2017年中考数学试题分类汇编 精品

合集下载

2017年中考数学全国真题解析分类汇编目录

2017年中考数学全国真题解析分类汇编目录

目录1、2017年中考数学解析分类汇编分类01 有理数(含解析)2、2017年中考数学解析分类汇编分类02 实数(含解析)3、2017年中考数学解析分类汇编分类03 整式与因式分解(含解析)4、2017年中考数学解析分类汇编分类04 一元一次方程及其应用(含解析)5、2017年中考数学解析分类汇编分类05 二元一次方程(组)及其应用(含解析)6、2017年中考数学解析分类汇编分类06 不等式(组)及其应用(含解析)7、2017年中考数学解析分类汇编分类07 分式与分式方程(含解析)8、2017年中考数学解析分类汇编分类08 二次根式(含解析)9、2017年中考数学解析分类汇编分类09 一元二次方程及其应用(含解析)10、2017年中考数学解析分类汇编分类10 平面直角坐标系与点的坐标(含解析)11、2017年中考数学解析分类汇编分类11 函数与一次函数(含解析)12、2017年中考数学解析分类汇编分类12 反比例函数(含解析)13、2017年中考数学解析分类汇编分类13 二次函数(含解析)14、2017年中考数学解析分类汇编分类14 统计(含解析)15、2017年中考数学解析分类汇编分类15 频数与频率(含解析)16、2017年中考数学解析分类汇编分类16 概率(含解析)17、2017年中考数学解析分类汇编分类17 点、线、面、角(含解析)18、2017年中考数学解析分类汇编分类18 图形的展开与叠折(含解析)19、2017年中考数学解析分类汇编分类19 相交线与平行线(含解析)20、2017年中考数学解析分类汇编分类20 三角形的边与角(含解析)21、2017年中考数学解析分类汇编分类21 全等三角形(含解析)22、2017年中考数学解析分类汇编分类22 等腰三角形(含解析)23、2017年中考数学解析分类汇编分类23 直角三角形与勾股定理(含解析)24、2017年中考数学解析分类汇编分类24 多边形与平行四边形(含解析)25、2017年中考数学解析分类汇编分类25 矩形菱形与正方形(含解析)26、2017年中考数学解析分类汇编分类26 图形的相似与位似(含解析)27、2017年中考数学解析分类汇编分类27 锐角三角函数与特殊角(含解析)28、2017年中考数学解析分类汇编分类28 解直角三角形(含解析)29、2017年中考数学解析分类汇编分类29 平移旋转与对称(含解析)30、2017年中考数学解析分类汇编分类30 圆的有关性质(含解析)31、2017年中考数学解析分类汇编分类31 点直线与圆的位置关系(含解析)32、2017年中考数学解析分类汇编分类32 正多边形与圆(含解析)33、2017年中考数学解析分类汇编分类33 弧长与扇形面积(含解析)34、2017年中考数学解析分类汇编分类34 投影与视图(含解析)35、2017年中考数学解析分类汇编分类35 命题与证明(含解析)36、2017年中考数学解析分类汇编分类36 尺规作图(含解析)37、2017年中考数学解析分类汇编分类37 规律探索(含解析)38、2017年中考数学解析分类汇编分类38 操作探究(含解析)39、2017年中考数学解析分类汇编分类39 方案设计(含解析)40、2017年中考数学解析分类汇编分类40 开放探究(含解析)41、2017年中考数学解析分类汇编分类41 动态问题(含解析)42、2017年中考数学解析分类汇编分类42 阅读理解(含解析)43、2017年中考数学解析分类汇编分类43 图表信息(含解析)44、2017年中考数学解析分类汇编分类44 思想方法(含解析)45、2017年中考数学解析分类汇编分类45 跨学科结合与高中衔接问题(含解析)。

【试题专项整理】2017年度中考数学精编试题(不同省市)(17)

【试题专项整理】2017年度中考数学精编试题(不同省市)(17)

