金焊接结构,车下设备采用横梁滑槽吊挂方式,便 于设备安装;侧墙和车顶为大型超薄中空铝合金型材的通长拼焊结构;端邮牵枕缓 使用高强度铝合金型材烨接结构,强化局部承载能力,根据车内设备布置的需求,端墙分为固定式和活动式两种。 1.1司机室结构 司机室结构由头部骨架、气密隔墙及焊件、窗骨架及电线支架和焊件组成。 头部骨架由纵骨架和横骨架相互插接组焊而成,外部焊接蒙皮。为提高成型精度,所有铝合金板梁均采用数控加工,外敷蒙皮采用分幅模压和涨拉成型工艺。车窗、车门三维骨架由铝合金挤压型材经模具加工后制成,保证门窗安装精度和承载强度。 为满足因速度提升带来的气密载荷值增加,司机室结构主要改动如下: (1)增加司机室蒙皮板厚; (2)改进气密隔墙,板梁结构改为双层中空型材。为更好的提升车体空气动力 学性能,对司机室轮廓进行了截面优化,为旋转抛物体特征的楔形结构,纵断面 双拱形、水平断面扁梭形。 1.2底架 底架结构主要由牵引梁、枕梁、缓冲梁、边梁、横梁和双层中空地板等结构 组成。边梁及地板由长大铝合金型材纵向焊缝整体拼接而成;中部与端部地板保留 高度差,为空调风道,内装、转向架及车下设备保留设计空间;车下安装设备采用 特殊螺栓吊挂方式,保证运用安全和安装方便。 为满足EN 12663中纵向压缩力( 1 500kN)的要求,底架部位的优化设计主要在于: (1)增加牵引梁刀把位置上下翼面的寬度和补板; (2)在高低地板处连接部位增加纵向梁,使该部位有更大的传力截面,降低该 部位因高低差导致的应力集中; (3)底架边梁结构由原来的口字形结构改为桁架结构,增加边梁的承载刚度。 1.3侧墙结构 侧墙结构主要分为头车侧墙和中间车侧墙。由于头车同机室车头造型的需要,头车侧墙长度要比中间车侧墙短些。头车和中间车侧墙上设有侧门开口和窗开口,不同的是侧门开口位置及窗开口的大小和位置有所不同。为了满足运背需要,侧 墙上还设有车号显示开口、目的地显示开口等。 为了满足高速列车士6kPa的气密载荷要求,侧墙结构主要改动如下: (1)侧墙门袋处门口两侧结构由单板凸筋加补结构改为中空型材; (2)侧墙和边梁连接部位的侧墙型材轮廓线改为圆滑过渡,增加该部位型材的

