7.1向量的概念和向量的几何表示ppt

合集下载

7.1向量的基本概念及其运算

7.1向量的基本概念及其运算

ab
ab
[核心思想方法] 1、定义法 2、数形结合
3、化归与转化
[典型例题]
例1、计算 (1) 2(2a b) 7(3a b)
2 3(a 3b 3c) 5(2a 2b c)
解:(1)原式 4a 2b 21a 7b 25a 5b
(2)原式 3a 9b 9c 10a 10b 5c
证明: BD CD CB (3 e1-e2)-(-2e1-8e2)=5e1+5e2
=5(e1+e2)=5AB BD / / AB .
B点为公共点, A、B、D三点共线。
点评:根据向量平行的充要条件证明三点共线。
例5、已知a、b是两个非零向量 ,若a+3b与7a-5b垂直,a-4b与7a-2b垂直, 求a、b的夹角。
例5、已知a、b是两个非零向量 ,若a+3b与7a-5b垂直,a-4b与7a-2b垂直,
求a、b的夹角。
解:由题意得 ( (aa+-43bb))((77aa--52bb))=00
7a2 +16a
7a
2
30a
b
2
15b
=0
b
2
8b
=0
(1) (2)
由(1)
(2)得46a b
2
23b
0,
即b2 =2a
3)平行向量:
如果两个向量 a, b 的方向相同或相反, 则把这一对向量叫做平行向量。 记作 a / /b. 平行向量也叫共线向量。 规定零向量平行于任意向量。
4)共面向量: 如果把几个向量的始点移到某个平面,它们的终点也都在这个平面内,
把这些向量叫做共面向量。
如果两个向量 a, b 不共线,则向量 c与向量 a, b 共面的充要条件是:

向量的概念及表示

向量的概念及表示

向量的概念及表示一、知识、能力聚焦1、向量的概念(1)向量:既有方向,又有大小的量叫做向量。

【注:和量与数量的区别,表示向量的大小称为向量的模(也就是用来表示向量的有向线段的长度)】 向量 的大小称为向量的长度(或称为模),记作│ │。

(2)零向量:长度为零的向量叫做零向量,记作 。

(3)单位向量:长度等于1的向量叫单位向量。

(5)相等向量:长度相等且方向相同的两个向量叫做相等向量,若向量 和 相等,则记作 = 。

2、共线向量共线向量(也称平行向量),应注意两个向量共线但不一定相等,而两个向量相等是一定共线。

平面几何的三点共线与两个向量共线不同:首先共线向量不考虑起点,其次明确共线向量分为如下五种情况:(1)方向相同、模相等;(2)方向相同、模不等。

(3)方向相反、模相等;(4)方向相反、模不等;(5)零向量和任何向量共线。

例:把平面一切单位向量的始点放在同一点,那么这些向量的终点所构成的图形是什么? 解:因任一单位向量的始点移到同一点O 时,终点一定落在以O 为圆心,半径为1的单位圆上,反过来,单位圆上的任一点P 都对应一个单位向量 ,故构成的图形为一单位圆。

(4)平行向量:方向相同或相反的非零向量叫做平行向量。

例: 向量 、 平行,记作// 。

向量 、 、 平行,记作// // 。

(6)零向量与任一向量平行(7)相反向量:与向量 长度相等且方向相反的向量叫做 的相反向量。

记为- , 与- 互为相反向量,且规定:零向量的相反向仍是零向量。

例: 在平行四边形ABCD 中,向量 和向量 方向相同O AB a b a b OP a b a b a b c a b c a a a a a AB DC AB且长度相等; = 。

向量 和向量 长度相等但方向相反,是一对相反向量; =- 。

3、向量的表示 几何法:用有向线段来表示,即用有向线段的起点、终点来表示,如 用| |表示长度。

例: 如图,四边形ABCD 与ABDE 都是平行四边形;①用有向线段表示与向量 相等的向量; ②用有向线段表示与向量 共线的向量;解:①与 相等的向量是 、 、 。