2017年湖北省中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.1.(3分)如果向北走6步记作+6,那么向南走8步记作()A.+8步B.﹣8步C.+14步D.﹣2步2.(3分)北京时间5月27日,蛟龙号载人潜水器在太平洋马里亚纳海沟作业区开展了本航段第3次下潜,最大下潜深度突破6500米,数6500用科学记数法表示为()A.65×102 B.6.5×102C.6.5×103D.6.5×1043.(3分)如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是()A.25°B.35°C.45°D.50°4.(3分)如图是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对面上的字是()A.传B.统C.文D.化5.(3分)下列运算正确的是()A.(π﹣3)0=1 B.=±3 C.2﹣1=﹣2 D.(﹣a2)3=a66.(3分)关于一组数据:1,5,6,3,5,下列说法错误的是()A.平均数是4 B.众数是5 C.中位数是6 D.方差是3.27.(3分)一个扇形的弧长是10πcm,面积是60πcm2,则此扇形的圆心角的度数是()A.300°B.150°C.120°D.75°8.(3分)若α、β为方程2x2﹣5x﹣1=0的两个实数根,则2α2+3αβ+5β的值为()A.﹣13 B.12 C.14 D.159.(3分)如图,P(m,m)是反比例函数y=在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为()A.B.3C.D.10.(3分)如图,矩形ABCD中,AE⊥BD于点E,CF平分∠BCD,交EA的延长线于点F,且BC=4,CD=2,给出下列结论:①∠BAE=∠CAD;②∠DBC=30°;③AE=;④AF=2,其中正确结论的个数有()A.1个B.2个C.3个D.4个二、填空题:本大题共6小题,每小题3分,共18分,请将结果直接填写在答题卡对应的横线上.11.(3分)已知2a﹣3b=7,则8+6b﹣4a=.12.(3分)“六一”前夕,市关工委准备为希望小学购进图书和文具若干套,已知1套文具和3套图书需104元,3套文具和2套图书需116元,则1套文具和1套图书需元.13.(3分)飞机着陆后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数解析式是s=60t﹣t2,则飞机着陆后滑行的最长时间为秒.14.(3分)为加强防汛工作,某市对一拦水坝进行加固,如图,加固前拦水坝的横断面是梯形ABCD.已知迎水坡面AB=12米,背水坡面CD=12米,∠B=60°,加固后拦水坝的横断面为梯形ABED,tanE=,则CE的长为米.15.(3分)有5张看上去无差别的卡片,正面分别写着1,2,3,4,5,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是.16.(3分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,1),B(0,﹣2),C(1,0),点P(0,2)绕点A旋转180°得到点P1,点P1绕点B 旋转180°得到点P2,点P2绕点C旋转180°得到点P3,点P3绕点A旋转180°得到点P4,…,按此作法进行下去,则点P2017的坐标为.三、解答题:本大题共9小题,共72分.17.(6分)化简:﹣.18.(6分)解不等式组,并把它的解集在数轴上表示出来.19.(6分)如图,下列4×4网格图都是由16个相同小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在空白小正方形中,按下列要求涂上阴影.(1)在图1中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形;(2)在图2中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形.20.(6分)近几年,随着电子商务的快速发展,“电商包裹件”占“快递件”总量的比例逐年增长,根据企业财报,某网站得到如下统计表:年份2014201520162017(预计)快递件总量(亿件)140207310450电商包裹件(亿件)98153235351(1)请选择适当的统计图,描述2014﹣2017年“电商包裹件”占当年“快递件”总量的百分比(精确到1%);(2)若2018年“快递件”总量将达到675亿件,请估计其中“电商包裹件”约为多少亿件?21.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD与过点C的切线互相垂直,垂足为点D,AD交⊙O于点E,连接CE,CB.(1)求证:CE=CB;(2)若AC=2,CE=,求AE的长.22.(8分)江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲、y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示:(1)直接写出y甲,y乙关于x的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?23.(10分)已知关于x的一元二次方程x2﹣(m+1)x+(m2+1)=0有实数根.(1)求m的值;(2)先作y=x2﹣(m+1)x+(m2+1)的图象关于x轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n(n≥m)与变化后的图象有公共点时,求n2﹣4n的最大值和最小值.24.(10分)在Rt△ABC中,∠ACB=90°,点D与点B在AC同侧,∠DAC>∠BAC,且DA=DC,过点B作BE∥DA交DC于点E,M为AB的中点,连接MD,ME.(1)如图1,当∠ADC=90°时,线段MD与ME的数量关系是;(2)如图2,当∠ADC=60°时,试探究线段MD与ME的数量关系,并证明你的结论;(3)如图3,当∠ADC=α时,求的值.25.(12分)如图,在平面直角坐标系中,四边形ABCD的边AD在x轴上,点C在y轴的负半轴上,直线BC∥AD,且BC=3,OD=2,将经过A、B两点的直线l:y=﹣2x﹣10向右平移,平移后的直线与x轴交于点E,与直线BC交于点F,设AE的长为t(t≥0).(1)四边形ABCD的面积为;(2)设四边形ABCD被直线l扫过的面积(阴影部分)为S,请直接写出S关于t的函数解析式;(3)当t=2时,直线EF上有一动点,作PM⊥直线BC于点M,交x轴于点N,将△PMF沿直线EF折叠得到△PTF,探究:是否存在点P,使点T恰好落在坐标轴上?若存在,请求出点P的坐标;若不存在,请说明理由.2017年湖北省仙桃市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.1.(3分)(2017•天门)如果向北走6步记作+6,那么向南走8步记作()A.+8步B.﹣8步C.+14步D.﹣2步【分析】“正”和“负”是表示互为相反意义的量,向北走记作正数,那么向北的反方向,向南走应记为负数.【解答】解:∵向北走6步记作+6,∴向南走8步记作﹣8,故选B.【点评】本题考查了正数和负数的定义.解本题的根据是掌握正数和负数是互为相反意义的量.2.(3分)(2017•天门)北京时间5月27日,蛟龙号载人潜水器在太平洋马里亚纳海沟作业区开展了本航段第3次下潜,最大下潜深度突破6500米,数6500用科学记数法表示为()A.65×102 B.6.5×102C.6.5×103D.6.5×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:数6500用科学记数法表示为6.5×103.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•天门)如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是()A.25°B.35°C.45°D.50°【分析】先根据平行线的性质以及角平分线的定义,得到∠AFE的度数,再根据平行线的性质,即可得到∠A的度数.【解答】解:∵CD∥EF,∠C=∠CFE=25°,∵FC平分∠AFE,∴∠AFE=2∠CFE=50°,又∵AB∥EF,∴∠A=∠AFE=50°,故选:D.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.4.(3分)(2017•天门)如图是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对面上的字是()A.传B.统C.文D.化【分析】利用正方体及其表面展开图的特点解题.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“扬”与“统”相对,面“弘”与面“文”相对,“传”与面“化”相对.故选:C.【点评】本题考查了正方体的展开图得知识,注意正方体的空间图形,从相对面入手,分析及解答问题.5.(3分)(2017•天门)下列运算正确的是()A.(π﹣3)0=1 B.=±3 C.2﹣1=﹣2 D.(﹣a2)3=a6【分析】根据零指数幂、算术平方根、负整数指数幂、积的乘方的计算法则计算,对各选项分析判断后利用排除法求解.【解答】解:解:A、(π﹣3)0=1,故A正确;B、=3,故B错误;C、2﹣1=,故C错误;D、(﹣a2)3=a6,故D错误.故选:A.【点评】本题考查零指数幂、算术平方根、负整数指数幂、积的乘方,熟练掌握运算性质和法则是解题的关键.6.(3分)(2017•天门)关于一组数据:1,5,6,3,5,下列说法错误的是()A.平均数是4 B.众数是5 C.中位数是6 D.方差是3.2【分析】分别求出这组数据的平均数、中位数、众数和方差,再分别对每一项进行判断即可.【解答】解:A、这组数据的平均数是(1+5+6+3+5)÷5=4,故本选项正确;B、5出现了2次,出现的次数最多,则众数是3,故本选项正确;C、把这组数据从小到大排列为:1,3,5,5,6,最中间的数是5,则中位数是5,故本选项错误;D、这组数据的方差是:[(1﹣4)2+(5﹣4)2+(6﹣4)2+(3﹣4)2+(5﹣4)2]=3.2,故本选项正确;故选C.【点评】本题考查平均数,中位数,方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.7.(3分)(2017•天门)一个扇形的弧长是10πcm,面积是60πcm2,则此扇形的圆心角的度数是()A.300°B.150°C.120°D.75°【分析】利用扇形面积公式1求出R的值,再利用扇形面积公式2计算即可得到圆心角度数.【解答】解:∵一个扇形的弧长是10πcm,面积是60πcm2,∴S=Rl,即60π=×R×10π,解得:R=12,∴S=60π=,解得:n=150°,故选B【点评】此题考查了扇形面积的计算,以及弧长的计算,熟练掌握扇形面积公式是解本题的关键.8.(3分)(2017•天门)若α、β为方程2x2﹣5x﹣1=0的两个实数根,则2α2+3αβ+5β的值为()A.﹣13 B.12 C.14 D.15【分析】根据一元二次方程解的定义得到2α2﹣5α﹣1=0,即2α2=5α+1,则2α2+3αβ+5β可表示为5(α+β)+3αβ+1,再根据根与系数的关系得到α+β=,αβ=﹣,然后利用整体代入的方法计算.【解答】解:∵α为2x2﹣5x﹣1=0的实数根,∴2α2﹣5α﹣1=0,即2α2=5α+1,∴2α2+3αβ+5β=5α+1+3αβ+5β=5(α+β)+3αβ+1,∵α、β为方程2x2﹣5x﹣1=0的两个实数根,∴α+β=,αβ=﹣,∴2α2+3αβ+5β=5×+3×(﹣)+1=12.故选B.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.也考查了一元二次方程解的定义.9.(3分)(2017•天门)如图,P(m,m)是反比例函数y=在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为()A.B.3C.D.【分析】易求得点P的坐标,即可求得点B坐标,即可解题.【解答】解:作PD⊥OB,∵P(m,m)是反比例函数y=在第一象限内的图象上一点,∴m=,解得:m=3,∴PD=3,∵△ABP是等边三角形,∴BD=PD=,=OB•PD=(OD+BD)•PD=,∴S△POB故选D.【点评】本题考查了等边三角形的性质,考查了反比例函数点坐标的特性,本题中求得m的值是解题的关键.10.(3分)(2017•天门)如图,矩形ABCD中,AE⊥BD于点E,CF平分∠BCD,交EA的延长线于点F,且BC=4,CD=2,给出下列结论:①∠BAE=∠CAD;②∠DBC=30°;③AE=;④AF=2,其中正确结论的个数有()A.1个B.2个C.3个D.4个【分析】根据余角的性质得到∠BAE=∠ADB,等量代换得到∠BAE=∠CAD,故①正确;根据三角函数的定义得到tan∠DBC==,于是得到∠DBC≠30°,故②错误;由勾股定理得到BD==2,根据相似三角形的性质得到AE=;故③正确;根据角平分线的定义得到∠BCF=45°,求得∠ACF=45°﹣∠ACB,推出∠EAC=2∠ACF,根据外角的性质得到∠EAC=∠ACF+∠F,得到∠ACF=∠F,根据等腰三角形的判定得到AF=AC,于是得到AF=2,故④正确.【解答】解:在矩形ABCD中,∵∠BAD=90°,∵AE⊥BD,∴∠AED=90°,∴∠ADE+∠DAE=∠DAE+∠BAE=90°,∴∠BAE=∠ADB,∵∠CAD=∠ADB,∴∠BAE=∠CAD,故①正确;∵BC=4,CD=2,∴tan∠DBC==,∴∠DBC≠30°,故②错误;∵BD==2,∵AB=CD=2,AD=BC=4,∵△ABE∽△DBA,∴,即,∴AE=;故③正确;∵CF平分∠BCD,∴∠BCF=45°,∴∠ACF=45°﹣∠ACB,∵AD∥BC,∴∠DAC=∠BAE=∠ACB,∴∠EAC=90°﹣2∠ACB,∴∠EAC=2∠ACF,∵∠EAC=∠ACF+∠F,∴∠ACF=∠F,∴AF=AC,∵AC=BD=2,∴AF=2,故④正确;故选C.【点评】本题考查了矩形的性质,相似三角形的判定和性质,三角形的外角的性质,角平分线的定义,熟练掌握相似三角形的判定和性质是解题的关键.二、填空题:本大题共6小题,每小题3分,共18分,请将结果直接填写在答题卡对应的横线上.11.(3分)(2017•天门)已知2a﹣3b=7,则8+6b﹣4a=﹣6.【分析】先变形,再整体代入求出即可.【解答】解:∵2a﹣3b=7,∴8+6b﹣4a=8﹣2(2a﹣3b)=8﹣2×7=﹣6,故答案为:﹣6.【点评】本题考查了求代数式的值,能够整体代入是解此题的关键.12.(3分)(2017•天门)“六一”前夕,市关工委准备为希望小学购进图书和文具若干套,已知1套文具和3套图书需104元,3套文具和2套图书需116元,则1套文具和1套图书需48元.【分析】设1套文具的价格为x元,一套图书的价格为y元,根据“1套文具和3套图书需104元,3套文具和2套图书需116元”,即可得出关于x、y的二元一次方程组,解之即可得出x、y的值,将其代入x+y中,即可得出结论.【解答】解:设1套文具的价格为x元,一套图书的价格为y元,根据题意得:,解得:,∴x+y=20+28=48.故答案为:48.【点评】本题考查了二元一次方程组的应用,找准等量关系,列出关于x、y的二元一次方程组是解题的关键.13.(3分)(2017•天门)飞机着陆后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数解析式是s=60t﹣t2,则飞机着陆后滑行的最长时间为20秒.【分析】将s=60t﹣1.5t2,化为顶点式,即可求得s的最大值,从而可以解答本题.【解答】解:解:s=60t﹣t2=﹣(t﹣20)2+600,∴当t=20时,s取得最大值,此时s=600.故答案是:20.【点评】本题考查二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,会将二次函数的一般式化为顶点式,根据顶点式求函数的最值.14.(3分)(2017•天门)为加强防汛工作,某市对一拦水坝进行加固,如图,加固前拦水坝的横断面是梯形ABCD.已知迎水坡面AB=12米,背水坡面CD=12米,∠B=60°,加固后拦水坝的横断面为梯形ABED,tanE=,则CE的长为8米.【分析】分别过A、D作下底的垂线,设垂足为F、G.在Rt△ABF中,已知坡面长和坡角的度数,可求得铅直高度AF的值,也就得到了DG的长;在Rt△CDG 中,由勾股定理求CG的长,在Rt△DEG中,根据正切函数定义得到GE的长;根据CE=GE﹣CG即可求解.【解答】解:分别过A、D作AF⊥BC,DG⊥BC,垂点分别为F、G,如图所示.∵在Rt△ABF中,AB=12米,∠B=60°,∴sin∠B=,∴AF=12×=6,∴DG=6.∵在Rt△DGC中,CD=12,DG=6米,∴GC==18.∵在Rt△DEG中,tanE=,∴=,∴GE=26,∴CE=GE﹣CG=26﹣18=8.即CE的长为8米.故答案为8.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,锐角三角函数的定义,勾股定理.作辅助线构造直角三角形是解答此类题的一般思路.15.(3分)(2017•天门)有5张看上去无差别的卡片,正面分别写着1,2,3,4,5,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是.【分析】列表得出所有等可能的情况数,找出恰好是两个连续整数的情况数,即可求出所求概率.【解答】解:列表如下:12345 1﹣﹣﹣(2,1)(3,1)(4,1)(5,1)2(1,2)﹣﹣﹣(3,2)(4,2)(5,2)3(1,3)(2,3)﹣﹣﹣(4,3)(5,3)4(1,4)(2,4)(3,4)﹣﹣﹣(5,4)5(1,5)(2,5)(3,5)(4,5)﹣﹣﹣所有等可能的情况有20种,其中恰好是两个连续整数的情况有8种,则P(恰好是两个连续整数)==,故答案为:【点评】此题考查了列表法与树状图法,概率=所求情况数与总情况数之比.16.(3分)(2017•天门)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,1),B(0,﹣2),C(1,0),点P(0,2)绕点A旋转180°得到点P1,点P1绕点B旋转180°得到点P2,点P2绕点C旋转180°得到点P3,点P3绕点A旋转180°得到点P4,…,按此作法进行下去,则点P2017的坐标为(﹣2,0).【分析】画出P1~P6,寻找规律后即可解决问题.【解答】解:如图所示,P1(﹣2,0),P2(2,﹣4),P3(0,4),P4(﹣2,﹣2),P5(2,﹣2),P6(0,2),发现6次一个循环,∵2017÷6=336…1,∴点P2017的坐标与P1的坐标相同,即P2017(﹣2,0),故答案为(﹣2,0).【点评】本题考查坐标与图形的性质、点的坐标等知识,解题的关键是循环探究问题的方法,属于中考常考题型.三、解答题:本大题共9小题,共72分.17.(6分)(2017•天门)化简:﹣.【分析】根据分式的减法可以解答本题.【解答】解:﹣===.【点评】本题考查分式的减法,解答本题的关键是明确分式的减法的计算方法.18.(6分)(2017•天门)解不等式组,并把它的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式5x+1>3(x﹣1),得:x>﹣2,解不等式x﹣1≤7﹣x,得:x≤4,则不等式组的解集为﹣2<x≤4,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.(6分)(2017•天门)如图,下列4×4网格图都是由16个相同小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在空白小正方形中,按下列要求涂上阴影.(1)在图1中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形;(2)在图2中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形.【分析】(1)根据中心对称图形,画出所有可能的图形即可.(2)根据是轴对称图形,不是中心对称图形,画出图形即可.【解答】解:(1)在图1中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形,答案如图所示;(2)在图2中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形,答案如图所示;【点评】本题考查中心对称图形、轴对称图形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(6分)(2017•天门)近几年,随着电子商务的快速发展,“电商包裹件”占“快递件”总量的比例逐年增长,根据企业财报,某网站得到如下统计表:年份2014201520162017(预计)快递件总量(亿件)140207310450电商包裹件(亿件)98153235351(1)请选择适当的统计图,描述2014﹣2017年“电商包裹件”占当年“快递件”总量的百分比(精确到1%);(2)若2018年“快递件”总量将达到675亿件,请估计其中“电商包裹件”约为多少亿件?【分析】(1)分别计算各年的百分比,并画统计图,也可以画条形图;(2)从2014到2017发现每年上涨两个百分点,所以估计2018年的百分比为80%,据此计算即可.【解答】解:(1)2014:98÷140=0.7,2015:153÷207≈0.74,2016:235÷310≈0.76,2017:351÷450=0.78,画统计图如下:(2)根据统计图,可以预估2018年“电商包裹件”占当年“快递件”总量的80%,所以,2018年“电商包裹件”估计约为:675×80%=540(亿件),答:估计其中“电商包裹件”约为540亿件.【点评】本题考查了统计图的选择、百分比的计算,明确折线统计图的特点:①能清楚地反映事物的变化情况.②显示数据变化趋势.21.(8分)(2017•天门)如图,AB为⊙O的直径,C为⊙O上一点,AD与过点C的切线互相垂直,垂足为点D,AD交⊙O于点E,连接CE,CB.(1)求证:CE=CB;。

