测井技术
测井方法与原理

测井方法与原理测井是一种在石油勘探和开发中广泛应用的技术手段,其主要目的是通过测量地下岩石的物理性质,以评估地下地层中的油气储层并确定井孔的产能。
本文将介绍几种常用的测井方法及其原理。
一、电测井方法电测井是通过测量井眼周围地层的电阻率来评估石油储层的方法。
它的原理是通过向井眼中注入电流,然后测量所产生的电位差,从而计算出地层的电阻率。
电测井方法有许多具体的技术实现,如侧向电测井、正向电测井和声波电阻率测井等。
这些方法在实际应用中能够提供丰富的地下岩石信息,帮助确定储层的类型和含油气性质。
二、声波测井方法声波测井是通过测量地下岩石对声波的传播速度和衰减程度来评估石油储层的方法。
它的原理是利用井壁的物理特性和波的传播规律,通过发送声波信号并接收回波信号,从而推断出地层中的可用信息。
声波测井方法常用的技术包括声波传输率测井、声波振幅测井和声波时差测井等。
这些方法能够提供有关地下岩石的密度、孔隙度和饱和度等关键参数,对于油气勘探与开发具有重要意义。
三、核子测井方法核子测井是通过测量地下岩石散射或吸收射线的能量来评估石油储层的方法。
它的原理是使用放射性同位素或射线源,通过测量射线经过地层后的射线强度变化,从而反推出地层的性质和组成。
核子测井方法包括伽马射线测井、中子测井和密度测井等。
这些方法可以提供地下岩石的密度、孔隙度、含水饱和度以及岩石组成的定量信息,对于评估储层的含油气性能十分重要。
四、导电测井方法导电测井是通过测量地下岩石对电磁波的响应来评估石油储层的方法。
它的原理是利用电磁波在地下岩石中传播时的电磁感应效应,通过测量反射波的幅度和相位变化,推导出地层的导电性能。
导电测井方法包括感应测井和电阻率测井等。
这些方法可以提供有关地下岩石的电导率、水饱和度、渗透率和孔隙度等信息,对于确定储层的含油气性质具有重要的意义。
总结:测井方法是石油勘探与开发中不可或缺的技术手段,通过测量地下岩石的物理性质,能够评估地层的含油气性能、类型和产能等关键参数。
测井技术

一:测井技术要求(1)仪器设备技术要求车载仪器设备需严格遵照《煤田地球物理测井》规范之要求进行维护保养;下井探管和数据采集面板每次测井之前需在室内供电测试、刻度;各参数测井技术要求如下:①自然伽玛测井:单位为pA/kg (Iγ=7.17×10-2pA/kg)。
仪器用刻度环或标准源进行检查,其响应值与基地读数比较,误差不大于5%。
同时,在照射率相当于2.9pA/kg情况下,计算涨落引起的相对标准误差,其值不大于5%。
属于下列情况之一者,应进行1:50曲线测量。
.异常值达7.2pA/kg,厚度又在0.7m以上的岩层;.厚度虽小于0.7m,但异常值与厚度的乘积大于 5.0(pA/kg)·m的岩层;异常值超过4.3pA/kg的可采煤层。
②密度(伽玛伽玛)测井;单位为s-1(脉冲/秒),经处理计算后的密度曲线单位为g/cm+3。
数字仪用检查装置测量长源距和短源距的响应值,与基地读数相比,相对误差不大于3%;计算煤层处由涨落引起的相对标准误差,其值不大于2%。
③自然电位测井:单位为mV。
电极系下井前,应清除电极上的氧化物。
测量时应辨清极性,使曲线异常右向为正,左向为负。
曲线的基线应在岩性较纯的泥岩或粉砂质岩层段确定。
测量线路的总电阻,应大于接地电阻变化值的10倍。
有工业杂散电流干扰的地区,可用套管或电缆铠皮做N电极,也可测量自然电位梯度曲线。
④电阻率测井:电阻率单位为Ω•m;电导率单位ms/m(Ωm /m)。
外接标准电阻作两点检查,检查值与计算值的相对误差不得大于5%。
同一勘探区应采用同一类型的电极系。
接地电阻的变化对测量结果的影响不大于2%。
⑤声波测井:单位时差为μs/m,速度为m/s。
测井时在钢管(或铝管)中检查,其响应值与标准值相差不得超过8μs/m。