模块化设计研究

一,引言 由于现代通信、数字信号处理、计算机和微电子等种高新技术的迅猛发展, 无线通信装备的技术越来越先进, 也越来越复杂。采用通用模块的设计方法, 可以最大限度地继承与利用已有的硬件和软件研究成果, 从而降低研制风险, 避免同一水平上的重复研制, 缩短研制周期, 节省研制费用, 并且, 采用开放性的模块结构, 便于实现网络互连、信息互通和功能互操作。无线通信装备模块化设计的初衷是为了满足人们追求多品种小批量要求下实现最佳效益和质量的要求, 它的第一受益方是研制厂商, 第二受益方是军队。无线通信装备模块化设计最终将有利于博采家所长, 推进无线通信装备模块化设计研制, 是无线通信发展的催化剂。 二、模块化设计分析 1工厂级模块化设计 工厂级的无线通信装备模块化设计指的是无线通信装备厂拥有自己的模块化结构设计、模块划分原则和总线母板等。随着技术进步和为了便于组织生产, 国内无线通信装备厂已逐步将电路板的织生产, 国内无线通信装备厂已逐步将电路板的大板结构改成按功能划分的小板结构, 并设计了本厂专有的母板。对于目前已有的通信装备而言, 这些措施在一定程度上体现了模块化设计思想, 并且是切实可行的。通信装备模块的划分是工厂级模块化设计的关键。为使划分的模块合理, 首先应对该类装备有充分了解, 然后采取系统工程和功能分解的方法, 对装备组成进行分析和功能分解, 最后划分出级模块。 工厂级模块化设计是以现有技术体制和技术形式, 在对一定范围内的采用传统方式生产的不同型号装备进行功能分析和分解的基础上, 划分并设计、生产理器出一系列通用模块或标准模块, 然后, 从这些模块中选取相应的模块, 并补充新设计的专用模块或零部件一起进行相应组合, 以构成满足各种不同需要的装备。 工厂级模块化设计包括建立模块体系和组合形成新装备这两个基本步骤。 ( 1) 建立模块体系 正确合理地划分特定功能和接口的模块, 既是建立通信装备模块体系和组合形成新装备的关键, 也是今后拟制模块总体规划进行有效开发和应用的关键。因此, 模块的划分、设计、研制、生产以及模块体系的建立, 应是建立在对所有同类装备及组成部分充分了解的基础上, 并对现役装备的改造和新装备的开发等进行综合分析和组合的基础上, 采用系统工程和标准化的原理及方法去处理。根据使用需求, 从顶层向下按功能分解的方法, 将装备分解成不同等级的单元, 同时从底层单元向上进行模块需求分析, 按标准化原理对同类和相似装备进行对比、归类、简化、统一, 合理划分模块, 确定技术指标和质量要求, 然后进行设计、研制和生产, 从而建立起模块体系。 ( 2) 组合形成新装备 工厂级模块化设计应采用组合化设计方法, 充分利用种通用模块、专用模块和零件进行组合或派生种不同要求和用途的新装备。组合设计的关键在于总体方案设计, 这是一个多因素综合权衡的过程。 2设备级模块化设计 设备级的无线通信装备模块化设计指的是, 为了实现互通, 将一些功能模块设计成为个无线通信装备厂都能接受和采用的通用模块, 同时对一些影响互通的部件模块强制实现体制和功能上统一的设计。设备级的无线通信装备模块化设计必须首先抓好顶层设计, 在顶层设计的基础上, 制定设备级的无线通信装备模块化设计的模块化标准, 再以标准为指南, 才有可能实现无线通信装备的互连互通和模块化。 设备级模块化设计包括硬件模块设计和软件模块设计这两方面基本内容。 ( 1) 硬件模块设计

家具模块化设计方法实例分析(1).doc

家具模块化设计方法实例分析 1 前言 当前,消费者对家具的个性化需求日益凸显,如何满足这种需求已经成为越来越多家具企业发展的关键。要做到既符合现代机械化生产的发展主流,又节约成本,且能提高产品的市场竞争力。这确实为难了不少的家具企业。有一坐企业尝试通过从销售终端满足个性化, 但众多形态各异、尺寸繁多的家具定单从销售端传送至生产和设计部门,却带来了新的矛盾:设计任务艰巨、生产设计难排、产品质量难以保证,甚至由于部件尺寸的相近导致出错率增加、生产效率低下。 有一些敢于吃螃蟹的企业尝试从设计入手,通过标准零部件的设计、组合成新产品来满足这种个性化”的需求。但遗憾的是,这种做法并未带来预期的效果,单一的产品导致了销售客额和顾客满意率的下降。所以,如何实现产品的个性化?是从销售端,还是从设计与生产 端着手呢?这是家具企业必须根据企业现状做出回答的问题。定制是从销售端解决问题,而模块化设计是从设计端解决问题,旨在通过设计具有标准性和通用性的功能模块,达到组合成多样化的家具的目的。毫无疑问,模块化设计在家具业具有很大的发展潜力,它既能解决个性化需求的问题,还能做到低成本与高效率。 模块化设计属于方法学的范畴,在其他工业行业中已经得到了长足的发展。由于家具消费环塘和制造环境的变化,模块化设计以其特 有的优势,开始在家具行业尤其是办公家具中应用。而对于民用家具, 近年来个性化需求与家具企业的生产矛盾日益突出,有关模块化设计的探索才刚刚开始。鉴于国内尚无系统的家具模块化设计理论来指导企业的实践,本文着重以衣橱为例,详细具体地分析单个家具的非模块化设计过程,以进一步明确家具模块化设计的必要性和可操作性。 2 设计概念及设计方法 家具模块化设计指的是在对家具进行功能分析的基础上,划分并设计出一系列的家具功能模块,通过功能模块的选择与组合构成不同的家具,以满足市场多样化需求的设计方法。与传统的设计方法相比较,家具模块化设