2017-2021年河南中考数学真题分类汇编之二次函数

2017-2021年河南中考数学真题分类汇编之二次函数

2017-2021年河南中考数学真题分类汇编之二次函数一.选择题(共2小题)1.(2019•河南)已知抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,则n的值为()A.﹣2B.﹣4C.2D.4 2.(2017•河南)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0),对称轴为直线x=﹣1,当y>0时,x的取值范围是()A.﹣1<x<1B.﹣3<x<﹣1C.x<1D.﹣3<x<1二.填空题(共1小题)3.(2018•河南)已知二次函数y=x2+bx+4顶点在x轴上,则b=.三.解答题(共8小题)4.(2020•河南)如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y Q的取值范围.5.(2017•河南)如图1,在平面直角坐标系中,抛物线y=ax2+bx﹣3与直线y=x+3交于点A(m,0)和点B(2,n),与y轴交于点C.(1)求m,n的值及抛物线的解析式;(2)在图1中,把△AOC平移,始终保持点A的对应点P在抛物线上,点C,O的对应点分别为M,N,连接OP,若点M恰好在直线y=x+3上,求线段OP的长度;(3)如图2,在抛物线上是否存在点Q(不与点C重合),使△QAB和△ABC的面积相等?若存在,直接写出点Q的坐标;若不存在,请说明理由.6.(2021•河南)如图,抛物线y=x2+mx与直线y=﹣x+b相交于点A(2,0)和点B.(1)求m和b的值;(2)求点B的坐标,并结合图象写出不等式x2+mx>﹣x+b的解集;(3)点M是直线AB上的一个动点,将点M向左平移3个单位长度得到点N,若线段MN与抛物线只有一个公共点,直接写出点M的横坐标x M的取值范围.7.(2018•河南)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m87518751875875日销售利润w(元)(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x=元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?8.(2018•河南)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C,直线y=x ﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.9.(2019•河南)如图,抛物线y=ax2+x+c交x轴于A,B两点,交y轴于点C.直线y =﹣x﹣2经过点A,C.(1)求抛物线的解析式;(2)点P是抛物线上一动点,过点P作x轴的垂线,交直线AC于点M,设点P的横坐标为m.①当△PCM是直角三角形时,求点P的坐标;②作点B关于点C的对称点B',则平面内存在直线l,使点M,B,B′到该直线的距离都相等.当点P在y轴右侧的抛物线上,且与点B不重合时,请直接写出直线l:y=kx+b 的解析式.(k,b可用含m的式子表示)10.(2018•河南)如图,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C(0,3),顶点F的坐标为(1,4),对称轴交x轴于点H,直线y=x+1交x轴于点D,交y轴于点E,交抛物线的对称轴于点G.(1)求出a,b,c的值.(2)点M为抛物线对称轴上一个动点,若△DGM是以DG为腰的等腰三角形时,请求出点M的坐标.(3)点P为抛物线上一个动点,当点P关于直线y=x+1的对称点恰好落在x轴上时,请直接写出此时点P的坐标.11.(2017•河南)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2017-2021年河南中考数学真题分类汇编之二次函数参考答案与试题解析一.选择题(共2小题)1.(2019•河南)已知抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,则n的值为()A.﹣2B.﹣4C.2D.4【考点】二次函数图象上点的坐标特征.【专题】二次函数图象及其性质.【分析】根据(﹣2,n)和(4,n)可以确定函数的对称轴x=1,再由对称轴的x=即可求解;【解答】解:抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,可知函数的对称轴x=1,∴=1,∴b=2;∴y=﹣x2+2x+4,将点(﹣2,n)代入函数解析式,可得n=﹣4;故选:B.【点评】本题考查二次函数图象上点的坐标;熟练掌握二次函数图象上点的对称性是解题的关键.2.(2017•河南)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0),对称轴为直线x=﹣1,当y>0时,x的取值范围是()A.﹣1<x<1B.﹣3<x<﹣1C.x<1D.﹣3<x<1【考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征;抛物线与x轴的交点.【专题】数形结合;二次函数图象及其性质.【分析】根据抛物线的对称性得到抛物线与x轴的另一交点坐标,然后结合函数图象可以直接得到答案.【解答】解:∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0),对称轴为直线x =﹣1,∴抛物线与x轴的另一交点坐标是(﹣3,0),∴当y>0时,x的取值范围是﹣3<x<1.故选:D.【点评】本题考查了抛物线的对称性,抛物线与x轴的交点,二次函数图象上点的坐标特征.解题时,利用了“数形结合”的数学思想.二.填空题(共1小题)3.(2018•河南)已知二次函数y=x2+bx+4顶点在x轴上,则b=±4.【考点】二次函数的性质.【分析】根据二次函数顶点在x轴上得出Δ=b2﹣4ac=m2﹣4×2×2=0,即可得出答案.【解答】解:∵二次函数y=x2+bx+4的顶点在x轴上,∴Δ=b2﹣4ac=b2﹣4×1×4=0,∴b2=16,∴b=±4.故答案为:±4.【点评】本题考查了二次函数的性质以及二次函数顶点在x轴上的特点,根据题意得出Δ=b2﹣4ac=0是解决问题的关键.三.解答题(共8小题)4.(2020•河南)如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y Q的取值范围.【考点】待定系数法求二次函数解析式;二次函数的性质;二次函数图象上点的坐标特征.【专题】二次函数图象及其性质;应用意识.【分析】(1)先求出点B,点A坐标,利用待定系数法代入解析式求出c的值,即可求解;(2)先求出点M,点N坐标,利用函数的图象即可求解.【解答】解:(1)∵抛物线y=﹣x2+2x+c与y轴正半轴交于点B,∴点B(0,c),c>0.∵OA=OB=c,∴点A(c,0),∴0=﹣c2+2c+c,∴c=3或0(舍去),∴抛物线解析式为:y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点G的坐标为(1,4);(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴对称轴为直线x=1,顶点(1,4).∵点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,∴点M的横坐标为﹣2或4,点N的横坐标为6,∴点M坐标为(﹣2,﹣5)或(4,﹣5),点N坐标为(6,﹣21),∵点Q为抛物线上点M,N之间(含点M,N)的一个动点,∴当M,N在对称轴的同侧时,﹣21≤y Q≤﹣5;当M,N在对称轴的两侧时,﹣21≤y Q≤4.∴点Q的纵坐标y Q的取值范围为﹣21≤y Q≤﹣5或﹣21≤y Q≤4.【点评】本题考查了待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,熟练运用二次函数的性质解决问题是本题的关键.5.(2017•河南)如图1,在平面直角坐标系中,抛物线y=ax2+bx﹣3与直线y=x+3交于点A(m,0)和点B(2,n),与y轴交于点C.(1)求m,n的值及抛物线的解析式;(2)在图1中,把△AOC平移,始终保持点A的对应点P在抛物线上,点C,O的对应点分别为M,N,连接OP,若点M恰好在直线y=x+3上,求线段OP的长度;(3)如图2,在抛物线上是否存在点Q(不与点C重合),使△QAB和△ABC的面积相等?若存在,直接写出点Q的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】开放型.【分析】(1)把点A(m,0)和点B(2,n)代入直线y=x+3,解得:m=﹣3,n=5,A(﹣3,0)、B(2,5),把A、B坐标代入抛物线方程即可求解;(2)由平移得:PN=OA=3,NM=OC=3,设:平移后点P(t,t2+2t﹣3),则N(t+3,t2+2t﹣3),M(t+3,t2+2t﹣6),根据点M在直线y=x+3上,即可求解;(3)存在.设:直线AB交y轴于D(0,3),点C关于点D的对称点为C′(0,9)按照△QAB和△Q′AB和△ABC的面积相同即可求解.【解答】解:(1)把点A(m,0)和点B(2,n)代入直线y=x+3,解得:m=﹣3,n =5,∴A(﹣3,0)、B(2,5),把A、B坐标代入抛物线方程,解得:a=1,b=2,∴抛物线方程为:y=x2+2x﹣3…①,则C(0,﹣3);(2)由平移得:PN=OA=3,NM=OC=3,设:平移后点P(t,t2+2t﹣3),则N(t+3,t2+2t﹣3),∴M(t+3,t2+2t﹣6),∵点M在直线y=x+3上,∴t2+2t﹣6=t+3+3,解得:t=3或﹣4,∴P点坐标为(3,12)或(﹣4,5),则线段OP的长度为:3或;(3)存在.设:直线AB交y轴于D(0,3),点C关于点D的对称点为C′(0,9)过点C和C′分别做AB的平行线,交抛物线于点Q、Q′,则:△QAB和△Q′AB和△ABC的面积相同,直线QC和Q′C的方程分别为:y=x﹣3和y=x+9…②,将①、②联立,解得:x=﹣1或x=3或x=﹣4,∴Q点坐标为(﹣1,﹣4)或(3,12)或(﹣4,5).【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.6.(2021•河南)如图,抛物线y=x2+mx与直线y=﹣x+b相交于点A(2,0)和点B.(1)求m和b的值;(2)求点B的坐标,并结合图象写出不等式x2+mx>﹣x+b的解集;(3)点M是直线AB上的一个动点,将点M向左平移3个单位长度得到点N,若线段MN与抛物线只有一个公共点,直接写出点M的横坐标x M的取值范围.【考点】二次函数综合题.【专题】代数综合题;分类讨论;一元一次不等式(组)及应用;数据分析观念.【分析】(1)用待定系数法即可求解;(2)求出点B的坐标为(﹣1,3),再观察函数图象即可求解;(3)分类求解确定MN的位置,进而求解.【解答】解:(1)将点A的坐标代入抛物线表达式得:0=4+2m,解得:m=﹣2,将点A的坐标代入直线表达式得:0=﹣2+b,解得b=2;故m=﹣2,b=2;(2)由(1)得,直线和抛物线的表达式为:y=﹣x+2,y=x2﹣2x,联立上述两个函数表达式并解得或(不符合题意,舍去),即点B的坐标为(﹣1,3),从图象看,不等式x2+mx>﹣x+b的解集为x<﹣1或x>2;(3)当点M在线段AB上时,线段MN与抛物线只有一个公共点,∵M,N的距离为3,而A、B的水平距离是3,故此时只有一个交点,即﹣1≤x M<2;当点M在点B的左侧时,线段MN与抛物线没有公共点;当点M在点A的右侧时,当x M=3时,抛物线和MN交于抛物线的顶点(1,﹣1),即x M=3时,线段MN与抛物线只有一个公共点,综上所述,﹣1≤x M<2 或x M=3.【点评】本题考查的是二次函数综合运用,涉及到一次函数的性质、不等式的性质等,其中(3),分类求解确定MN的位置是解题的关键.7.(2018•河南)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m87518751875875日销售利润w(元)(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是80元,当销售单价x=100元时,日销售利润w最大,最大值是2000元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【考点】二次函数的应用;一元二次方程的应用.【专题】应用题.【分析】(1)根据题意和表格中的数据可以求得y关于x的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.【解答】解;(1)设y关于x的函数解析式为y=kx+b,,得,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.【点评】本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.8.(2018•河南)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C,直线y=x ﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.【考点】二次函数综合题.【专题】综合题.【分析】(1)利用一次函数解析式确定C(0,﹣5),B(5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程﹣x2+6x﹣5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以AM=2,接着根据平行四边形的性质得到PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到PD=PQ=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),讨论:当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=4;当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5),然后分别解方程即可得到P点的横坐标;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N(3,﹣2),AC的解析式为y=5x﹣5,E点坐标为(,﹣),利用两直线垂直的问题可设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入求出b得到直线EM1的解析式为y=﹣x ﹣,则解方程组得M1点的坐标;作直线BC上作点M1关于N点的对称点M2,如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),根据中点坐标公式得到3=,然后求出x即可得到M2的坐标,从而得到满足条件的点M的坐标.