在井壁规则的井段,非地层因素引起的跳动,每百米不得多于4次。
且不允许在目的层上出现(孔径扩大除外)。
⑥井斜测量:仪器下井前必须进行试测,顶角和方位角的检查点各不少于两个;实测值与罗盘测定值相差:顶角不大于1°,方位角不大于20°(顶角大于3°时)。
国内外测井技术现状与发展趋势

国内外测井技术现状与发展趋势目录1. 内容简述 (2)1.1 研究背景 (2)1.2 测井技术简介 (4)1.3 研究意义 (5)2. 国内外测井技术现状 (6)2.1 测井技术分类 (8)2.1.1 电成像测井技术 (10)2.1.2 声波测井技术 (11)2.1.3 核磁共振测井技术 (13)2.1.4 X射线测井技术 (14)2.2 国内外测井技术发展概述 (18)2.2.1 中国测井技术发展 (19)2.2.2 国际测井技术发展 (21)2.3 测井技术应用领域 (22)2.3.1 石油天然气勘探开发 (24)2.3.2 地热资源勘探 (25)2.3.3 基础工程地质勘探 (26)2.3.4 环境保护与地下水监测 (28)3. 发展现状分析 (29)3.1 测井技术的进步对地质研究的影响 (31)3.2 技术和设备的创新 (32)3.3 测井技术面临的技术挑战 (33)4. 发展趋势 (34)4.1 智能化和自动化 (35)4.2 技术创新与发展 (36)4.3 环保与可持续发展 (37)4.4 政策与市场驱动 (39)1. 内容简述本文旨在系统概述国内外测井技术的现状及发展趋势,将全面回顾测井技术的发展历史,并从基础理论、数据采集、处理分析及应用等方面,分析国内外测井技术的优势和不足。
重点探讨当前测井技术的热门研究领域,包括智能化测井、4D 测井、全方位测井、多参数测井、精确定位测井等,并分析其技术路线和应用前景。
结合国际国内大趋势,展望测井技术未来的发展方向,提出应对行业挑战并推动技术的创新升级的建议。
期望该文能为读者提供对测井技术的全面了解,并为行业发展提供有价值的参考。
1.1 研究背景在能源开发与利用日益严峻的当下,测井技术作为石油天然气工业不可或缺的环节,扮演着至关重要的角色。
它不仅为油气资源的勘探与开发、储层评价和提高采收率提供了重要依据,也在新材料的寻探和矿床分析中有着不可替代的作用。
测井综合解释与评价技术

井身质量
利用测井曲线分析井径变 化、井斜角度和方位角等 信息,评估井身质量是否 符合设计要求。
地层压力检测
通过分析地层压力系数与 地层孔隙度等参数,预测 钻遇地层可能存在的压力 异常。
采油工程评价
产能评估
根据测井数据计算油井的 产能,预测油井的产油量、 产液量等参数。
储层改造效果
分析储层改造前后测井数 据的差异,评估增产措施 的效果。
综合解释法的优点是精度高、可靠性好,适用于各种复杂程度的地层。然而,综合解释 法需要耗费更多的时间和资源,因此在实际应用中需要根据具体情况进行选择。
04
油藏工程评价
油藏压力评价
总结词
通过测井资料,分析油藏的压力状态,为后续的油藏开发提供依据。
详细描述
利用测井资料,如压力恢复曲线、压力导数曲线等,分析油藏的压力分布、压 力系数、地层压力等参数,评估油藏的压力状态,判断油藏的驱动类型和开发 方式。
直接解释法的优点是简单直观,适用于地层特征较为明显 的地区。然而,对于复杂地层或岩性变化较大的地区,直 接解释法的精度和可靠性可能较低。
间接解释法
间接解释法是指通过建立数学模型来描述测井数据与地层参数之间的关系,从而反演出地层参数的方 法。
这种方法通常基于大量的已知地层参数和测井数据,通过统计回归分析或物理模型建立反演公式,对地 层进行定量解释。
油层连通性
通过分析测井曲线形态, 判断油层之间的连通情况, 为制定开发方案提供依据。
油田开发后期剩余油分布评价
剩余油饱和度
利用核磁共振、介电常数等测井技术,测定剩余油饱和度,了解 剩余油的分布情况。