动车组铝合金车体结构整体刚度的影响因素分析

动车组铝合金车体结构整体刚度的影响因素分析 发表时间:2019-12-30T13:26:38.197Z 来源:《科学与技术》2019年 15期作者:孙爱军张宁宁孙洪沿[导读] 经济的发展,城镇化进程的加快,促进交通建设项目的增多。 摘要:经济的发展,城镇化进程的加快,促进交通建设项目的增多。动车组以其运行平稳、速度快等优点被越来越多的人所青睐。目前,国际上的高速列车大部分采用轻质铝合金作为车体的材料,我国200km/h和300km/h级的动车组车体结构也采用了铝合金这种轻质材料。铝合金车体的制造技术和传统的车体制造有很大不同。传统的通常是钢质车体结构蒙车皮,铝合金车体主要包括闭式铝合金型材焊接结构和梁板结构。闭式型材结构的铝合金车体制造主要用到弧焊焊接技术,多应用于高速列车。梁板结构铝合金车体应用于重庆的单轨车,主要用电阻焊和弧焊的方法制造。本文就动车组铝合金车体结构整体刚度的影响因素展开探讨。 关键词:动车组;铝合金车体;刚度协调;设计原则 引言 高速动车组车体整体结构刚度决定着车体整体自振频率、部件刚度决定着车体强度特性与局部振动频率、部件间刚度协调性控制着应力集中程度,进而决定着车体疲劳寿命。与传统的板梁组合车体结构不同,高速动车组铝合金车体枕梁与底架没有焊接关系,枕梁仅与底架边梁借助螺栓连接,故车体垂向载荷要经由底架边梁通过枕梁传递到转向架支撑位置;车体纵向拉、压载荷通过底架前端一面由连接型材向地板传递,一面由边梁向侧墙传递,导致位于车体传力路径上的部件应力集中现象突出。同时,车体铝合金型材的焊接热影响区强度远远低于母材强度,这些问题已成为高速动车组车体结构设计的难点。所以,高速动车组车体设计新方法的研究势在必行。 1 铝合金车体结构特殊性 为满足不同运营线路需求,铝合金车体主结构开口具有多样性。例如:为适应城市内多站点、短距离和客流量大的特点,铝合金地铁车侧门开口数量较多且尺寸较大;而城际动车组和高速动车组由于城间载客人数较少顾侧门开口少,虽两者侧门开口数量相同,但就其开口尺寸和位置而言,高速动车组车体侧门开口尺寸小且位于底架端部裙板上方,可大大提高刚度,城际动车组车体侧门开在远离端部车体底架上方,其刚度相对较薄弱;城际动车组和铝合金地铁车车顶开有两个空调安装座安装口,而地铁车车顶空调安装口较大,高速动车组车顶开有一个空调安装口,其尺寸最小。 2 车体侧门的位置 尽管车体侧墙缺口大小对车体抗弯刚度的灵敏性较低,但是,若车体侧门距离端墙很近,纵向传力路径上的刚度是严重不连续的。所以,承受纵向压缩载荷之后的车体端部变形会主要集中在端墙和侧门立柱区域,致使侧门门角、端门门角及侧门立柱设备安装孔等位置存在着严重的应力集中现象。尤其是承受窗腰带高度端部纵向载荷时,侧门缺口不仅会造成纵向载荷无法传递到侧墙,也对端墙与底架连接处形成较大的弯矩,致使端门门角处应力值偏大。当侧门无法远离端墙时,则需要有内端墙和纵向加强梁结构,以缓解压缩载荷对侧门的纵向挤压。 3 动车组铝合金车体制造流程 在进行铝合金车体制造时,首先要根据图纸由下料工段准备材料,之后再将材料运送给相应工段进行部件的生产组焊,然后将车顶、底架、侧墙、端墙等组焊好的部件送到总成工段焊接,焊接总成后再进行车体的调修、检查和交验。整个过程中,车顶、底架以及侧墙的制造和车体总成是比较重要的工序。动车组铝合金车体制造过程中主要需要自动焊接设备、铝合金加工设备,从制造到交付要经过装配———焊接———打砂———涂装———组装———调试等程序。 4 车体支撑位置对刚度的影响 某动车组与试验车车体的最大垂向载荷、车体长度、断面型材和车辆定距,两车接近,并且两车主结构开口数量及尺寸相同,但其相当弯曲刚度为1.61×1015N·mm2,不满足相当弯曲刚度指标。对于车体而言,可以将其简化为两端外伸梁,如图1所示,其中L1代表两端底架外伸长度,L2为车辆定距,W为车体上的单位长度载荷,B和D点相当于车体支撑点。理论上,由式(1)可知,支撑点之间的距离L2决定着中央位置的垂向挠度.在受到相同均布载荷作用下等截面的两种车体,车体长度和车辆定距相同的情况下,底架边梁中央位置的垂向挠度应相同,但实际上动车组铝合金车体侧墙均有缺口(侧门、侧窗和新风口等),属于变截面问题。由于车体开口位置不同,故车体每一段截面的横截面积不同,导致横截面惯性矩不同,每一段刚度也不同。