【解答】解:(1)当x=0时,y=x﹣5=﹣5,则C(0,﹣5),当y=0时,x﹣5=0,解得x=5,则B(5,0),把B(5,0),C(0,﹣5)代入y=ax2+6x+c得,解得,∴抛物线解析式为y=﹣x2+6x﹣5;(2)①解方程﹣x2+6x﹣5=0得x1=1,x2=5,则A(1,0),∵B(5,0),C(0,﹣5),∴△OCB为等腰直角三角形,∴∠OBC=∠OCB=45°,∵AM⊥BC,∴△AMB为等腰直角三角形,∴AM=AB=×4=2,∵以点A,M,P,Q为顶点的四边形是平行四边形,AM∥PQ,∴PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,则∠PDQ=45°,∴PD=PQ=×2=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1(舍去),m2=4,当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=,m2=,综上所述,P点的横坐标为4或或;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,∵M1A=M1C,∴∠ACM1=∠CAM1,∴∠AM1B=2∠ACB,∵△ANB为等腰直角三角形,∴AH=BH=NH=2,∴N(3,﹣2),易得AC的解析式为y=5x﹣5,E点坐标为(,﹣),设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入得﹣+b=﹣,解得b=﹣,∴直线EM1的解析式为y=﹣x﹣,解方程组得,则M1(,﹣);在直线BC上作点M1关于N点的对称点M2,如图2,则∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),∵3=,∴x=,∴M2(,﹣),综上所述,点M的坐标为(,﹣)或(,﹣).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、等腰直角的判定与性质和平行四边形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.9.(2019•河南)如图,抛物线y=ax2+x+c交x轴于A,B两点,交y轴于点C.直线y =﹣x﹣2经过点A,C.(1)求抛物线的解析式;(2)点P是抛物线上一动点,过点P作x轴的垂线,交直线AC于点M,设点P的横坐标为m.①当△PCM是直角三角形时,求点P的坐标;②作点B关于点C的对称点B',则平面内存在直线l,使点M,B,B′到该直线的距离都相等.当点P在y轴右侧的抛物线上,且与点B不重合时,请直接写出直线l:y=kx+b 的解析式.(k,b可用含m的式子表示)【考点】二次函数综合题.【专题】函数的综合应用.【分析】(1)利用一次函数图象上点的坐标特征可求出点A,C的坐标,根据点A,C的坐标,利用待定系数法可求出二次函数解析式;(2)①由PM⊥x轴可得出∠PMC≠90°,分∠MPC=90°及∠PCM=90°两种情况考虑:(i)当∠MPC=90°时,PC∥x轴,利用二次函数图象上点的坐标特征可求出点P 的坐标;(ii)当∠PCM=90°时,设PC与x轴交于点D,易证△AOC∽△COD,利用相似三角形的性质可求出点D的坐标,根据点C,D的坐标,利用待定系数法可求出直线PC的解析式,联立直线PC和抛物线的解析式成方程组,通过解方程组可求出点P的坐标.综上,此问得解;②利用二次函数图象上点的坐标特征及一次函数图象上点的坐标特征可得出点B,M的坐标,结合点C的坐标可得出点B′的坐标,根据点M,B,B′的坐标,利用待定系数法可分别求出直线BM,B′M和BB′的解析式,利用平行线的性质可求出直线l的解析式.【解答】解:(1)当x=0时,y=﹣x﹣2=﹣2,∴点C的坐标为(0,﹣2);当y=0时,﹣x﹣2=0,解得:x=﹣4,∴点A的坐标为(﹣4,0).将A(﹣4,0),C(0,﹣2)代入y=ax2+x+c,得:,解得:,∴抛物线的解析式为y=x2+x﹣2.(2)①∵PM⊥x轴,∴∠PMC≠90°,∴分两种情况考虑,如图1所示.(i)当∠MPC=90°时,PC∥x轴,∴点P的纵坐标为﹣2.当y=﹣2时,x2+x﹣2=﹣2,解得:x1=﹣2,x2=0,∴点P的坐标为(﹣2,﹣2);(ii)当∠PCM=90°时,设PC与x轴交于点D.∵∠OAC+∠OCA=90°,∠OCA+∠OCD=90°,∴∠OAC=∠OCD.又∵∠AOC=∠COD=90°,∴△AOC∽△COD,∴=,即=,∴OD=1,∴点D的坐标为(1,0).设直线PC的解析式为y=kx+b(k≠0),将C(0,﹣2),D(1,0)代入y=kx+b,得:,解得:,∴直线PC的解析式为y=2x﹣2.联立直线PC和抛物线的解析式成方程组,得:,解得:,,点P的坐标为(6,10).综上所述:当△PCM是直角三角形时,点P的坐标为(﹣2,﹣2)或(6,10).②当y=0时,x2+x﹣2=0,解得:x1=﹣4,x2=2,∴点B的坐标为(2,0).∵点C的坐标为(0,﹣2),点B,B′关于点C对称,∴点B′的坐标为(﹣2,﹣4).∵点P的横坐标为m(m>0且m≠2),∴点M的坐标为(m,﹣m﹣2).利用待定系数法可求出:直线BM的解析式为y=﹣x+,直线B′M的解析式为y=x﹣,直线BB′的解析式为y=x﹣2.分三种情况考虑,如图2所示:当直线l∥BM且过点C时,直线l的解析式为y=﹣x﹣2;当直线l∥B′M且过点C时,直线l的解析式为y=x﹣2;当直线l∥BB′且过线段CM的中点N(m,﹣m﹣2)时,直线l的解析式为y=x﹣m﹣2.综上所述:直线l的解析式为y=﹣x﹣2,y=x﹣2或y=x﹣m﹣2.【点评】本题考查了一次函数图象上点的坐标特征、待定系数法二次函数解析式、二次函数图象上点的坐标特征、待定系数法求一次函数解析式、相似三角形的判定与性质以及平行线的性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)①分∠MPC=90°及∠PCM=90°两种情况求出点P的坐标;②利用待定系数法及平行线的性质,求出直线l的解析式.10.(2018•河南)如图,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C(0,3),顶点F的坐标为(1,4),对称轴交x轴于点H,直线y=x+1交x轴于点D,交y轴于点E,交抛物线的对称轴于点G.(1)求出a,b,c的值.(2)点M为抛物线对称轴上一个动点,若△DGM是以DG为腰的等腰三角形时,请求出点M的坐标.(3)点P为抛物线上一个动点,当点P关于直线y=x+1的对称点恰好落在x轴上时,请直接写出此时点P的坐标.【考点】二次函数综合题.【专题】函数的综合应用.【分析】(1)由抛物线的顶点坐标可设抛物线的解析式为y=a(x﹣1)2+4,由点C的坐标利用待定系数法可求出抛物线的解析式,进而可得出a,b,c的值;(2)利用一次函数图象上点的坐标特征可求出点D,G的坐标,进而可求出DG的长度,分DG=DM,GD=GM两种情况考虑:①当DG=DM时,由等腰三角形的性质可得出HG=HM1,进而可得出点M1的坐标;②当GD=GM时,由等腰三角形的性质可得出GM2=GM3=,结合点G的坐标可得出点M2,M3的坐标.综上,此问得解;(3)过点E作EN⊥直线DE,交x轴于点N,则△DOE∽△DEN,利用相似三角形的性质可求出点N的坐标,由点E,N的坐标利用待定系数法可求出直线EN的解析式,设点P关于直线y=x+1的对称点落在x轴上Q点处,连接PQ交DE于点R,设直线PQ 的解析式为y=﹣2x+m,利用一次函数图象上点的坐标特征可求出点Q的坐标,联立直线PQ和直线DE的解析式成方程组,通过解方程组可得出点R的坐标,进而可得出点P 的坐标,由点P的坐标利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之可得出m的值,再将其代入点P的坐标中即可得出结论.【解答】解:(1)∵抛物线顶点F的坐标为(1,4),∴设抛物线的解析式为y=a(x﹣1)2+4.将C(0,3)代入y=a(x﹣1)2+4,得:a+4=3,解得:a=﹣1,∴抛物线的解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3,∴a=﹣1,b=2,c=3.(2)当y=0时,x+1=0,解得:x=﹣2,∴点D的坐标为(﹣2,0).当x=1时,y=x+1=,∴点G的坐标为(1,),∴DH=1﹣(﹣2)=3,GH=,∴DG==.分两种情况考虑(如图1):①当DG=DM时,HG=HM1,∴点M1的坐标为(1,﹣);②当GD=GM时,GM2=GM3=,∴点M2的坐标为(1,),点M3的坐标为(1,).综上所述:点M的坐标为(1,﹣),(1,)或(1,).(3)过点E作EN⊥直线DE,交x轴于点N,如图2所示.当x=0时,y=x+1=1,∴点E的坐标为(0,1),∴OE=1,DE==.∵∠DOE=∠DEN=90°,∠ODE=∠EDN,∴△DOE∽△DEN,∴=,即=,∴DN=,∴点N的坐标为(,0).∵点E(0,1),点N(,0),∴线段EN所在直线的解析式为y=﹣2x+1(可利用待定系数法求出).设点P关于直线y=x+1的对称点落在x轴上Q点处,连接PQ交DE于点R.设直线PQ的解析式为y=﹣2x+m,当y=0时,﹣2x+m=0,解得:x=,∴点Q的坐标为(,0).联立直线PQ和直线DE的解析式成方程组,得:,解得:,∴点R的坐标为(,).∵点R为线段PQ的中点,∴点P的坐标为(,).∵点P在抛物线y=﹣x2+2x+3的图象上,∴﹣()2+2×+3=,整理,得:9m2﹣68m+84=0,解得:m1=6,m2=,∴点P的坐标为(1,4)或(﹣,).【点评】本题考查了待定系数法求二次函数解析式、一次函数图象上点的坐标特征、勾股定理、等腰三角形的性质、相似三角形的判定与性质、平行线的性质、中点坐标公式以及二次函数图象上点的坐标特征,解题的关键是:(1)巧设二次函数解析式,利用待定系数法求出a值;(2)分DG=DM,GD=GM两种情况,利用等腰三角形的性质求出点M的坐标;(3)利用二次函数图象上点的坐标特征,找出关于m的一元二次方程.11.(2017•河南)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.【考点】二次函数综合题.【分析】(1)把A点坐标代入直线解析式可求得c,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)①由M点坐标可表示P、N的坐标,从而可表示出MA、MP、PN、PB的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m的方程,可求得m的值;②用m可表示出M、P、N的坐标,由题意可知有P为线段MN的中点、M为线段PN 的中点或N为线段PM的中点,可分别得到关于m的方程,可求得m的值.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,AM=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴N点的纵坐标为2,∴﹣m2+m+2=2,解得m=0(舍去)或m=,∴M(,0);当∠NBP=90°时,过点N作NC⊥y轴于点C,则∠NBC+∠BNC=90°,NC=m,BC=﹣m2+m+2﹣2=﹣m2+m,∵∠NBP=90°,∴∠NBC+∠ABO=90°,∴∠ABO=∠BNC,∴Rt△NCB∽Rt△BOA,∴=,∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(,0)或(,0);②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+m+2),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=3(舍去)或m=0.5;当M为线段PN的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=3(舍去)或m=﹣1;当N为线段PM的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=3(舍去)或m=﹣;综上可知当M,P,N三点成为“共谐点”时m的值为0.5或﹣1或﹣.【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、相似三角形的判定和性质、勾股定理、线段的中点、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中利用相似三角形的性质得到关于m的方程是解题的关键,注意分两种情况,在(2)②中利用“共谐点”的定义得到m的方程是解题的关键,注意分情况讨论.本题考查知识点较多,综合性较强,分情况讨论比较多,难度较大.考点卡片1.一元二次方程的应用1、列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.2、列一元二次方程解应用题中常见问题:(1)数字问题:个位数为a,十位数是b,则这个两位数表示为10b+a.(2)增长率问题:增长率=增长数量/原数量×100%.如:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即原数×(1+增长百分率)2=后来数.(3)形积问题:①利用勾股定理列一元二次方程,求三角形、矩形的边长.②利用三角形、矩形、菱形、梯形和圆的面积,以及柱体体积公式建立等量关系列一元二次方程.③利用相似三角形的对应比例关系,列比例式,通过两内项之积等于两外项之积,得到一元二次方程.(4)运动点问题:物体运动将会沿着一条路线或形成一条痕迹,运行的路线与其他条件会构成直角三角形,可运用直角三角形的性质列方程求解.【规律方法】列一元二次方程解应用题的“六字诀”1.审:理解题意,明确未知量、已知量以及它们之间的数量关系.2.设:根据题意,可以直接设未知数,也可以间接设未知数.3.列:根据题中的等量关系,用含所设未知数的代数式表示其他未知量,从而列出方程.4.解:准确求出方程的解.5.验:检验所求出的根是否符合所列方程和实际问题.6.答:写出答案.2.二次函数的性质二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.。