向量的概念及表示

向量的概念及表示

√ (5)若a = b ,b = c,则a = c ; √ 若 则 √
变式1:非零向量 变式 非零向量a、b、c ,若a // b ,b // c,则a // c 非零向量 若 变式2: 变式 若a // b ,b // c,则a // c 反例: 反例:b = 0
x
如图, 为正六边形ABCDEF的中心,在图中所标出 的中心, 例2.如图,已知 为正六边形 如图 已知O为正六边形 的中心 向量中: 向量中: 共线的向量; (1)试找出与 共线的向量; )试找出与FE共线的向量 相等的向量; (2)确定与 相等的向量; )确定与FE相等的向量 相等吗? (3)OA与BC相等吗? ) 与 相等吗 共线的向量有BC和 解:(1)与FE共线的向量有 和OA; :( ) 共线的向量有
BF DE、CO、BF 、 、
. .
的模相等的向量有________ (3)与AO的模相等的向量有________个. 的模相等的向量有________个 7 (4)向量AO与CO是否相等?答 向量 与 是否相等? 是否相等
不是
.
E
A
B
F O D C
3.如图是中国象棋的半个棋盘,“相走田” 如图是中国象棋的半个棋盘, 相走田” 如图是中国象棋的半个棋盘 是象棋中相的走法.如相可以从A飞到 飞到A 是象棋中相的走法.如相可以从 飞到 1,也可 以飞到A 问相在棋盘中何处飞法最多? 以飞到 2,问相在棋盘中何处飞法最多?试 在图中用向量表示. 在图中用向量表示.
E
D
F
O
C
A
B
长度相等且方向相同, (2)与FE长度相等且方向相同,故BC=FE ; ) 长度相等且方向相同 但方向相反, (3)虽然 )虽然OA//BC, 且 OA = BC ,但方向相反, 但方向相反 故这两个向量不相等. 故这两个向量不相等

【中职】7.1.1 向量的概念 高教版 精品课件

【中职】7.1.1 向量的概念 高教版 精品课件

正确的个数为( )
A.1 B.2
C.3 D.4
答案 B
变式训练 2 下列说法中不正确的是( ) A.零向量与任意向量共线 B.零向量只能与零向量相等 C.若A→B=D→C,则 ABCD 是平行四边形 D.平行四边形 ABCD 中,一定有A→B=D→C
解析 A→B=D→C,有可能 A、B、C、D 四点共线,故 C 错.
与B→O相等的向量有O→D,A→E,F→C.
(2)与
→ AO
Байду номын сангаас共线的向量:
→ OA

→ OC

→ CO

→ AC

→ CA

→ BF

F→B,D→E,E→D.
(3)与A→O模相等的向量:O→A,O→B,O→C,O→D,B→O,C→O,
D→O,B→F,F→B,C→F,F→C,A→E,E→A,D→E,E→D.
b A
a
东 南 100km.
4、 在平行四边形ABCD中(图7-5),O为 对角线交点.
(1)找出与向量DA相等的向量 D
C
(2)找出向量DC的负向量
O
(3)找出与向量AB平行向量 A
B
图7-5
要结合平行四边形
的性质进行分析.两个 向量相等,它们必须是 方向相同,模相等;两 个向量互为负向量,它 们必须是方向相反,模 相等;两个平行向量的 方向相同或相反.
∴AC=2000km. 又∵∠ACD=45°,CD=1000 2, ∴△ACD为等腰直角三角形,即AD=1000 2 km,∠CAD =45°. 答:丁地在甲地的东南方向,距甲地1000 2km.
规律技巧 根据题意画出方位图是关键,求一个向量,就是求

中职教育数学《向量的概念》课件

中职教育数学《向量的概念》课件

解:OA CB DO
OB DC EO
OC AB ED FO
练习∶上题中 11
(1)与向量 OA长度相等的向量有多少个?
(2)是否存在与向量
OA
长度相等,
方向相反的向量?
FE
(3)与向量OA 共线的向量有哪些?
单击动画演示 CB DO FE
课堂 小结
向量
向量的定义 向量的表示
字母表示 几何表示
B
a
AB
三、与向量有关的基本概念
1、向量的大小(长度)叫向量的模: 向量 AB 的模
表示: | AB | 模可以比较大小
2、零向量与单位向量
零向量: 长度为零的向量(方向任意).
表示:0或 0, | 0 | 0 a a
3、单位向量: 长度为1个单位长度的向量.
P26例1
3、向量之间的关系
(1)平行向量:方向相同或相反的非零向量.
注意:数量与向量的区别:
1.数量只有大小,是一个代数量,可 以比较大小.
2.向量有方向、大小,双重属性,而 方向是不能比较大小的,因此向量 不能比较大小. 向量不能比较大小.
问题:温度是不是向量? 重量呢?身高?海拔?速度?
向量的表示
a
1.几何法:用有向线段表示
A
2.字母法:用小写字母表示
3.用表示向量的有向线段的起点 和终点字母表示
等.
表示平面上的六个平行四边形,问图中
哪些向量分别与向量 AB、AD、AE 相等?
那些向量与它们互为相反向量?
A
B
D
C
E
F
H
G
例1.判断下列命题真假或给出问题的答案:
(1)平行向量的方向一定相同. × (2)不相等的向量一定不平行. ×