动车组车辆构造与设计课后习题答案(商跃进)

第一章动车组基础知识 1.简述高速铁路特点及其列车划分方式。 a)特点:(1)速度快,旅行时间短。 (2)客运量大。 (3)准时性好,全天候。 (4)安全舒适可靠。 (5)能耗低。 (6)污染轻。 (7)效益高。 (8)占地少。 b)划分方式:普通列车:最高运行速度100一160 km/h; 快速列车:最高运行速度160—200 km/h; 高速列车:最高运行速度≥200km/h。 2.简述动车组的定义、类型及关键技术。 (一)定义:动车组:亦称多动力单元列车,是由动车和拖车或全部动车长期固定联挂在一起运行的铁路列车。 (二)类型:1.按牵引动力的分布方式分:①动力分散动车组②动力集中动车组 2.按动力装置分:①内燃动车组(DMU) ②电力动车组(EMU) : 3.按服务对象分:①长途高速动车组②城轨交通动车组 (三)关键技术:动车组总成、车体、转向架、牵引变压器、牵引变流器、牵引电机、牵引控制系统、列车网络 控制系统、制动系统。 3.简述动车组车辆的组成及其作用。 ①车体:容纳运输对象之所,安装设备之基。 ②走行部(转向架):车体与轨道之间驱动走行装置。 ③牵引缓冲连接装置:车体之间的连接装置。 ④制动装置:车辆的减速停车装置。 ⑤车辆内部设备:服务于乘客的车内固定附属装置。 ⑥车辆电气系统:车辆电气系统包括车辆上的各种电气设备及其控制电路。按其作用和功能可分为主电 路系统、辅助电路系统和控制电路系统3个部分。 4.解释动车组车辆主要技术指标及其标记的含义。 ①.自重:车辆本身的全部质量。 ②.载重/容积:车辆允许的最大装载质量和容积。 ③.定员:以座位或铺位计算。(定员=座席数+地板面积*每平方米地板面积站立人数。) ④.轴重:车轴允许负担的最大质量(包括车轴自重)。 ⑤.每延米轨道载重:车辆总质量/车辆全长(站线有效利用指标)。 ⑥.通过最小曲线半径:调车工况能安全通过的最小曲线半径。 ⑦.构造速度:安全及结构强度允许的最大速度。 ⑧.旅行速度:路程/时间,即平均速度。最高试验速度,最高运行速度。 ⑨.持续速度:在全功率下能长时间连续运行的最低速度称为持续速度。 ⑩.轮周牵引力:动轮从牵引电动机获得扭矩,通过轮轨相互作用在轮周上产生的切向反力。 ?.粘着牵引力:机把受粘着条件限制而得到的牵引力,称为粘着牵引力 ?.持续牵引力:在全功率下,对应于持续电流的引力称为持续牵引力。 ?.车钩牵引力:克服动车本身的运行阻力以后,传到车钩处用于牵引列车运行的那部分牵引力。 ?.标称功率:各牵引电动机输出轴处可获得的最大输出功率之和。 ?.车辆全长、最大高度、最大宽度:车辆两端车钩钩舌内侧距离(19.8m/29.7m);车顶最高点至轨