近五年(2017-2021)年浙江中考数学真题分类汇编之方程与不等式(含解析)

近五年(2017-2021)年浙江中考数学真题分类汇编之方程与不等式(含解析)

2017-2021年浙江中考数学真题分类汇编之方程与不等式一.选择题(共16小题)1.(2019•舟山)已知四个实数a,b,c,d,若a>b,c>d,则()A.a+c>b+d B.a﹣c>b﹣d C.ac>bd D.>2.(2021•宁波)我国古代数学名著《张邱建算经》中记载:“今有清酒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清、醑酒各几斗?如果设清酒x斗,醑酒y斗,那么可列方程组为()A.B.C.D.3.(2020•宁波)我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x尺,绳子长y尺,那么可列方程组为()A.B.C.D.4.(2020•嘉兴)不等式3(1﹣x)>2﹣4x的解集在数轴上表示正确的是()A.B.C.D.5.(2019•金华)用配方法解方程x2﹣6x﹣8=0时,配方结果正确的是()A.(x﹣3)2=17B.(x﹣3)2=14C.(x﹣6)2=44D.(x﹣3)2=1 6.(2019•杭州)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则()A.2x+3(72﹣x)=30B.3x+2(72﹣x)=30C.2x+3(30﹣x)=72D.3x+2(30﹣x)=727.(2021•衢州)《九章算术》是中国传统数学的重要著作,书中有一道题“今有五雀六燕,集称之衡,雀俱重,燕俱轻;一雀一燕交而处,衡适平;并燕雀重一斤.问:燕雀一枚,各重几何?”译文:“五只雀、六只燕,共重1斤(古时1斤=16两).雀重燕轻,互换其中一只,恰好一样重,问:每只雀、燕重量各为多少?”设雀重x两,燕重y两,可列出方程组()A.B.C.D.8.(2021•杭州)某景点今年四月接待游客25万人次,五月接待游客60.5万人次.设该景点今年四月到五月接待游客人次的增长率为x(x>0),则()A.60.5(1﹣x)=25B.25(1﹣x)=60.5C.60.5(1+x)=25D.25(1+x)=60.59.(2021•台州)关于x的方程x2﹣4x+m=0有两个不相等的实数根,则m的取值范围是()A.m>2B.m<2C.m>4D.m<4 10.(2021•温州)解方程﹣2(2x+1)=x,以下去括号正确的是()A.﹣4x+1=﹣x B.﹣4x+2=﹣x C.﹣4x﹣1=x D.﹣4x﹣2=x 11.(2021•丽水)用配方法解方程x2+4x+1=0时,配方结果正确的是()A.(x﹣2)2=5B.(x﹣2)2=3C.(x+2)2=5D.(x+2)2=3 12.(2019•宁波)小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下()A.31元B.30元C.25元D.19元13.(2021•金华)一个不等式的解集在数轴上表示如图,则这个不等式可以是()A.x+2>0B.x﹣2<0C.2x≥4D.2﹣x<0 14.(2021•嘉兴)为迎接建党一百周年,某校举行歌唱比赛.901班啦啦队买了两种价格的加油棒助威,其中缤纷棒共花费30元,荧光棒共花费40元,缤纷棒比荧光棒少20根,缤纷棒单价是荧光棒的1.5倍.若设荧光棒的单价为x元,根据题意可列方程为()A.﹣=20B.﹣=20C.﹣=20D.﹣=2015.(2020•衢州)某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程()A.180(1﹣x)2=461B.180(1+x)2=461C.368(1﹣x)2=442D.368(1+x)2=44216.(2020•绍兴)同型号的甲、乙两辆车加满气体燃料后均可行驶210km,它们各自单独行驶并返回的最远距离是105km.现在它们都从A地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A地,而乙车继续行驶,到B地后再行驶返回A地.则B地最远可距离A地()A.120km B.140km C.160km D.180km二.填空题(共5小题)17.(2020•嘉兴)数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x人,则可列方程.18.(2018•宁波)已知x,y满足方程组,则x2﹣4y2的值为.19.(2020•温州)不等式组的解集为.20.(2018•舟山)甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检测x个,则根据题意,可列出方程:.21.(2021•绍兴)我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两.银子共有两.三.解答题(共3小题)22.(2021•绍兴)(1)计算:4sin60°﹣+(2﹣)0.(2)解不等式:5x+3≥2(x+3).23.(2019•温州)某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B 游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.24.(2020•湖州)某企业承接了27000件产品的生产任务,计划安排甲、乙两个车间的共50名工人,合作生产20天完成.已知甲、乙两个车间利用现有设备,工人的工作效率为:甲车间每人每天生产25件,乙车间每人每天生产30件.(1)求甲、乙两个车间各有多少名工人参与生产?(2)为了提前完成生产任务,该企业设计了两种方案:方案一甲车间租用先进生产设备,工人的工作效率可提高20%,乙车间维持不变.方案二乙车间再临时招聘若干名工人(工作效率与原工人相同),甲车间维持不变.设计的这两种方案,企业完成生产任务的时间相同.①求乙车间需临时招聘的工人数;②若甲车间租用设备的租金每天900元,租用期间另需一次性支付运输等费用1500元;乙车间需支付临时招聘的工人每人每天200元.问:从新增加的费用考虑,应选择哪种方案能更节省开支?请说明理由.2017-2021年浙江中考数学真题分类汇编之方程与不等式参考答案与试题解析一.选择题(共16小题)1.(2019•舟山)已知四个实数a,b,c,d,若a>b,c>d,则()A.a+c>b+d B.a﹣c>b﹣d C.ac>bd D.>【考点】不等式的性质.【专题】整式;符号意识.【分析】直接利用等式的基本性质分别化简得出答案.【解答】解:∵a>b,c>d,∴a+c>b+d.故选:A.【点评】此题主要考查了等式的性质,正确掌握等式的基本性质是解题关键.2.(2021•宁波)我国古代数学名著《张邱建算经》中记载:“今有清酒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清、醑酒各几斗?如果设清酒x斗,醑酒y斗,那么可列方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组;数学常识.【专题】一次方程(组)及应用;应用意识.【分析】设清酒x斗,醑酒y斗,根据“拿30斗谷子,共换了5斗酒”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设清酒x斗,醑酒y斗,依题意得:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.3.(2020•宁波)我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x尺,绳子长y尺,那么可列方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组;数学常识.【专题】一次方程(组)及应用;应用意识.【分析】直接利用“绳长=木条+4.5;绳子=木条﹣1”分别得出等式求出答案.【解答】解:设木条长x尺,绳子长y尺,那么可列方程组为:.故选:A.【点评】此题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题关键.4.(2020•嘉兴)不等式3(1﹣x)>2﹣4x的解集在数轴上表示正确的是()A.B.C.D.【考点】解一元一次不等式;在数轴上表示不等式的解集.【专题】一元一次不等式(组)及应用;运算能力.【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项可得不等式的解集,继而可得答案.【解答】解:去括号,得:3﹣3x>2﹣4x,移项,得:﹣3x+4x>2﹣3,合并同类项,得:x>﹣1,故选:A.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.5.(2019•金华)用配方法解方程x2﹣6x﹣8=0时,配方结果正确的是()A.(x﹣3)2=17B.(x﹣3)2=14C.(x﹣6)2=44D.(x﹣3)2=1【考点】解一元二次方程﹣配方法.【专题】计算题;一次方程(组)及应用.【分析】方程利用完全平方公式变形即可得到结果.【解答】解:用配方法解方程x2﹣6x﹣8=0时,配方结果为(x﹣3)2=17,故选:A.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.6.(2019•杭州)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则()A.2x+3(72﹣x)=30B.3x+2(72﹣x)=30C.2x+3(30﹣x)=72D.3x+2(30﹣x)=72【考点】由实际问题抽象出一元一次方程.【专题】一次方程(组)及应用;模型思想;应用意识.【分析】直接根据题意表示出女生人数,进而利用30位学生种树72棵,得出等式求出答案.【解答】解:设男生有x人,则女生(30﹣x)人,根据题意可得:3x+2(30﹣x)=72.故选:D.【点评】此题主要考查了由实际问题抽象出一元一次方程,正确表示出男女生的植树棵数是解题关键.7.(2021•衢州)《九章算术》是中国传统数学的重要著作,书中有一道题“今有五雀六燕,集称之衡,雀俱重,燕俱轻;一雀一燕交而处,衡适平;并燕雀重一斤.问:燕雀一枚,各重几何?”译文:“五只雀、六只燕,共重1斤(古时1斤=16两).雀重燕轻,互换其中一只,恰好一样重,问:每只雀、燕重量各为多少?”设雀重x两,燕重y两,可列出方程组()A.B.C.D.【考点】由实际问题抽象出二元一次方程组;数学常识.【专题】一次方程(组)及应用;应用意识.【分析】根据“五只雀、六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重”,即可得出关于x,y的二元一次方程组.【解答】解:∵五只雀、六只燕,共重1斤(古时1斤=16两),∴5x+6y=16,∵雀重燕轻,互换其中一只,恰好一样重,∴5x﹣x+y=6y﹣y+x,即4x+y=5y+x,∴,故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.(2021•杭州)某景点今年四月接待游客25万人次,五月接待游客60.5万人次.设该景点今年四月到五月接待游客人次的增长率为x(x>0),则()A.60.5(1﹣x)=25B.25(1﹣x)=60.5C.60.5(1+x)=25D.25(1+x)=60.5【考点】由实际问题抽象出一元一次方程.【专题】一次方程(组)及应用;应用意识.【分析】依题意可知四月份接待游客25万,则五月份接待游客人次为:25(1+x),进而得出答案.【解答】解:设该景点今年四月到五月接待游客人次的增长率为x(x>0),则25(1+x)=60.5.故选:D.【点评】此题主要考查了由实际问题抽象出一元一次方程中增长率的问题,一般公式为:原来的量×(1±x)=现在的量,x为增长或减少的百分率.增加用+,减少用﹣.9.(2021•台州)关于x的方程x2﹣4x+m=0有两个不相等的实数根,则m的取值范围是()A.m>2B.m<2C.m>4D.m<4【考点】根的判别式.【专题】一元二次方程及应用;运算能力.【分析】利用判别式的意义得到Δ=(﹣4)2﹣4m>0,然后解不等式即可.【解答】解:根据题意得Δ=(﹣4)2﹣4m>0,解得m<4.故选:D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.10.(2021•温州)解方程﹣2(2x+1)=x,以下去括号正确的是()A.﹣4x+1=﹣x B.﹣4x+2=﹣x C.﹣4x﹣1=x D.﹣4x﹣2=x【考点】解一元一次方程.【专题】一次方程(组)及应用;运算能力.【分析】可以根据乘法分配律先将2乘进去,再去括号.【解答】解:根据乘法分配律得:﹣(4x+2)=x,去括号得:﹣4x﹣2=x,故选:D.【点评】本题考查了解一元一次方程,去括号法则,解题的关键是:括号前面是减号,把减号和括号去掉,括号的各项都要变号.11.(2021•丽水)用配方法解方程x2+4x+1=0时,配方结果正确的是()A.(x﹣2)2=5B.(x﹣2)2=3C.(x+2)2=5D.(x+2)2=3【考点】解一元二次方程﹣配方法.【专题】一次方程(组)及应用;运算能力.【分析】方程整理后,利用完全平方公式配方得到结果,即可作出判断.【解答】解:方程x2+4x+1=0,整理得:x2+4x=﹣1,配方得:(x+2)2=3.故选:D.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.12.(2019•宁波)小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下()A.31元B.30元C.25元D.19元【考点】二元一次方程的应用.【专题】方程思想;一次方程(组)及应用.【分析】设每支玫瑰x元,每支百合y元,根据总价=单价×数量结合小慧带的钱数不变,可得出关于x,y的二元一次方程,整理后可得出y=x+7,再将其代入5x+3y+10﹣8x中即可求出结论.【解答】解:设每支玫瑰x元,每支百合y元,依题意,得:5x+3y+10=3x+5y﹣4,∴y=x+7,∴5x+3y+10﹣8x=5x+3(x+7)+10﹣8x=31.故选:A.【点评】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.13.(2021•金华)一个不等式的解集在数轴上表示如图,则这个不等式可以是()A.x+2>0B.x﹣2<0C.2x≥4D.2﹣x<0【考点】解一元一次不等式;在数轴上表示不等式的解集.【专题】一元一次不等式(组)及应用;几何直观;运算能力.【分析】解不等式,可得不等式的解集,根据不等式的解集在数轴上的表示方法,可得答案.【解答】解:A、x>﹣2,故A不符合题意;B、x<2,故B符合题意;C、x≥2,故C不符合题意;D、x>2,故D不符合题意.故选:B.【点评】本题考查了在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.14.(2021•嘉兴)为迎接建党一百周年,某校举行歌唱比赛.901班啦啦队买了两种价格的加油棒助威,其中缤纷棒共花费30元,荧光棒共花费40元,缤纷棒比荧光棒少20根,缤纷棒单价是荧光棒的1.5倍.若设荧光棒的单价为x元,根据题意可列方程为()A.﹣=20B.﹣=20C.﹣=20D.﹣=20【考点】由实际问题抽象出分式方程.【专题】分式方程及应用;应用意识.【分析】若设荧光棒的单价为x元,则缤纷棒单价是1.5x元,根据等量关系“缤纷棒比荧光棒少20根”列方程即可.【解答】解:若设荧光棒的单价为x元,则缤纷棒单价是1.5x元,根据题意可得:﹣=20.故选:B.【点评】考查了由实际问题抽象出分式方程,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题分析题意,找到合适的等量关系是解决问题的关键.15.(2020•衢州)某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程()A.180(1﹣x)2=461B.180(1+x)2=461C.368(1﹣x)2=442D.368(1+x)2=442【考点】由实际问题抽象出一元二次方程.【专题】一元二次方程及应用;应用意识.【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率)2,如果设这个增长率为x,根据“2月份的180万只,4月份的产量将达到461万只”,即可得出方程.【解答】解:从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程:180(1+x)2=461,故选:B.【点评】考查了由实际问题抽象出一元二次方程,本题为增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.16.(2020•绍兴)同型号的甲、乙两辆车加满气体燃料后均可行驶210km,它们各自单独行驶并返回的最远距离是105km.现在它们都从A地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A地,而乙车继续行驶,到B地后再行驶返回A地.则B地最远可距离A地()A.120km B.140km C.160km D.180km【考点】二元一次方程组的应用.【专题】行程问题;方程思想;一次方程(组)及应用;运算能力;推理能力;应用意识.【分析】设甲行驶到C地时返回,到达A地燃料用完,乙行驶到B地再返回A地时燃料用完,根据题意得关于x和y的二元一次方程组,求解即可.【解答】解:设甲行驶到C地时返回,到达A地燃料用完,乙行驶到B地再返回A地时燃料用完,如图:设AB=xkm,AC=ykm,根据题意得:,解得:.∴乙在C地时加注行驶70km的燃料,则AB的最大长度是140km.或者:设AC=ykm即可,从甲车的角度考虑问题,甲车给乙车注入燃料,要想最远,需满足以下两个条件:①注满乙车;②刚好够甲车从C回到A.从A到C,甲、乙两车都行驶了AC,即乙车行驶ykm,也即甲车注入燃料量可行驶ykm,注入后甲车剩余油量可行驶ykm(刚好返回A地),所以对于甲车,y+y+y=210,所以y=70.从乙车角度,从C出发是满燃料,所以AB为:105+70÷2=140(km).故选:B.【点评】本题考查了二元一次方程组在行程问题中的应用,理清题中的数量关系正确列出方程组是解题的关键.二.填空题(共5小题)17.(2020•嘉兴)数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x人,则可列方程=.【考点】由实际问题抽象出分式方程;数学常识.【专题】分式方程及应用;运算能力.【分析】根据“第二次每人所得与第一次相同,”列方程即可得到结论.【解答】解:根据题意得,=,故答案为:=.【点评】本题考查了由实际问题抽象出分式方程,正确的理解题意是解题的关键.18.(2018•宁波)已知x,y满足方程组,则x2﹣4y2的值为﹣15.【考点】二元一次方程组的解.【专题】计算题.【分析】根据平方差公式即可求出答案.【解答】解:原式=(x+2y)(x﹣2y)=﹣3×5=﹣15故答案为:﹣15【点评】本题考查因式分解,解题的关键是熟练运用平方差公式,本题属于基础题型.19.(2020•温州)不等式组的解集为﹣2≤x<3.【考点】解一元一次不等式组.【专题】一元一次不等式(组)及应用;运算能力.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.【解答】解:,解①得x<3;解②得x≥﹣2.故不等式组的解集为﹣2≤x<3.故答案为:﹣2≤x<3.【点评】考查了解一元一次不等式组,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.20.(2018•舟山)甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检测x个,则根据题意,可列出方程:=×(1﹣10%).【考点】由实际问题抽象出分式方程.【专题】应用题.【分析】根据“甲检测300个比乙检测200个所用的时间少10%”建立方程,即可得出结论.【解答】解:设设甲每小时检测x个,则乙每小时检测(x﹣20)个,根据题意得,=(1﹣10%),故答案为=×(1﹣10%).【点评】此题主要考查了分式方程的应用,正确找出等量关系是解题关键.21.(2021•绍兴)我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两.银子共有46两.【考点】二元一次方程组的应用;一元一次方程的应用.【专题】其他问题;方程与不等式;数据分析观念.【分析】通过设两个未知数,可以列出银子总数相等的二元一次方程组,本题得以解决.【解答】解:设有x人,银子y两,由题意得:,解得,故答案为46.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.三.解答题(共3小题)22.(2021•绍兴)(1)计算:4sin60°﹣+(2﹣)0.(2)解不等式:5x+3≥2(x+3).【考点】解一元一次不等式;特殊角的三角函数值;实数的运算;零指数幂.【专题】计算题;实数;一元一次不等式(组)及应用;运算能力.【分析】(1)原式第一项利用特殊角的三角函数值计算,第二项利用开平方法则化简,最后一项利用零指数幂的意义化简,计算即可得到结果;(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项,系数化为1可得.【解答】解:(1)原式=2﹣2+1=1;(2)5x+3≥2(x+3),去括号得:5x+3≥2x+6,移项得:5x﹣2x≥6﹣3,合并同类项得:3x≥3,解得:x≥1.【点评】本题主要考查实数的运算与解一元一次不等式,解题的关键是熟练掌握不等式的性质.23.(2019•温州)某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B 游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.【考点】二元一次方程组的应用;一元一次不等式的应用.【专题】一次方程(组)及应用;一元一次不等式(组)及应用.【分析】(1)根据题意可以列出相应的方程组,本题得以解决;(2)①根据题意可以求得由成人8人和少年5人带队,所需门票的总费用;②利用分类讨论的方法可以求得相应的方案以及花费,再比较花费多少即可解答本题.【解答】解:(1)设成人有x人,少年y人,,解得,,答:该旅行团中成人与少年分别是17人、5人;(2)①由题意可得,由成人8人和少年5人带队,则所需门票的总费用是:100×8+5×100×0.8+(10﹣8)×100×0.6=1320(元),答:由成人8人和少年5人带队,则所需门票的总费用是1320元;②设可以安排成人a人,少年b人带队,则1≤a≤17,1≤b≤5,当10≤a≤17时,若a=10,则费用为100×10+100×b×0.8≤1200,得b≤2.5,∴b的最大值是2,此时a+b=12,费用为1160元;若a=11,则费用为100×11+100×b×0.8≤1200,得b≤,∴b的最大值是1,此时a+b=12,费用为1180元;若a≥12,100a≥1200,即成人门票至少是1200元,不合题意,舍去;当1≤a<10时,若a=9,则费用为100×9+100b×0.8+100×1×0.6≤1200,得b≤3,∴b的最大值是3,a+b=12,费用为1200元;若a=8,则费用为100×8+100b×0.8+100×2×0.6≤1200,得b≤3.5,∴b的最大值是3,a+b=11<12,不合题意,舍去;同理,当a<8时,a+b<12,不合题意,舍去;综上所述,最多安排成人和少年12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中成人10人,少年2人时购票费用最少.【点评】本题考查二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用方程和不等式的知识解答.24.(2020•湖州)某企业承接了27000件产品的生产任务,计划安排甲、乙两个车间的共50名工人,合作生产20天完成.已知甲、乙两个车间利用现有设备,工人的工作效率为:甲车间每人每天生产25件,乙车间每人每天生产30件.(1)求甲、乙两个车间各有多少名工人参与生产?(2)为了提前完成生产任务,该企业设计了两种方案:方案一甲车间租用先进生产设备,工人的工作效率可提高20%,乙车间维持不变.方案二乙车间再临时招聘若干名工人(工作效率与原工人相同),甲车间维持不变.设计的这两种方案,企业完成生产任务的时间相同.①求乙车间需临时招聘的工人数;②若甲车间租用设备的租金每天900元,租用期间另需一次性支付运输等费用1500元;乙车间需支付临时招聘的工人每人每天200元.问:从新增加的费用考虑,应选择哪种方案能更节省开支?请说明理由.【考点】分式方程的应用;二元一次方程组的应用.【专题】工程问题;一次方程(组)及应用;分式方程及应用;运算能力;应用意识.【分析】(1)设甲车间有x名工人参与生产,乙车间有y名工人参与生产,由题意得关于x和y的方程组,求解即可.(2)①设方案二中乙车间需临时招聘m名工人,由题意,以企业完成生产任务的时间为等量关系,列出关于m的分式方程,求解并检验即可;②用生产任务数量27000除以方案一中甲和乙完成的生产任务之和可得企业完成生产任务的时间,然后分别按方案一和方案二计算费用并比较大小即可.【解答】解:(1)设甲车间有x名工人参与生产,乙车间有y名工人参与生产,由题意得:,解得.∴甲车间有30名工人参与生产,乙车间有20名工人参与生产.(2)①设方案二中乙车间需临时招聘m名工人,由题意得:=,解得m=5.经检验,m=5是原方程的解,且符合题意.∴乙车间需临时招聘5名工人.②企业完成生产任务所需的时间为:=18(天).∴选择方案一需增加的费用为900×18+1500=17700(元).选择方案二需增加的费用为5×18×200=18000(元).∵17700<18000,∴选择方案一能更节省开支.【点评】本题考查了二元一次方程组和分式方程在实际问题中的应用,理清题中的数量关系是解题的关键.。