微观剩余油分布
通过岩心分析、微观成像测井等技术手段,观察微观尺度上剩余油 的分布特征。
生产测井技术介绍

生产测井技术介绍引言生产测井是一种用于评估和监测油井生产状态和产量的技术方法。
它是油田开发和生产管理中的重要工具,能够为油藏工程和生产管理提供关键的数据和信息。
本文将介绍生产测井的基本原理和常用技术,并探讨其在油田开发和生产管理中的应用。
生产测井的基本原理生产测井是通过在油井内安装测井仪器,采集井底的数据来评估和监测油井的生产状态和产量。
测井数据可以提供油井、油藏和地层的相关信息,包括油井压力、温度、含水率、产液量和产气量等。
根据测井数据的变化和分析,可以判断油井的生产情况、诊断井口问题以及评估油田的产能和开发潜力。
生产测井的基本原理是利用物理、化学和电磁等测井技术手段,通过测量和分析油井内部的参数和特性来反映油井的生产状况。
常用的生产测井技术包括:井底压力测井、产量测井、含水率测井、井温测井和井底流体采样等。
常用的生产测井技术1. 井底压力测井井底压力是评估和监测油井生产状态的重要参数。
井底压力测井是通过在井下测井仪器中加装压力传感器,实时测量油井的井底压力变化。
井底压力测井可以帮助诊断油井的流体动态特性,评估油藏的产能和开发潜力,以及指导油井的调整和优化。
2. 产量测井产量测井是评估和监测油井产液量和产气量的主要方法。
通过在油管或气管中安装流量计和测压仪器,可以实时测量油井的产液量和产气量变化。
产量测井可以帮助评估油井的生产能力,监测油井的产量变化,以及判断油井的井下环境和动态特性。
3. 含水率测井含水率是评估油井产液中含水量的重要参数。
含水率测井可以通过测量油井产液中的电阻率或射线衰减来判断油井中的含水率。
含水率测井可以帮助评估油藏的剩余油藏和采油效果,监测油井的含水率变化,以及指导油井的调整和优化。
4. 井温测井井温测井是通过测量油井井筒内的温度变化来评估油井的生产状态。
井温测井可以帮助判断油井的产液情况,监测油井的温度变化,以及诊断油井的问题和优化油井的生产。
5. 井底流体采样井底流体采样是通过在油管或气管中安装采样器,采集油井产液和产气的样品,进行实验室分析和测试。
测井技术及资料解释

测井技术及资料解释测井技术及资料解释应用2022年一、石油测井技术方法二、石油测井地质应用三、测井资料的处理解释(一)石油测井技术概述石油测井技术是采用声、电、磁、放射性等物理测量方法, 应用电子技术及计算机等高新技术,在井中对地层的各项物理参数进行连续测量, 通过对测得的数据进行处理和解释,得到地层的岩性、孔隙度、渗透率、含油饱和度及泥质含量等参数。
石油测井技术与录井、取心等其他技术手段相比,它之所以成为地层和油气资源评价的关键技术手段,主要是由于其具有观测密度大、高分辨率与纵向连续性,以及由众多信息类型组成的综合信息群等技术优势。
三维地震服务于油气勘探和开发的全过程裸眼井测井评价裸眼井测井资料油井动态测井资料电缆测试资料射孔地震合成剖面测井沉积相分析地层评价(逐井) 岩性描述储层分析含油气评价储量计算勘探初期油藏模式分析油田解释模型完井评价孔隙度饱和度渗透率压力剖面勘探中后期油藏描述开发初期油藏模拟水泥胶结套管状况监测酸化压裂效果防砂效果产液剖面注入剖面温度压力剖面剩余油分布开发中期油藏工程开发后期采油工程油藏监测油田生产动态(二)石油测井技术方法迄今为止,测井技术已经历了四次的更新换代,这一发展进程,实质上是一个在更高层次上,形成精细分析与描述油藏地质特性配套能力的过程,是一个不断提高测井发现和评价油气藏能力的过程。
第一代:模拟测井(60年代以前、80年代末) 第二代:数字测井(60年代开始、90年开始)第三代:数控测井(70年代后期、97年开始)第四代:成像测井(90年代初期、2022年)测井方法电学声学核物理学力学磁学光学量子力学实验学电阻率测井声波测井核测井电缆地层测试井方位测井流体成份测量核磁共振测井岩电实验室测井技术应用电子学、计算机科学、传感器技术、精密加工和材料学的成果。