(完整版)汽车车身结构与设计期末考试试题

一、名词解释 1、车身:供驾驶员操作,以及容纳乘客和货物的场所。 2、白车身:已装焊好但尚未喷漆的白皮车身。 3、概念设计:指从产品构思到确定产品设计指标(性能指标),总布置定型和造型的确定,并下达产品设计任务书为止这一阶段的设计工作。 4、H点:H点装置上躯干与大腿的铰接点。 5、硬点:对于整车性能、造型和车内布置具有重要意义的关键点。 6、硬点尺寸:连接硬点之间、控制车身外部轮廓和内部空间,以满足使用要求的空间尺寸。 7、眼椭圆:不同身材的乘员以正常姿势坐在车内时,其眼睛位置的统计分布图形;左右各一,分别代表左右眼的分布图形。 8、驾驶员手伸及界面:指驾驶员以正常姿势入座、身系安全带、右脚踩在加速踏板上、一手握住转向盘时另一手所能伸及的最大空间廓面。 9、迎角:汽车前、后形心的连线与水平线的夹角。 10、主动安全性:汽车所具有的减少交通事故发生概率的能力。 11、被动安全性:汽车所具有的在交通事故发生时保护乘员免受伤害的能力。 12、静态密封:车身结构的各连接部分,设计要求对其间的间隙进行密封,而且在使用过程中这种密封关系是固定不动的。 13、动态密封:对车身上的门、窗、孔盖等活动部位之间的配合间隙进行密封,称为动态密封。 14、百分位:将抽取的样本实测尺寸值由小到大排列于数轴上,再将这一尺寸段均分成100份,则将第n份点上的数值作为该百分位数。 二、简答 1、简述车身结构的发展过程。 没有车身——马车上安装挡风玻璃——木头框架+篷布——(封闭式的)框架(木头或钢)+木板——(封闭式的)框架(木头或钢)+薄钢板——全钢车身——安全车身。 2、车身外形在马车之后,经过了那几种形状的演变?各有何特点? ①厢型:马车外形的发展②甲虫型:体现空气动力学原理的流线型车身③船型:以人为本,考虑驾乘舒适性④鱼型:集流线型和船型优点于一身⑤楔型:快速、稳定、舒适。 3、车身设计的要求有哪些? 舒适、安全、美观、空气动力性。 ①结构强度足够承受所有静力和动力载荷;②布置舒适,有良好的操纵性和乘座方便性;③具有良好的车外噪声隔声能力;④外形和布置保证驾驶员和乘员有良好的视野;⑤材料轻质,减小质量; ⑥外形具有低的空气阻力;⑦结构和装置措施必须保护乘员安全;⑧材料来源丰富、成本低,易于制造和装配;⑨抗冷、热和腐蚀抵能力强;⑩材料具有再使用的效果;⑩制造成本低。 4、车身设计的原则有哪些? ①车身外形设计的美学原则和最佳空气动力特性原则。②车身内饰设计的人机工程学原则。③车身结构设计的轻量化原则。④车身设计的“通用化,系列化,标准化”原则。⑤车身设计符合有关的法规和标准。⑥车身开发设计的继承性原则。 5、什么是白车身?它的主要组成有哪些? 已装焊好但尚未喷漆的白皮车身。 组成:车身覆盖件+车身结构件+部件。①车身覆盖件:覆盖车身内部结构的表面板件。②车身结构件:支撑覆盖件的全部车身结构零件。③部件:前翼子板、车门、发动机罩和行李箱盖。 6、简述车身承载类型的特点及适用车型。 (1)、非承载式(有车架式):车架作为载体 1>特点:①装有单独的车架;②车身通过多个橡胶垫安装在车架上;③载荷主要由车架来承担。 ④车身在一定程度上仍承受车架引起的载荷。2>适用车型①货车(微型货车除外)②在货车底盘基础上改装成的大客车③专用汽车④大部分高级轿车。 (2)、承载式:去掉车架,由车身直接承载。 1>特点:①保留部分车架、车身承受部分载荷。②前后加装副车架。2>适用车型:基础承载式、整体承载式大客车。