【精品】2017年全国中考数学真题《分式与分式方程》分类汇编解析

【精品】2017年全国中考数学真题《分式与分式方程》分类汇编解析

2017年全国中考数学真题《分式与分式方程》分类汇编解析分式与分式方程考点一、分式 (8~10分)1、分式的概念一般地,用A 、B 表示两个整式,A ÷B 就可以表示成B A 的形式,如果B 中含有字母,式子BA就叫做分式。

其中,A 叫做分式的分子,B 叫做分式的分母。

分式和整式通称为有理式。

2、分式的性质(1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

(2)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

3、分式的运算法则;;bcad c d b a d c b a bd ac d c b a =⨯=÷=⨯一、选择题1.(2017·山东省滨州市·3分)下列分式中,最简分式是( )A .B .C .D .2.(2017·山东省德州市·3分)化简﹣等于( )A .B .C .﹣D .﹣3.(2017·广西百色·3分)A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( )C.﹣=D.+=304.(2017·广西桂林·3分)当x=6,y=3时,代数式()•的值是()A.2 B.3 C.6 D.95. (2017·云南省昆明市·4分)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=6. (2017·重庆市A卷·4分)函数y=中,x的取值范围是()A.x≠0B.x>﹣2 C.x<﹣2 D.x≠﹣27.(2017贵州毕节3分)为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x棵,则列出的方程为()A.B.C.D.8.(2017海南3分)解分式方程,正确的结果是()A.x=0 B.x=1 C.x=2 D.无解10. (2017·湖北武汉·3分)若代数式在31-x实数范围内有意义,则实数x的取值范围是()A.x<3 B.x>3 C.x≠3D.x=312.(2017·四川攀枝花)化简+的结果是()A.m+n B.n﹣m C.m﹣n D.﹣m﹣n13.(2017·四川内江)甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地,已知A,C两地间的距离为110千米,B,C两地间的距离为100千米,甲骑自行车的平均速度比乙快2千米/时,结果两人同时到达C地,求两人的平均速度分别为多少.为解决此问题,设乙骑自行车的平均速度为x千米/时,由题意列出方程,其中正确的是( )A.1102x+=100xB.1100x=1002x+C.1102x-=100xD.1100x=1002x-14.(2017·四川内江)在函数y x的取值范围是( )A.x>3 B.x≥3 C.x>4 D.x≥3且x≠4驶100km,设提速前列车的平均速度为xkm/h,下列方程正确的是()A.=B.=C.=D.=16. (2017·黑龙江龙东·3分)关于x的分式方程=3的解是正数,则字母m的取值范围是()A.m>3 B.m>﹣3 C.m>﹣3 D.m<﹣317.(2017·黑龙江齐齐哈尔·3分)若关于x的分式方程=2﹣的解为正数,则满足条件的正整数m 的值为()A.1,2,3 B.1,2 C.1,3 D.2,318.(2017·湖北荆门·3分)化简的结果是()A.B.C.x+1 D.x﹣119.(2017·内蒙古包头·3分)化简()•ab,其结果是()A.B.C.D.20. (2017·山东潍坊·3分)计算:20•2﹣3=()A.﹣B.C.0 D.821. (2017·山东潍坊·3分)若关于x的方程+=3的解为正数,则m的取值范围是()A.m<B.m<且m≠C.m>﹣D.m>﹣且m≠﹣22. (2017·四川眉山·3分)已知x2﹣3x﹣4=0,则代数式的值是()A.3 B.2 C.D.二、填空题1.(2017·山东省济宁市·3分)已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是km/h.2. (云南省昆明市·3分)计算:﹣=.4.(2017·贵州安顺·4分)在函数中,自变量x的取值范围是.5.(2017贵州毕节5分)若a2+5ab﹣b2=0,则的值为.6.(2017·四川南充)计算:=.7.(2017·四川攀枝花)已知关于x的分式方程+=1的解为负数,则k的取值范围是.8.(2017·四川泸州)分式方程﹣=0的根是.9.(2017·四川内江)化简:(2a+93a-)÷3aa+=______.10. (2017·湖北荆州·3分)当a=﹣1时,代数式的值是.三、解答题1.(2017·湖北随州·6分)先化简,再求值:(﹣x+1)÷,其中x=﹣2.2. (2017·湖北随州·6分)某校学生利用双休时间去距学校10km的炎帝故里参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.3. (2017·吉林·5分)解方程:=.4. (2017·江西·6分)先化简,再求值:(+)÷,其中x=6.5. (2017·辽宁丹东·10分)某商场购进甲、乙两种商品,乙商品的单价是甲商品单价的2倍,购买240元甲商品的数量比购买300元乙商品的数量多15件,求两种商品单价各为多少元?6.(2017·四川泸州)化简:(a+1﹣)•.7.(2017·四川宜宾)2017年“母亲节”前夕,宜宾某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?8.(2017·四川宜宾)化简:÷(1﹣)9.(2017·黑龙江龙东·6分)先化简,再求值:(1+)÷,其中x=4﹣tan45°.10.(2017·黑龙江齐齐哈尔·5分)先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣15=0.11.(2017·湖北黄石·6分)先化简,再求值:÷•,其中a=2017.12.(2017·湖北荆州·12分)已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n =0②中,k、m、n均为实数,方程①的根为非负数.(1)求k的取值范围;(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.13.(2017·青海西宁·7分)化简:,然后在不等式x≤2的非负整数解中选择一个适14. (2017·陕西)化简:(x﹣5+)÷.15. (2017·四川眉山)先化简,再求值:,其中a=3.16. (2017·四川眉山)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场.顺风车行经营的A型车2015年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元(用列方程的方法解答);(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如表:17.(2017·山东省滨州市·4分)先化简,再求值:÷(﹣),其中a =.18.(2017·山东省东营市·4分)化简,再求值:(a +1-4a -5a -1)÷(1a -1a 2-a ),其中a =2+3.19.(2017·山东省东营市·8分)东营市某学校2015年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2900元,那么这所学校最多可购买多少个乙种足球?20.(2017·山东省菏泽市·3分)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)21. (2017·重庆市A卷·5分)(+x﹣1)÷.22. (2017·重庆市B卷·5分)÷(2x﹣)23. (2017·浙江省绍兴市·4分))解分式方程:+=4.24.(2017·福建龙岩·6分)先化简再求值:,其中x=2+.25.(2017·广西桂林·8分)五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同 (1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?26.(2017·贵州安顺·10分)先化简,再求值:1211)1(+-+÷-x x x ),从﹣1,2,3中选择一个适当的数作为x 值代入.27.(2017·黑龙江哈尔滨·7分)先化简,再求代数式(﹣)÷的值,其中a =2sin 60°+tan 45°.28.(2017·黑龙江哈尔滨·10分)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?29.(2017广西南宁)在南宁市地铁1号线某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作了15天,共完成总工程的.(1)求乙队单独完成这项工程需要多少天?(2)为了加快工程进度,甲、乙两队各自提高工作效率,提高后乙队的工作效率是,甲队的工作效率是乙队的m倍(1≤m≤2),若两队合作40天完成剩余的工程,请写出a关于m的函数关系式,并求出乙队的最大工作效率是原来的几倍?30.(2017河南)先化简,再求值:(﹣1)÷,其中x的值从不等式组的整数解中选取.答案分式与分式方程一、选择题1.(2017·山东省滨州市·3分)下列分式中,最简分式是()A.B.C.D.【考点】最简分式.【专题】计算题;分式.【分析】利用最简分式的定义判断即可.【解答】解:A、原式为最简分式,符合题意;B、原式==,不合题意;C、原式==,不合题意;D、原式==,不合题意,故选A【点评】此题考查了最简分式,最简分式为分式的分子分母没有公因式,即不能约分的分式.2.(2017·山东省德州市·3分)化简﹣等于( )A .B .C .﹣D .﹣【考点】分式的加减法. 【专题】计算题;分式.【分析】原式第二项约分后两项通分并利用同分母分式的加法法则计算即可得到结果.【解答】解:原式=+=+==,故选B【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.3.(2017·广西百色·3分)A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( )A .﹣=30 B .﹣=C .﹣= D .+=30【考点】由实际问题抽象出分式方程.【分析】设甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,根据两车同时从A 地出发到B 地,乙车比甲车早到30分钟列出方程即可.【解答】解:设甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,根据题意得,﹣=.故选B .4.(2017·广西桂林·3分)当x =6,y =3时,代数式()•的值是( )A .2B .3C .6D .9 【考点】分式的化简求值.【分析】先对所求的式子化简,然后将x =6,y =3代入化简后的式子即可解答本题.【解答】解:()•==,当x=6,y=3时,原式=,故选C.5. (2017·云南省昆明市·4分)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=【考点】由实际问题抽象出分式方程.【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【解答】解:由题意可得,﹣=,故选C.6. (2017·重庆市A卷·4分)函数y=中,x的取值范围是()A.x≠0B.x>﹣2 C.x<﹣2 D.x≠﹣2【分析】由分式有意义的条件得出不等式,解不等式即可.【解答】解:根据题意得:x+2≠0,解得x≠﹣2.故选:D.【点评】本题考查了函数中自变量的取值范围、分式有意义的条件;由分式有意义得出不等式是解决问题的关键.7.(2017贵州毕节3分)为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x棵,则列出的方程为()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】设现在平均每天植树x 棵,则原计划每天植树(x ﹣30)棵,根据:现在植树400棵所需时间=原计划植树300棵所需时间,这一等量关系列出分式方程即可.【解答】解:设现在平均每天植树x 棵,则原计划每天植树(x ﹣30)棵,根据题意,可列方程: =,故选:A .8.(2017海南3分)解分式方程,正确的结果是( )A .x =0B .x =1C .x =2D .无解 【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【解答】解:去分母得:1+x ﹣1=0, 解得:x =0, 故选A【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验. 9.(2017河北3分)下列运算结果为x -1的是( )A .11x-B .211x x x x -∙+ C .111x x x +÷- D .2211x x x +++ 答案:B解析:挨个算就可以了,A 项结果为—— , B 项的结果为x -1,C 项的结果为—— D 项的结果为x +1。