测井技术采用声、电、磁、放射性等物理测量方法, 应用电子技术及计算机等高新技术制造成测井仪器,在井中对地层的各项物理参数进行连续测量,现有的测井方法多达几十种.1 地层电阻率测井方法:双侧向测井双感应测井阵列感应测井微电极测井微球型聚焦测井 2.5米电位电极系测井 4.0米梯度电极系测井2、声学测井技术补偿声波长源距声波声波测井资料应用:确定岩性计算储层孔隙度及渗透率识别地层含流体性质计算岩石力学参数阵列声波数字声波多极阵列声波(Vp、Vs、Vst)垂直地震(VSP)刻度地面地震资料3、放射性测井技术自然伽马(GR) 补偿中子孔隙度(CNL) 岩性密度(DEN,Pe) 补偿密度(DEN) 自然伽马能谱(U、Th、K、SGR、CGR) 中子伽马(NGR)A、自然电位测井资料应用1.划分渗透性储层2.判断油水层(异常幅度大小)和水淹层(泥岩基线偏移) 3.地层对比和沉积相研究 4.估算泥质含量C SP SP min SP max S P min 2 GCUR *C 1 VS H 2GCUR 1自然电位5.确定地层水电阻率SSP K * lg Rmfe Cw K * lg Rwe CmfB、自然伽马测井资料应用1.划分岩性和地层对比高放射性储层:火成岩、海相黑色泥岩等;中等放射性岩石:大多数泥岩、泥灰岩等;低放射性岩石:一般砂岩、碳酸盐岩等自然伽马2.划分储层砂泥岩剖面:低伽马为砂岩储层,在半幅点处分层碳酸盐岩剖面:低伽马表示纯岩石,需结合地层孔隙度分层B、自然伽马测井3.计算地层泥质含量GR GRmin C GRmax GRmin 2GCUR *C 1 VS H 2GCUR 1自然伽马4.计算粒度中值粒度大小与沉积环境、沉积速度及颗粒吸附放射性物质的能力有关,岩性越细,放射性越强。
测井技术用途

测井技术用途
测井技术是石油勘探与开采中的重要技术手段,它主要用于获取井内地层岩石和地下水的各种参数,包括地层构造、物性参数、地层流体性质等信息。
测井技术通过识别和分析地层中的矿产资源和流体分布情况,提供了地质勘探、油气储层评价、地震解释、水文地质、工程地质等领域的基础数据,对于石油勘探与开采具有重要的意义。
首先,测井技术在石油勘探中的应用非常广泛。
石油勘探主要是通过测井数据,研究地下岩石的物理性质、结构构造、裂缝情况等,从而确定地下矿层的分布规律和运移规律。
通过测井技术获取的地层参数数据,可以帮助工程师准确判断油气的储层条件,有效指导钻井施工,提高勘探的成功率和钻井的效率。
其次,测井技术在油气储层评价中也起到了至关重要的作用。
通过测井技术获取储层物性参数的同时,也能够获取地层流体的性质、运移状况等信息,从而综合评价储层的产能、油气的含量和分布,为油气开发提供科学依据。
另外,测井技术还可以用于评价储层的渗流能力、孔隙结构、油气饱和度等参数,有效指导油气的开采和生产。
除此之外,测井技术也在地震解释和水文地质等领域有着广泛的应用。
地震测井技术可以通过地层的声波和电磁特性,进行地震波速度和电性频谱分析,辅助地震解释,提高地震勘探的准确性;水文地质中的测井技术可以通过测井数据,获得地下水文地质构造、水文地质参数,辅助水资源勘探与开发。
总的来说,测井技术是石油勘探与开采中的一项重要技术手段,对于提高资源勘探与开采的效率、降低勘探风险、节约勘探成本都具有重要意义。
随着油气勘探开发的深入,测井技术的研究和应用将进一步得到加强和完善,为石油工业的可持续发展做出更大的贡献。
石油勘探中的测井技术

石油勘探中的测井技术石油是当前全球能源供应中不可或缺的一部分,而石油勘探则是为了找到地下潜在石油储量而进行的一系列活动。