汽车车身设计

《汽车车身结构与设计》1 工学院车辆与交通工程系 二〇一〇年六月 主讲:江发潮第五讲车身造型与空气动力学 《汽车车身结构与设计》 2 《汽车车身结构与设计》3 一、汽车造型设计 1.1 汽车造型设计的特点和要求 汽车造型设计是指汽车总布置和车身总布置基本确 定之后进一步使汽车获得具体形状和艺术面貌的过程,它包括外形设计和室内造型设计。 汽车造型设计师的工作:参与汽车总布置设计和车 身总布置设计,绘制效果图,塑制模型,将外形形体上的曲线表达在主图板上,制订室内造型和覆饰设计方案,最后协同结构设计师将造型形象体现在具体的车身结构上。 《汽车车身结构与设计》 4 汽车造型设计的特点: 1、独特的综合创作。 2、科学技术与艺术技巧的高度融汇。 3、不仅包含结构性能,工艺等科学技术因素,也包含艺术因素和社会因素,需要加以综合分析,权衡各种因素的作用和影响。 汽车造型设计应满足要求: 1、使汽车具有完美的艺术形象 2、使汽车具有良好的空气动力性能 3、使汽车车身具有良好的工艺性 4、应保证汽车良好的适用性 5、应考虑材料的装饰效果 《汽车车身结构与设计》5 1.2 汽车外形的影响因素 汽车的外形取决于三个因素:形体构成、线形构 成、装饰和色彩构成。 形体构成指汽车的基本形状和整体分块,取决于 汽车总布置和车身总布置。 线形构成指赋予汽车外形覆盖件具体的形状。装饰和色彩构成是指散热器面罩、保险杠、灯 具,车轮装饰罩,标志、浮雕式文字等的造型设计和位置布置以及车身的色彩设计。 《汽车车身结构与设计》 6 汽车仪表及警告指示灯 流行仪表式样是:黑底、白字、红针、蓝灯仪表一般两大两小: 两大:发动机转速表和车速表 两小:水温表和燃油表

浅析模块化设计

浅析模块化设计 摘要:模块化设计是指在对一定范围内的不同功能或相同功能不同性能、不同规格的产品进行功能分析的基础上,划分并设计出一系列功能模块,通过模块的选择和组合可以构成不同的产品,以满足市场的不同需求的设计方法,。通过对减速器结构设计的分析, 更形象具体的阐述什么是模块化设计。 关键词: 模块化设计;功能分析;设计方法 Analysis of the modular design Abstract:Modular design is refers to the analytical basis functions in different function in a certain range or same function but different performance, different specifications of the product, divide and design a series of functional modules, consisting of different products through the selection and combination of modules, to meet the different needs of design method of the market,. Through the analysis on the structure design of deceleration, more specifically on what is modular design. Keywords: module design; functional analysis; ways of design 1.产生的背景 第一次工业革命后, 机械加工逐步成为产品加工成型的主要手段, 特别是机械工业产品。机械加工以产品的系列化, 加工的标准化, 形成零、部件具有通用化、互换性, 显示了它强大的生命力。 系列化的目的在于用有限品种和规格的产品来最大限度、且较经济合理地满足需求方对产品的要求。组合化是采用一些通用系列部件与较少数量的专用部件、零件组合而成的专用产品。通用化是借用原有产品的成熟零部件, 不但能缩短设计周期, 降低成本, 而且还增加了产品的质量可靠性[1]。标准化零部件实际上是跨品种、跨厂家甚至跨行业的更大范围零部件通用化。由于这种高度的通用化, 使得该零部件可以由工厂的单独部门或专门的工厂去单独进行专业化制造。 一般产品设计都具有一个明确的使用功能, 机械产品的总体使用功能是通过各个结构来实现的。由于机械产品的结构与功能之间并非是一一对应的关系, 一个结构实体通常可以实现若干种功能, 一个功能往往又可通过若干种结构实体予以实现。可以视机械产品中的实体结构为结构模块, 将机械产品的总体功能分解若干个子功能, 功过结构模块将功能模块转化成实体模块, 从而实现总体功能,因此,采用结构模块化方法进行方案设计较为合适。 产品系列化、组合化、通用化和标准化孕育了模块化设计技术 2.模块化设计的原则 机械产品的模块设计,是以功能化的产品结构为基础,引用已有的产品通用零、部件等,