2017山东数学中考真题,分类汇编-,几何综合大题

2017山东数学中考真题,分类汇编-,几何综合大题

2017山东数学中考真命题分类会哦变——几何综合大题一、选择题:1、(德州,11.)如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=b﹣;③△ABM≌△NGF;④S=a2+b2;⑤A,M,P,D四点共圆,其中正确的个数是()四边形AMFNA.2 B.3 C.4 D.52、(东营,10.)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC其中正确的是()A.①②③④B.②③C.①②④D.①③④3、(泰安,19.)如图,四边形ABCD是平行四边形,点E是边CD上一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC,其中正确结论的个数为()A.1 B.2 C.3 D.44、(威海,10.)如图,在▱ABCD中,∠DAB的平分线交CD于点E,交BC的延长线于点G,∠ABC的平分线交CD于点F,交AD的延长线于点H,AG与BH交于点O,连接BE,下列结论错误的是()A.BO=OH B.DF=CE C.DH=CG D.AB=AE5、(威海,12.)如图,正方形ABCD的边长为5,点A的坐标为(﹣4,0),点B在y轴上,若反比例函数y=(k ≠0)的图象过点C ,则该反比例函数的表达式为( ) A .y= B .y= C .y= D .y=2、填空题1、(东营,14.)如图,AB 是半圆直径,半径OC ⊥AB 于点O ,D 为半圆上一点,AC ∥OD ,AD 与OC 交于点E ,连结CD 、BD ,给出以下三个结论:①OD 平分∠COB ;②BD=CD ;③CD 2=CECO ,其中正确结论的序号是 .2、(潍坊,18.)如图,将一张矩形纸片ABCD 的边BC 斜着向AD 边对折,使点B 落在AD 边上,记为B′,折痕为CE ,再将CD 边斜向下对折,使点D 落在B′C 边上,记为D′,折痕为CG ,B′D′=2,BE=BC .则矩形纸片ABCD 的面积为 .三、解答题:1、(菏泽,23.)正方形ABCD 的边长为cm 6,点M E 、分别是线段AD BD 、上的动点,连接AE 并延长,交边BC 于F ,过M 作AF MN ,垂足为H ,交边AB 于点N .(1)如图1,若点M 与点D 重合,求证:MN AF =;(2)如图2,若点M 从点D 出发,以s cm /1的速度沿DA 向点A 运动,同时点E 从点B 出发,以s cm /2的速度沿BD 向点D 运动,运动时间为ts . ①设ycm BF =,求y 关于t 的函数表达式; ②当AN BN 2=时,连接FN ,求FN 的长.2、(德州,23.)如图1,在矩形纸片ABCD 中,AB=3cm ,AD=5cm ,折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ,过点E 作EF ∥AB 交PQ 于F ,连接BF . (1)求证:四边形BFEP 为菱形;(2)当点E 在AD 边上移动时,折痕的端点P 、Q 也随之移动; ①当点Q 与点C 重合时(如图2),求菱形BFEP 的边长;②若限定P 、Q 分别在边BA 、BC 上移动,求出点E 在边AD 上移动的最大距离.3、(临沂,25.(11分))数学课上,张老师出示了问题:如图1,AC ,BD 是四边形ABCD 的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC ,CD ,AC 三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB 到E ,使BE=CD ,连接AE ,证得△ABE ≌△ADC ,从而容易证明△ACE 是等边三角形,故AC=CE ,所以AC=BC+CD .小亮展示了另一种正确的思路:如图3,将△ABC 绕着点A 逆时针旋转60°,使AB 与AD 重合,从而容易证明△ACF 是等边三角形,故AC=CF ,所以AC=BC+CD . 在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC ,CD ,AC 三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明. (2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC ,CD ,AC 三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.4、(青岛,24.)(本小题满分12分)已知:Rt △EFP 和矩形ABCD 如图①摆放(点P 与点B 重合),点F ,B (P ),C 在同一条直线上,AB =EF =6cm ,BC =FP =8cm ,∠EFP =90°。

2017山东数学中考真题,分类汇编--,几何综合大题

2017山东数学中考真题,分类汇编--,几何综合大题

2017山东数学中考真题,分类汇编--,几何综合大题(总10页)--本页仅作预览文档封面,使用时请删除本页--2017山东数学中考真命题分类会哦变——几何综合大题一、选择题:1、(德州,11.)如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=b﹣;③△ABM≌△NGF;④S四边形AMFN=a2+b2;⑤A,M,P,D四点共圆,其中正确的个数是()A.2 B.3 C.4 D.52、(东营,10.)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC其中正确的是()A.①②③④B.②③C.①②④D.①③④3、(泰安,19.)如图,四边形ABCD是平行四边形,点E是边CD上一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC,其中正确结论的个数为()A.1 B.2 C.3 D.44、(威海,10.)如图,在▱ABCD中,∠DAB的平分线交CD于点E,交BC的延长线于点G,∠ABC的平分线交CD于点F,交AD的延长线于点H,AG与BH交于点O,连接BE,下列结论错误的是()A.BO=OH B.DF=CE C.DH=CG D.AB=AE5、(威海,12.)如图,正方形ABCD的边长为5,点A的坐标为(﹣4,0),点B在y轴上,若反比例函数y=(k≠0)的图象过点C,则该反比例函数的表达式为()A.y=B.y=C.y=D.y=2、填空题1、(东营,14.)如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC∥OD,AD与OC交于点E,连结CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CECO,其中正确结论的序号是.2、(潍坊,18.)如图,将一张矩形纸片ABCD的边BC斜着向AD边对折,使点B落在AD边上,记为B′,折痕为CE,再将CD边斜向下对折,使点D落在B′C边上,记为D′,折痕为CG,B′D′=2,BE=BC.则矩形纸片ABCD的面积为.三、解答题:1、(菏泽,23.)正方形ABCD 的边长为cm 6,点M E 、分别是线段AD BD 、上的动点,连接AE 并延长,交边BC 于F ,过M 作AF MN ⊥,垂足为H ,交边AB 于点N .(1)如图1,若点M 与点D 重合,求证:MN AF =;(2)如图2,若点M 从点D 出发,以s cm /1的速度沿DA 向点A 运动,同时点E 从点B 出发,以s cm /2的速度沿BD 向点D 运动,运动时间为ts .①设ycm BF =,求y 关于t 的函数表达式; ②当AN BN 2=时,连接FN ,求FN 的长.2、(德州,23.)如图1,在矩形纸片ABCD 中,AB=3cm ,AD=5cm ,折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ,过点E 作EF ∥AB 交PQ 于F ,连接BF .(1)求证:四边形BFEP 为菱形;(2)当点E 在AD 边上移动时,折痕的端点P 、Q 也随之移动; ①当点Q 与点C 重合时(如图2),求菱形BFEP 的边长;②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.3、(临沂,25.(11分))数学课上,张老师出示了问题:如图1,AC,BD 是四边形ABCD的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC=CE,所以AC=BC+CD.小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB =60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC ,CD ,AC 三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.4、(青岛,24.)(本小题满分12分)已知:Rt △EFP 和矩形ABCD 如图①摆放(点P 与点B 重合),点F ,B (P ),C 在同一条直线上,AB =EF =6cm ,BC =FP =8cm ,∠EFP =90°。

2017中考数学全国试题汇编------圆(含详细解析)

2017中考数学全国试题汇编------圆(含详细解析)