向量的概念及表示ppt

向量的概念及表示ppt
20122012-3-5
良辰美景惜时如金敢与金鸡争晨晖 书山学海甘之若饴誓同峨眉共比高
高一( ) 高一(15)班欢迎您
20122012-3-5
金钱豹以5m/s的速度追赶一只以 金钱豹以 的速度追赶一只以2m/s逃跑的小狗 逃跑的小狗…… 的速度追赶一只以 逃跑的小狗
请问: 能追上小狗吗 为什么? 小狗吗? 请问:金钱豹 能追上小狗吗?为什么?
4.相等向量的定义: 长度相等且方向相同的向量 4.相等向量的定义: 相等向量的定义
A B D
uuu uuur r 记作: = DC AB
C
相反向量的定义: 相反向量的定义: 的定义
r 们 与a 长 度 r 叫 a
等,
r a
20122012-3-5
r c
r r c = -a
r r a = -c
r . 记做: a -
一、向量的定义
既有大小又有方向的量 既有大小又有方向的量 大小又有方向
向量的长度
向量的模
二、向量的表示方法
向量常用有向线段表示 ①几何表示——向量常用有向线段表示:有向线段的 几何表示 向量常用有向线段表示: 长度表示向量的大小 箭头所指的方向表示 向量的大小, 方向表示向量的方 长度表示向量的大小,箭头所指的方向表示向量的方 向。以A为起点、B为终点的向量记为: AB。 为起点、 为终点的向量记为: 为起点 为终点的向量记为 大小记着: 大小记着:│AB│
有向线段:有固定起点、大小、 有向线段 有固定起点、大小、方向 有固定起点 向量:可选任意点作为向量的起点、有大小、 向量 可选任意点作为向量的起点、有大小、有 可选任意点作为向量的起点 方向。 方向。
B D B
D
A

向量的概念 课件 高中数学人教A版(2019)必修第二册

向量的概念 课件 高中数学人教A版(2019)必修第二册
①要注意0和
且|
的区别及联系:0是一个实数, 是一个向量,并
|=0,书写时 0 表示零向量,一定不能忘记上面的箭头.
②单位向量有无数个,它们大小相等,但是方向不一定相同.
③在平面内,将表示所有单位向量的有向线段的起点平移到
同一点,则它们的终点就会构成一个半径为1的圆.
牛刀小试
问题:“向量就是有向线段,有向线段就是向量”的说法对吗?
定的,而向量是可以自由移动的;向量可以用有向线段表示,但并不能
说向量就是有向线段
3.共线向量与平行向量是一组等价的概念.两个共线向量不一定要在一
条直线上.当然,同一直线上的向量也是平行向量
4.注意两个特殊向量——零向量和单位向量,零向量与任何向量都平行,
单位向量有无穷多个,起点相同的所有单位向量的终点在平面内形成一
个单位圆
得正确选项.
测验
【例2】(2020·全国高一专题练习)某人从A点出发向东走了5米到达B点,然后改
变方向沿东北方向走了10 2 米到达C点,到达C点后又改变方向向西走了10米到达
D点.
(1)作出向量AB,BC,CD ;
(2)求AD 的模.
(1)不一定;(2)不一定;(3)零向量;(4)平行(共线)向量
(速度为10海里/小时).如果只是给出指令:
“由A地航行15 海里”,小船能否到达B地?
• 如果不指明“向东南方向”航行,小船不一定到达B地
• 给出指令:“向东南方向航行”呢?
• 方向和距离缺一不可
新知探究
(1)向量的实际背景与概念
• 物理中我们学习了位移、速度、力等既有大小、又有方向的量,
在物理中被称为“矢量”,
B.②④⑥是数量,①③⑤是向量

向量的概念(第1课时)(课件)高一数学(沪教版2020必修第二册)

向量的概念(第1课时)(课件)高一数学(沪教版2020必修第二册)