汽车车身结构与设计复习题答案(20200521124756)

汽车车身结构与设计复习题 1.车身设计的特点是什么?车身设计是新车型开发的主要内容。车身造型设计是车身设计的关键环节。人机工程学在车身设计中占有极重要的位置。车身外形应重点体现空气动力学特征。轻量化、安全性和高刚性是车身结构设计的主题。新材料、新工艺的应用不断促进车身设计的发展。市场要素车身设计中选型的前提。车身设计必须遵守有关标准和法规的要求 2.现代汽车车身发展趋势主要是什么? 车身设计及制造的数字化 (1)虚拟造型技术(CAS)。 (2)计算机辅助设计(CAD)。 (3)计算机辅助分析(CAE)。 (4)计算机辅助制造(CAM)。 流体分析CFD: 车身静态刚度、强度和疲劳寿命分析: 整车及零部件的模态分析: 汽车安全性及碰撞分析: NHV(Noise Vibration Harshness)分析: 塑性成型模拟技术: (5)虚拟现实技术。 (6)人机工程模拟技术。 新型工程材料的应用及车身的轻量化 更趋向于人性化和空间的有效利用 利用空气动力学理论,使整体形状最佳化 采用连续流畅、圆滑多变的曲面 采用平滑化设计 车身结构的变革: 取消中柱,前后车门改为对开; 车内地板低平化; 四轮尽量地布置在四个角 大客车向轻量化和曲面圆滑方向发展 将货车驾驶室和货箱的造型统一 3.简述常用车身材料的特点和用途。 钢板冷冲压钢板等。 汽车车身制造的主要材料,占总质量的50%。 主要用于外覆盖件和结构件,厚度为0.6-2.0mm。 车门、顶盖、底板等复盖件用薄钢板均是冷轧板,大梁、横粱、保险杆等均是热轧钢。 轻量化迭层钢板 迭层钢板是在两层超薄钢板之间压入塑料的复合材料,表层钢板厚度为0.2~ 0.3mm,塑料层的厚度占总厚度的25%~65%。与具有同样刚度的单层钢板相 比,质量只有57%。隔热防振性能良好,主要用于发动机罩、行李箱盖、车身底板等部件。 铝合金 铝合金具有密度小( 2.7g/cm3)、比强度高、耐锈蚀、热稳定性好、易成形、可回收再生 等优点。 镁合金