在石油勘探中,测井技术是十分重要且必不可少的工具。
本文将介绍石油勘探中的测井技术以及其在石油勘探中的应用。
一、测井技术的概述测井技术是通过在钻井过程中运用各种专门的仪器和传感器获取井下地质信息的方法。
通过测井技术可以获得地层性质、地层岩性、油气藏储集层信息等重要数据,能够帮助石油勘探人员更好地认识地下情况,判断地下储层是否具有勘探价值。
二、测井技术的分类根据测井的目的和测量原理,测井技术可以分为电测井、声测井、自动化测井、核子测井、岩心测井等多种类型。
每种类型的测井技术都有各自的特点和应用范围。
1. 电测井电测井是通过测量井壁附近储层对电阻、自然电位、电导率等电性参数的响应,来获取地层信息的一种测井技术。
它可以提供储层流体含量、渗透率、孔隙度等重要参数。
2. 声测井声测井是利用声波在地层中传播的特性,测量声波波形、走时、幅度等参数,来评估储层中含水性、孔隙度、渗透率等信息。
声测井技术在判断孔隙裂缝、岩性、测量水平井中的剩余油饱和度等方面具有重要的应用价值。
3. 自动化测井自动化测井是指采用计算机和数字信号处理技术对测量结果进行数字化处理和解释,从而提高测井数据的准确性和可靠性。
自动化测井技术在数据处理和解释方面具有显著优势,能够提高石油勘探效率和准确性。
4. 核子测井核子测井是利用射线在地层中的吸收和散射等特性,测量γ射线、中子、伽马旋转等参数,来获得地层中元素含量、孔隙度、密度等信息。
核子测井技术在储层评价、油水层识别和油藏储量计算等方面具有广泛应用。
5. 岩心测井岩心测井是通过对地层岩心样品进行物理性质分析、岩石组分测定和实验室测试等手段,来获取储层的物性参数。
岩心测井技术在石油勘探中具有非常重要的作用,能够提供地层介质岩心的物理性质、岩石组成、孔隙结构等详细信息。
三、测井技术的应用测井技术在石油勘探中具有广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
产能力以及解决其他一些地质和工程问题等。
(1)利用测井资料获取储集层岩性,油气藏的孔隙度、渗透率、 饱和度,油气层厚度、温度、压力以及开展油气藏地质特征研究, 为油气田开发方案的编制、储量评价、油藏数值模拟等提供基础参 数。
(2)利用测井资料建立岩性剖面。应力剖面和强度剖面,为钻头
选型、钻井破岩、井壁稳定、井眼轨道设计、完井、压裂以及射孔
3
测井技术的起源与发展阶段
数字测井 数控测井 成像测井 发展阶段 模拟记录 1964年以前 1965~1972 1973~1990 1990年以后 地面系统 测量方式 传输方式
检流计光点 照相记录仪
数字磁带 记录仪 部分组合 单向 编码传输
计算机控 制记录仪 多参数 组合 双向可控 数据传输
成像 测井仪 多参数 阵列组合 双向可控 数据传输
1)电化学特性-地层水,粘土矿物,碳酸盐岩 的电化学特征; 2)导电性和介电特性-不同矿物具有不同的导 电性和介电特性,以电阻率和介电常数表示; 3)声学特性-可以传播P波和S波、ST声波等; 4)核特性-中子和氢核的特性,以及它们的相 互作用:光电效应,康普顿效应,热中子的扩散 和俘获; 5)热学特性-地层及流体具有导热性,有一定 的温度; 6)磁特性:磁导率
《测井技术》
Well Logging Technology
1
绪
测井相关概念
论
测井技术的起源与发展阶段 地层岩石的地球物理特性 测井方法分类 测井仪器和测井过程 测井的用途
2
测井技术的起源与发展阶段
1927 年 在 法 国 东 北 部 一 个 小 油 田 一 口 井 中 , 由 Schlumberger 兄弟通过点测方式,经过人工绘制得到了世 界上第一条电测曲线,这标志着一门新兴技术-地球物理测 井技术的诞生,法国人将其翻译为 Carottage eletrigue, 意为“电取心” , SLB 兄弟成为测井技术的鼻祖。国内翁文 波、赵仁寿、王曰才、刘永年为我国测井技术的奠基人。 随后WLT在美国、苏联等地开始了商业运用,到20世纪30 年代测井技术得到了迅速发展。到90年代测井技术已经成为 石油工业十大支柱技术之一。