8.1 向量的概念和线性运算
向量的概念
图8-1-1展示了国产大飞机C919在蓝天翱翔的雄姿.飞机 从A飞行到B.它的位移是一个既有大小又有方向的量,它的大 小是A、B间的距离,方向由A到B 像 “ 一点相对于另一点的位移 ” 这种既有大小又有方向的量叫 做 向量 ( vector ) . 准确地说 , 一个向量由两个要素 定义 , 一是它的大小 ( 一个非负实数 ), 一是它的方向
第 8 章 平面向量
8.1向量的概念(第1课时)
学习目标
1.理解向量的有关概念及向量的几何表示.(重点) 2.理解共线向量、相等向量的概念.(难点) 3.正确区分向量平行与直线平行.(易混点)
平面向量
在现实世界和科学问题中,常常会见到既有大小又有方向的量,如位移、 速度、力等. 数学中的“向量”概念就是从中抽象出来的.向量不仅 有丰富的几何内涵,向量及其线性运算与数量积运算还构成了精致且有 广泛应用的代数结构,可把有关的几何问题简便地转化为相应代数问题 来处理.本章只讨论平面上的向量, 选择性必修课程第3章还将把这 一讨论推广到(三维)空间中,至于更一般性的推广则是大学线性代数 课程的核心内容. 高中阶段向量的学习重在为解决代数、几何、三角 及物理等领域中的问题提供一个简捷有效的工具
例2在图814中,写出向量 AE的负向量.
解 根据负向量的定义,可知向量EA、BE和DF均为AE的负向量
尽管可以画出一个向量的许多负向量,但由于它们彼此都相 等,因此一个向量的负向量在相等的意义下是唯一的.
课本练习
练习8.1(1)
1.指出下列各种量中的向量:
(1)密度; (2)体积; (3)速度; (4)能量; (5)电阻; (6)加速度; (7)功; (8)力矩.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识应用
例2 如图:在平行四边形ABCD中,找出与向量AD共线的 非零向量.
D
A B
C
分析:共线的非零向量是所有方向相同和相反的 非零向量. 解:与向量AD共线的向量有AD,BC,DA,CB.
知识应用
例3:如图设O是正六边形ABCDEF的中心,请分别写出图中 满足下列条件的向量: (1)与向量OB相等的向量; C B (2)向量OB的负向量; (3)与向量OB共线的非零向量. D A O E (1)与向量OB相等的向量有DC,EO,FA. (2)向量OB负向量有CD,OE,AF,BO. (3)与向量OB共线的向量有DC,EO,FA, CD,OE, AF,BO .
主要概念
向量有两个要素:大小和方向 向量的大小:是表示向量的有向线段的长度,也 叫做向量的长度. AB 或 a 记作: 相等的向量: 大小相等且方向相同的向量. 注:两个向量相等与它们的位置无关.
零向量: 长度为零的向量,记作0或 AA
a
B D
它的方向不确定. A AB BA 注: 0的负向量规定为0 ; C 单位向量:长度为1的向量. 思考:两个单位向量一定是相等向量吗?
相反,或者有一个是零向量.
知识应用
例1 如图:在平行四边形ABCD中,找出与向量AB相等的 向量,以及AB的负向量. D C
A
B
分析:相等的向量即方向相同、大小相等的向量,用 有向线段表示,即为方向相同、长度相等的有向线 段.负向量即方向相反、大小相反的向量,用有向线段 表示,即为方向相反,长度相等的有向线段. 解: AB = DC - AB = BA = CD
主要概念
a长度相等且方向相反的向 负向量: 与非零向量 a 量称 的负向量, a 记作: 或称 a 的反向量.
共线向量: 如果一组向量用同一个起点的有向线 段表示后,这些有向线段在同一条直线上,像这样 的一组向量称为共线向量;否则称为不共线向量. 注:零向量与任一向量共线.
a与b共线的充分必要条件 :a与b的方向相同或
第7章 向量
石家庄市职业财会学校:范树芳
问题情境
一只老鼠由A处向西北逃窜,猫在B处向东 追,请问:猫能追上老鼠吗?为什么?
B
A
现实世界是丰富多彩的,描述现实世界的量 有的只有大小没有方向,有的既有大小又有方 向.现实生活中哪些量既有大小又有方向?哪些 量只有大小没有方向?
主要概念
向量:既有大小又有方向的量叫做向量(或矢量).
(4)向量不同于数量的一个显著特征是,向量有它自 己的运算系统:加、减、实数和向量的积、向量的数量 积等运算,关于数量的代数运算在向量范围内不都适 用.关于向量的运算也是我们今后要学习的重点.
向量的表示方法:
①几何表示法:用有向线段表示向量. 有向线段的箭头指向表示向量的方向; B 有向线段的长度表示向量的大小. a ②字母表示: A Ⅰ、用有向线段的起点和终点的 大写字母加箭头表示,如 AB . Ⅱ、手写:用带箭头的小写英文字母表示,如 a、b Ⅲ、印刷体:用黑体小写字母表示,如:a、 b
总结提炼
(1)向量不同于数,它是一种新的量,关于它的概念 比较多,我们今天就着重学习了 向量、零向量、单位 向量、负向量、相等向量、共线向量等概念. (2)描述一个向量有两个要素:大小和方向. (3)共线向量也称为平行向量,它类似于平面几何中 的平行线,但它不是平行线概念的简单移植,共线是指 方向
F
知识应用
例4 判断正误: ) (1)因为温度有零上零下之分,所以“温度”是向量.( (2)共线向量一定方向相同或相反. (3)不共线的向量一定不相等. ( ( ) )
(4)与任意向量都共线的向量只有零向量.
(5)共线向量一定在同一条直线上.



) )
(6)共线的向量一定可平移到同一条直线上.(
相关文档
最新文档