基于项目化模块化的课程设计柳州铁道职业技术学院

基于项目化、模块化的课程设计 罗耀军 摘要:针对高职软件技术、电子商务、会计电算化、物流管理等专业的公共应用基础课程--《数据库应用基础》在专业培养目标中的定位与课程目标,基于项目化整合课程教学内容,台阶式的模块化组织课程知识点,并分析课程各级台阶教学的重点内容、难点内容、解决办法及“教、学、做”为一体的教学模式。 关键词:高职;项目化;模块化;课程;设计 一、引言 根据区域经济建设所需的职业能力,以典型的工作项目构建高职专业的课程教学内容,模块化的组织基于项目化课程的知识点,建立融“教、学、做”为一体的课程教学模式,是当前高职院校急需改革研究的重要课题。基于项目化、模块化的《数据库应用基础》课程设计,在充分的分析课程在专业培养目标中的定位、形成课程目标后,笔者以一个典型的“学分制管理”数据库应用项目为“底盘”,采用竖“木桶”方式理顺《数据库应用基础》课程的知识模块,台阶式的模块化组织课程知识点,并分析课程各级台阶教学的重点内容、难点内容、解决办法及“教、学、做”为一体的教学模式,完成项目化、模块化课程设计。课程教学项目化、模块化及“教、学、做”为一体的教学模式的实施,培养的学生不仅能掌握基于项目化课程的必备知识,还具备较高的综合素质、创新能力和职业岗位竟争能力。 二、课程定位与课程目标 (一)课程定位 《数据库应用基础》是软件技术、电子商务、会计电算化、物流管理等专业的公共应用基础课程,它的前序课程是《计算机文化基础》,后续课程是各专业的《数据库应用技术》。本课程位于《计算机文化基础》课程过渡到各专业的《数据库应用技术》课程的中间,是各专业数据库应用方向的重要基础课程,主要培养学生数据库操作能力、代码编写能力和初步具备应用项目的开发能力。课程定位表如表一所示。

浅谈模块化造船

浅谈模块化造船 【摘要】中国造船工业从20世纪80年代初开始与日本的造船业合作,引入设计、制造、管理技术,经过多年的改变,慢慢的由区域导向型造船走向中间产品导向型现在造船模式。传统的造船模式采用区域功能型组织结构,即按共同的生产活动调集资源。工程师和生产人员按功能组织起来。而现代造船模式采用产品导向型组织,即以产品导向型工程分解和成组技术为基础。 【关键词】造船;模块化;区域导向型造船;中间产品导向型造船 中国造船工业从20世纪80年代初开始与日本的造船业合作,引入设计、制造、管理技术,经过多年的改变,慢慢的由区域导向型造船走向中间产品导向型现在造船模式。尽管这种模式尚处在初级阶段,但这对中国造船工业却是一次十分深刻的造船“革命”。 船舶工业的生产过程是一个复杂的有机的整体大系统,随着计算机技术、信息技术在工业中的广泛应用,造船行业正经历着又一次新的技术革命,其目标是通过现代集成制造技术带来造船业更高的经济效益,其主要特征是由区域导向型造船走向中间产品导向型造船。这其中核心技术是基于设计制造一体化的船舶模块化建造技术的发展。 一、模块化概念 所谓模块,就是具有一定功能和特定结合要素的零件、组件和部件。模块化设计就是将一组特定模块在一定范围内组成不同功能或功能相同而性能不同的产品。模块化设计可以满足产品多品种、多规格的要求,并可大大缩短设计周期,提高性价比,使产品便于维修,只是对于结合部位和形体设计有着特殊的要求。模块化设计就像搭积木一样,可根据不同的作用和任务进行组件装配。 模块化造船已经有30多年的历史了,技术上日趋成熟。目前已被多国海军采用,如美国、德国、丹麦、瑞典、俄罗斯等。应用也很广泛,航母、潜艇、巡洋舰、护卫舰等水上、水下舰艇等都开始采用。模块化造船的目的主要是降低整个全寿期费用和保持全舰系统的先进性。包括研发、设计、建造、维护、改装。突出的优点是加快建造周期,升级灵活,便于安装新系统。 二、区域导向型造船与中间产品导向型造船 传统的造船模式采用区域功能型组织结构,即按共同的生产活动调集资源。工程师和生产人员按功能组织起来。而现代造船模式采用产品导向型组织,即以产品导向型工程分解和成组技术为基础。中间产品是指生产的作业单元,是对最终产品进行任务分解的一个组成部分,也是逐级形成最终产品的组成部分。成组技术适宜多品种生产,即多种产品小批量生产.设计和生产以同一方法加以组织,均以同一产品为目标,在造船中即以中间产品为目标。一切设计、计划、船体建

相关文档
最新文档