6
测井相关概念
测井及其资料的用途
●测井是一种勘探的方法或手段
●测井是地球物理测井的简称,亦称钻井地球物理勘、
矿场地球物理、油矿地球物理等,是地球物理勘探的 一个重要分支 ●应用物理方法研究油气田钻井地质剖面和井的技术状
况,寻找并监测油气层开发的一门应用技术,简称测井
(Well Logging)。
7
单测为主 直流 模拟传输
4
测井技术的起源与发展阶段
模拟记录测井:用灵敏度高的检流计测量回路电流得到探测系
统测量段的电位差变化,反映地层物理参数(自然电位,电阻率,
声速等)随深度的变化,记录在照相纸或胶片上。 数字测井:数字测井仪器增加了用数字磁带机进行数字记录, 提高了测量精度,且便于将测井资料输入计算机处理。 数控测井:数控测井仪是一台计算机为中心的遥控探测系统,
各种下井仪器作为计算机的外设,通过电缆通讯系统连接,通过计
算机实现对下井仪器的控制,测量数据处理和显示,曲线回放等。 成像测井:提供大量物理信息,以此为基础给出高分辨率的二 维或三维目的层的物理参数图像。
5
测井技术的起源与发展阶段
第一代:翁文波 1939 ,四川巴县(现重庆巴南区) 石油沟 第二代: JD-581多线电测仪 仿苏联匈牙利 SJD-83系列 85年生产,是JD-581D的配套下井仪器, 第三代:我国70年代中后期引进并开始研制和仿造 3600系列 SJD801系列 二、三代的区别:除了井下仪器系列的完整外,在记录 方式上后者增加了数字记录 第四代: 数控测井仪 70年代末投入商业性使用 常见的有: 斯伦贝谢 德莱赛 (阿特拉斯) 吉尔哈特(哈里伯顿) CSU 3700系列 DDL 第五代:数控成象测井仪 MAXIS-500 ECLIPS-5700 EXCELL-2000
10
地层岩石的地球物理特性 地球物理勘探??? 地球物理:地球的物理性质
电性 声学特性
岩层 的物
导电特性 电化学特性 介电特性
硬地层与软 地层、油气 层与水层电 性的比较
理性
质
核物理特性 其它…
三大类 测井方法
11
测井方法分类(重点)
测井方法分类 ★按研究的物理性质分类: 1、电法测井(自然电位、电阻率、电 磁波传播) 2、声波测井(声速类、声幅类、声波 频率特性类) 3、核(放射性)测井(伽马射线类、中 子类、核磁共振类) 4 、生产测井 ( 流量计测井 , 流体密度 测井,持水率测井、井温测井 ,压力测井 等)
测井相关概念
测井的专业名称变更概况
(测井) 矿场地球物理 (物探) 勘查地球物理
应用地球物理
勘查技术与工程
8
测井相关概念
测井、测井解释及其 原理
测井
地质或井技术参数
其 含 物 岩 他 油 性 性 性 参 数
测井参数
解释
其 图 数 曲 他 象 据 线
把测井参数加工成地质 或井技术参数的过程
9
地层岩石的地球物理特性
12
测井方法分类(重点)
测井方法(阶段)分类: 勘探测井和生产(开发)测井
13
测井仪器和测井过程
测井仪器的组成及工艺过程
地面仪器
电缆
井下仪器
14
测井仪器和测井过程
15
测井仪器和测井过程
16
测井的用途
测井仪沿井孔测量、记录和反映这些地球物理特性,并利用测 井曲线研究钻井地质剖面、油气层的储渗特性、评价它们的油气生
17
测井的用途
等提供岩石地质力学方面的依据。 (3)利用测井资料综合评价钻井液侵入油气藏状况。
(4)复杂地层条件下的深井、大位移井随钻地质导向钻井技术。
(5)固井质量评价及套管损害检测。 (6)油气井生产动态监测。 (7)水淹层及剩余油评价。
18
19
谢谢各位!
20