FhseFhee2017中考数学全国试题汇编-■■■■■圆24 (2017.北京)如图,AB是LI O的一条弦,LI O的切线交CE的延长线于点D .(1)求证:DB 二DE ;(2)若AB =12, BD =5,求LI O 的半径.【解析】E是AB的中点,过点E作EC_OA于点C ,过点B作试题分析:(1)由切线性质及等量代换推出/ 4=7 5,再利用等角对等边可得出结论;(2)由已知条件得出sin7 DEF和sin7 AOE的值,禾用对应角的三角函数值相等推出结论.试题解析:(1)证明:T DC 丄OA, A / 1 + 7 3=90°, v BD 为切线,二OB 丄BD, /-Z 2+7 5=90°, v OA=OB, •••7 1=7 2,v/ 3=7 4,A/ 4=7 5,在厶DEB中, 7 4=7 5,A DE=DB.⑵作DF丄AB 于F,连接OE, ・,.EF^-EE=3/在RTADEF中,EA3, DE=BD=5J EQ3 , J.f~nj jQ-F* 4Y彗一3 =斗——=-3「.在irrAAOE 中rDE5TAEh,二曲二二■ ■考点:圆的性质,切线定理,三角形相似,三角函数27 (2017甘肃白银)•如图,AN是L M的直径,NB//X轴, ~A OAB交L M于点C .(1)若点A 0,6 , N 0,2厂ABN =30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是L M的切线.解:(1)v A 的坐标为(0, 6), N (0, 2)••• AN=4, .............................................................................................................. 1 分vZ ABN=30°, / ANB=90°,••• AB=2AN=8, ...................................................................................................... 2分•••由勾股定理可知:NB=4..3 ,••• B ( 4 3 , 2) ....................................................... 3 分(2)连接MC , NC ........................................................................................... 4 分v AN是O M的直径,•••Z ACN=90°°•••Z NCB=90° ° ................................................................................................... 5 分在Rt A NCB中,D为NB的中点,1•CD= = N B=ND ,2•Z CND=Z NCD, .............................. 6 分v MC=MN ,•Z MCN=Z MNC.vZ MNC+Z CND=90°°• Z MCN+Z NCD=90° ° ...................... 7 分即MC I CD.•直线CD是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年中考数学试题分类汇编2017年中考试题分类汇编(阅读理解题)一、选择题1、(2017四川眉山)为确保信息安全,信息需加密传翰,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文.己知某种加密规则为:明文a 、b 对应的密文为2a -b 、2a +b .例如,明文1、2对应的密文是-3、4.当接收方收到密文是1、7时,解密得到的明文是( ). CA .-1,1B .1,3C . 3,ID .1,l2、(2017湖南长沙)在密码学中,直接可以看到内容为明码,对明码进行某种处理后得到的内容为密码.有一种密码,将英文26个字母a b c ,,,…,z (不论大小写)依次对应1,2,3,…,26这26个自然数(见表格).当明码对应的序号x 为奇数时,密码对应的序号1x y +=;当明码对应的序号x 为偶数时,密码对应的序号13xy =+. 按上述规定,将明码“love ”译成密码是( ) B A .gawq B .shxc C .sdri D .love二、填空题1、(2017四川德阳)阅读材料:设一元二次方程20ax bx c ++=的两根为1x ,2x ,则两根与方程系数之间有如下关系:12b x x a +=-,12cx x a=.根据该材料填空: 已知1x ,2x 是方程2630x x ++=的两实数根,则2112x x x x +的值为______.10 2、(2017四川巴中)先阅读下列材料,然后解答问题: 从A B C ,,三张卡片中选两张,有三种不同选法,抽象成数学问题就是从3个元素中选取2个元素组合,记作2332C 321⨯==⨯. 一般地,从m 个元素中选取n 个元素组合,记作:(1)(1)C (1)321nm m m m n n n --+=-⨯⨯⨯例:从7个元素中选5个元素,共有5776543C 2154321⨯⨯⨯⨯==⨯⨯⨯⨯种不同的选法.问题:从某学习小组10人中选取3人参加活动,不同的选法共有 种.120 3、(2017广东梅州)将4个数a b c d ,,,排成2行、2列,两边各加一条竖直线记成a bc d,定义a bc dad bc =-,上述记号就叫做2阶行列式.若1111x x x x +--+ 6=,则x =__________.答:三、解答题1、(2017浙江临安)阅读下列题目的解题过程: 已知a 、b 、c 为的三边,且满足,试判断的形状.解:2222222222()()()()()ABC c a b a b a b B c a bC ∆∴-=+-∴=+∴是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:________________;(2)错误的原因为:_______________________________________________________; (3)本题正确的结论为:____________.解:(1) C ---2分 (2)没有考虑220a b -=---4分(3)ABC ∆是直角三角形或等腰三角形 ---6分2、(2017云南双柏)阅读下列材料,并解决后面的问题.材料:一般地,n 个相同的因数a 相乘:nn a a a a 记为个⋅.如23=8,此时,3叫做以2为底8的对数,记为()38log 8log 22=即.一般地,若()0,10>≠>=b a a b a n且,则n 叫做以a 为底b 的对数,记为()813.log log 4==如即n b b a a ,则4叫做以3为底81的对数,记为)481log (81log 33=即.问题:(1)计算以下各对数的值:(3分) ===64log 16log 4log 222 .(2)观察(1)中三数4、16、64之间满足怎样的关系式?64log 16log 4log 222、、之间又满足怎样的关系式?(2分)(3)由(2)的结果,你能归纳出一个一般性的结论吗?(2分) ()0,0,10log log >>≠>=+N M a a N M a a且(4)根据幂的运算法则:m n mna a a +=⋅以及对数的含义证明上述结论.(3分)证明:解:(1)24log 2= , 416log 2= ,664log 2= (2)4×16=64 ,4log 2 + 16log 2 = 64log 2 (3)M a log + N a log = )(log MN a (4)证明:设M a log =b 1 , N a log =b 2 则M ab =1,N ab =2∴2121b b b b a a a MN+=⋅=∴b 1+b 2=)(log MN a 即M a log + N a log = )(log MN a3、(2017安徽芜湖)阅读以下材料,并解答以下问题.“完成一件事有两类不同的方案,在第一类方案中有m 种不同的方法,在第二类方案中有n 种不同的方法.那么完成这件事共有N = m + n 种不同的方法,这是分类加法计数原理;完成一件事需要两个步骤,做第一步有m 种不同的方法,做第二步有n 种不同的方法.那么完成这件事共有N =m ×n 种不同的方法, 这就是分步乘法计数原理. ”如完成沿图1所示的街道从A 点出发向B 点行进这件事(规定必须向北走,或向东走), 会有多种不同的走法,其中从A 点出发到某些交叉点的走法数已在图2填出. (1) 根据以上原理和图2的提示, 算出从A 出发到达其余交叉点的走法数,将数字填入图2的空圆中,并回答从A 点出发到B 点的走法共有多少种? (2) 运用适当的原理和方法算出从A 点出发到达B 点,并禁止通过交叉点C 的走法有多少种? (3) 现由于交叉点C 道路施工,禁止通行. 求如任选一种走法,从A 点出发能顺利开车到达B 点(无返回)概率是多少? 解:解:(1)∵完成从A点到B点必须向北走,或向东走,∴到达A点以外的任意交叉点的走法数只能是与其相邻的南边交叉点和西边交叉点的数字之和.故使用分类加法计数原理,由此算出从A点到达其余各交叉点的走法数,填表如图1,答:从A点到B点的走法共有35种.……………………………………5分(1)方法一:可先求从A点到B点,并经过交叉点C的走法数,再用从A点到B点总走法数减去它,即得从A点到B点,但不经过交叉点C的走法数.完成从A点出发经C点到B点这件事可分两步,先从A点到C点,再从C点到B点.使用分类加法计数原理,算出从A点到C点的走法是3种,见图2;算出从C点到B点的走法为6种,见图3,再运用分步乘法计数原理,得到从A点经C点到B点的走法有3×6=18种.∴从A点到B点但不经过C点的走法数为35-18=17种. (10)分方法二:由于交叉点C道路施工,禁止通行,故视为相邻道路不通,可删除与C点紧相连的线段.运用分类加法计数原理,算出从A点到B点并禁止通过交叉点C的走法有17种.从A点到各交叉点的走法数见图4.∴从A点到B点并禁止经过C点的走法数为35-18=17种.………10分(3)P(顺利开车到达B点)=17 35.答:任选一种走法,顺利开车到达B 点的概率是1735. ………………12分4、(2017江苏连云港)如图1,点C 将线段AB 分成两.部分,如果AC BCAB AC=,那么称点C 为线段AB 的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l 将一个面积为S 的图形分成两部分,这两部分的面积分别为1S ,2S ,如果121S S S S =,那么称直线l 为该图形的黄金分割线. (1)研究小组猜想:在ABC △中,若点D 为AB 边上的黄金分割点(如图2),则直线CD 是ABC △的黄金分割线.你认为对吗?为什么?(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?(3)研究小组在进一步探究中发现:过点C 任作一条直线交AB 于点E ,再过点D 作直线DF CE ∥,交AC 于点F ,连接EF (如图3),则直线EF 也是ABC △的黄金分割线.请你说明理由.(4)如图4,点E 是ABCD 的边AB 的黄金分割点,过点E 作EF AD ∥,交DC 于点F ,显然直线EF 是ABCD 的黄金分割线.请你画一条ABCD 的黄金分割线,使它不经过ABCD 各边黄金分割点.解:(1)直线CD 是ABC △的黄金分割线.理由如下: 设ABC △的边AB 上的高为h . 12ADC S AD h =△,12BDC S BD h =△,12ABC S AB h =△, 所以,ADC ABC S AD S AB =△△,BDC ADC S BDS AD=△△. ··············· 2分又因为点D 为边AB 的黄金分割点,所以有AD BDAB AD=.因此ADC BDC ABC ADC S S S S =△△△△. 所以,直线CD 是ABC △的黄金分割线. ············· 4分 (2)因为三角形的中线将三角形分成面积相等的两部分,此时1212s s s ==,即 121s s s s ≠,所以三角形的中线不可能是该三角形的黄金分割线. ···· 6分(3)因为DF CE ∥,所以DEC △和FCE △的公共边CE 上的高也相等, 所以有DEC FCE S S =△△. ···················· 7分 设直线EF 与CD 交于点G .所以DGE FGC S S =△△. 所以ADC FGC AFGD S S S =+△△四边形DGE AEF AFGD S S S =+=△△四边形,BDC BEFC S S =△四边形. 又因为ADC BDCABC ADCS S S S =△△△△,所以BEFC AEF ABC AEF S S S S =四边形△△△. ········ 9分因此,直线EF 也是ABC △的黄金分割线. ··········· 10分(4)画法不惟一,现提供两种画法; ··············· 12分 画法一:如答图1,取EF 的中点G ,再过点G 作一条直线分别交AB ,DC 于M ,N 点,则直线MN 就是ABCD 的黄金分割线. 画法二:如答图2,在DF 上取一点N ,连接EN ,再过点F 作FM NE ∥交AB 于点M ,连接MN ,则直线MN 就是ABCD 的黄金分割线.5、(2017浙江衢州)请阅读下列材料:问题:如图(2),一圆柱的底面半径为5dm ,BC 是底面直径,求一只蚂蚁从A 点出发沿圆柱表面爬行到点C 的最短路线.小明设计了两条路线: 路线1:侧面展开图中的先端AC .如下图(2)所示:设路线1的长度为1l ,则222222212525)5(5ππ+=+=+==AC AB AC l路线2:高线AB + 底面直径BC .如上图(1)所示:设路线2的长度为2l ,则225)105()(2222=+=+=AC AB l0)8(25200252252525222221>-=-=-+=-πππl l∴2221l l > ∴21l l > 所以要选择路线2较短.FCB D E A N M G(第4题答图1)FCBD E A N M (第4题答图2) 比较两个正数的大小,有时用它们的平方来比较更方便(1)小明对上述结论有些疑惑,于是他把条件改成:“圆柱的底面半径为1dm ,高AB 为5dm ”继续按前面的路线进行计算.请你帮小明完成下面的计算:路线1:==221AC l ___________________; 路线2:=+=222)(AC AB l __________∵2221_____l l ∴ 21_____l l ( 填>或<)所以应选择路线____________(填1或2)较短.(2)请你帮小明继续研究:在一般情况下,当圆柱的底面半径为r ,高为h 时,应如何选择上面的两条路线才能使蚂蚁从点A 出发沿圆柱表面爬行到C 点的路线最短.解:(1)22222221525l AC AB AC ππ==+=+=+2222()(52)49l AB AC =+=+= 2212l l < ∴12l l <所以要选择路线1较短.(2)2222221()l AC AB AC h r π==+=+2222()(2)l AB AC h r =+=+2212l l -=22()h r π+-2(2)h r +=2(44)r r r h π--=2[(4)4]r r h π--当244h r π=-时,2212l l =;当r >244h π-时,21l >22l ;当r <244h π-时,21l <22l . 6、(2017甘肃白银等3市)阅读下边一元二次方程求根公式的两种推导方法: 方法一:教材中方法 方法二:∵ ax 2+bx +c =0,∴ 4a 2x 2+4abx +4ac =0,配方可得: ∴ (2ax +b )2=b 2-4ac . 当 b 2-4ac ≥0时, 2ax +b =±24b ac -, ∴ 2ax =-b ±24b ac -. 当 b 2-4ac ≥0时, ∴ x =242b b ac a -±-.222222222,4(),244().24,244.2ax bx c o b b ac a x a a b b ac x a b b ac x a a b b ac x a ++=-∴+=-∴+=-∴+=±-±-∴=222222222,4(),244().244,244.2ax bx c o b b ac a x a a b b ac x a a b b ac x a a b b acx a ++=-∴+=-∴+=-∴+=±-±-∴=222222222,4(),244().244,244.2ax bx c o b b ac a x a a b b ac x a a b b ac x a a b b ac x a ++=-∴+=-∴+=-∴+=±-±-∴=222222222,4(),244().244,244.2ax bx c o b b ac a x a a b b ac x a a b b ac x a a b b ac x a ++=-∴+=-∴+=-∴+=±-±-∴=222222222,4(),244().244,244.2ax bx c o b b ac a x a a b b ac x a a b b ac a a b b acx a++=-∴+=-+=-+=±-±-∴=请回答下列问题:(1)两种方法有什么异同?你认为哪个方法好? (2)说说你有什么感想?解:(1)都采用配方法.方法一是将二次项的系数化为1,方法二是将二次项系数变成一个平方式.方法一较好.7、(2017江苏无锡)图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为(1)1232n n n +++++=. 图1 图2 图3 图4 如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1234,,,,,则最底层最左边这个圆圈中的数是 ;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数23-,22-,21-,,求图4中所有圆圈中各数的绝对值之和. 解:(1)67. ······························· 2分 (2)图4中所有圆圈中共有12(121)12312782+++++==个数, 其中23个负数,1个0,54个正数, ····················· 4分∴图4中所有圆圈中各数的绝对值之和|23||22||1|01254=-+-++-+++++(12323)(12354)27614851761=+++++++++=+=. ········ 6分8、(2017鄂尔多斯)我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边. (1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称_________,________; (2)如图16(1),已知格点(小正方形的顶点)(00)O ,,(30)A ,,(04)B ,,请你画出以格点为顶点,OA OB ,为勾股边且对角线相等的勾股四边形OAMB ;(3)如图16(2),将ABC △绕顶点B 按顺时针方向旋转60,得到DBE △,连结y B O A 图16(1)AD DC ,,30DCB =∠.求证:222DC BC AC +=,即四边形ABCD 是勾股四边形.解:(1)正方形、长方形、直角梯形.(任选两个均可) ···· 2分(填正确一个得1分) (2)答案如图所示.(34)M ,或(43)M ,.(没有写出不扣分)2分(根据图形给分,一个图形正确得1分)(3)证明:连结ECABC DBE △≌△ ···························· 5分 AC DE ∴=,BC BE = ·························· 6分60CBE =∠ EC BC ∴=,60BCE =∠ ················· 7分 30DCB =∠ 90DCE ∴=∠ 222DC EC DE ∴+= ············ 8分 222DC BC AC ∴+=,即四边形ABCD 是勾股四边形 ············· 9分A60 图16(2) 602017年中考试题分类汇编(不等式与不等式组)一、选择题1、(2017浙江金华)不等式260x ->的解集在数轴上表示正确的是( )A2、(2017四川内江)不等式2(1)3x x +<的解集在数轴上表示出来应为( )D3、(2017湖南岳阳)在下图中不等式-1<x ≤2在数轴上表示正确的是( )ADCBA4、(2017山东枣庄)不等式2x -7<5-2x 的正整数解有( )B (A)1个 (B)2个 (C)3个 (D)4个5、(2017福建福州)解集在数轴上表示为如图1所示的不等式组是( )D A .32x x >-⎧⎨⎩≥B .32x x <-⎧⎨⎩≤C .32x x <-⎧⎨⎩≥D .32x x >-⎧⎨⎩≤6、(2017湖北天门)关于x 的不等式2x -a ≤-1的解集如图2所示, 则a 的取值是( )。

相关文档
最新文档