2017年中考数学试题分类汇编(三角形全等)0001

合集下载

2017安徽省中考数学试题及解答0001

2017安徽省中考数学试题及解答0001

2017年安徽省初中学业水平考试(试题卷)注意事项:1•你拿到的试卷满分为150分,考试时间为2. 本试卷包括“试题卷”和“答题卷”两部分,3. 请务必在“答题卷”上答题,在“试题卷”上答题是无效的。

4. 考试结束后,请将“试题卷”和“答题卷”一并交回。

一、选择题(本大题共每小题都给出A、11 .丄的相反数是(21A .23 22 .计算a3的结果是120分钟。

“试题卷”共4页,“答题卷”共6页。

10小题,每小题4分,共40分)C、D四个选项,其中只有一个是正确的B、C. 2; D . -2C.a5;3•如图,一个放置在水平试验台上的锥形瓶,它的俯视图为(54.截止2016年底,国家开发银行对“一带一路”其中1600亿用科学计数法表示为()沿线国家累计发放贷款超过1600亿美元,A . 16 1010;B . 1.6 1010;111.6 10 ;12D. 0.16 10 ;5•不等式4 2x 0的解集在数轴上表示为(B.0 1 c.i I ■・J- 匚-2 -1 0 1 16.直角三角板和直尺如图放置,若A. 60 ;B. 50 ;1 20,则2的度数为()C. 40 ;D. 3010.如图,在矩形ABCD中,AB=5 , AD=3,动点P满足S V PAB13 S矩形ABCD,则点P到B两点距离之和PA+PB的最小值为(7•为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A . 280;B . 240;C . 300;D . 2608 一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为X,则X 满足()2 2A. 16 1 2x 25 ;B. 25 1 2x 16 ;C. 16 1 x 25 ;D. 25 1 x 162b9.已知抛物线y ax bx c与反比例函数y 的图像在第一象限有一个公共点,其横x坐标为1,则一次函数y bx ac的图像可能是()A . B.);C.二、填空题(本大题共4小题,每小题5分,满分20分)11. _________________________ 27的立方根是.212. 因式分解:a b 4ab 4b =____________________ .13. 如图,已知等边VABC的边长为6,以AB为直径的e O与边AC,BC分别交于D,E两点,则劣弧DE的长为 _____________ .14. 在三角形纸片ABC中,A 90,C 30,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD (如图1 ),剪去VCDE后得到双层VBDE (如图2),再沿着过VBDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为__________ cm。

2017中考数学真题汇编----相似三角形的性质(选择、填空题)

2017中考数学真题汇编----相似三角形的性质(选择、填空题)

在 AB 边上移动时, DE始终与 AB 垂直, 若△ CEF与△ DEF相似,则 AD=

39.在平行四边形 ABCD的边 AB 和 AD 上分别取点 E 和 F,使


连接 EF交对角线 AC于 G,则 的值是

40.如图,点 A1,A2, A3,A4,…,An 在射线 OA 上,点 B1,B2, B3,…,Bn﹣1
A.2 B.3 C.4 D.5 19.如图,在等边△ ABC中, D 为 AC边上的一点,连接 BD,M 为 BD 上一点, 且∠ AMD=6°0 ,AM 交 BC于 E.当 M 为 BD 中点时, 的值为( )
A. B.
C. D.
20.将一张边长分别为 a, b( a> b)的矩形纸片 ABCD折叠,使点 C 与点 A 重
13.如图,在△ ABC中, D、 E 分别为 AB、 AC边上的点, DE∥ BC,点 F 为 BC边
上一点,连接 AF 交 DE于点 G,则下列结论中一定正确的是(

A. = B. = C. = D. =
14.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,
问井深几何? ”这是我国古代数学《九章算术》中的 “井深几何 ”问题,它的题意
DE⊥BC于点 E,连结 AE,则△ ABE的面积等于

8
29.如图,⊙ O 为等腰△ ABC的外接圆,直径 AB=12,P 为弧 上任意一点(不
与 B,C 重合),直线 CP交 AB 延长线于点 Q,⊙ O 在点 P 处切线 PD交 BQ 于点
D,下列结论正确的是
.(写出所有正确结论的序号)
①若∠ PAB=30°,则弧 的长为 π;②若 PD∥BC,则 AP平分∠ CAB;

专题18 三角形及全等三角形(40题)(原卷版)--2024年中考数学真题分类汇编

专题18 三角形及全等三角形(40题)(原卷版)--2024年中考数学真题分类汇编

专题18三角形及全等三角形(40题)一、单选题1.(2024·陕西·中考真题)如图,在ABC 中,90BAC ∠=︒,AD 是BC 边上的高,E 是DC 的中点,连接AE ,则图中的直角三角形有()A .2个B .3个C .4个D .5个2.(2024·河北·中考真题)观察图中尺规作图的痕迹,可得线段BD 一定是ABC 的()A .角平分线B .高线C .中位线D .中线3.(2024·黑龙江齐齐哈尔·中考真题)将一个含30︒角的三角尺和直尺如图放置,若150∠=︒,则2∠的度数是()A .30︒B .40︒C .50︒D .60︒4.(2024·四川凉山·中考真题)数学活动课上,同学们要测一个如图所示的残缺圆形工件的半径,小明的解决方案是:在工件圆弧上任取两点,A B ,连接AB ,作AB 的垂直平分线CD 交AB 于点D ,交 AB 于点C ,测出40cm 10cm AB CD ==,,则圆形工件的半径为()A .50cmB .35cmC .25cmD .20cm5.(2024·云南·中考真题)已知AF 是等腰ABC 底边BC 上的高,若点F 到直线AB 的距离为3,则点F 到直线AC 的距离为()A .32B .2C .3D .726.(2024·四川凉山·中考真题)如图,在Rt ABC △中,90ACB DE ∠=, 垂直平分AB 交BC 于点D ,若ACD 的周长为50cm ,则AC BC +=()A .25cmB .45cmC .50cmD .55cm7.(2024·四川眉山·中考真题)如图,在ABC 中,6AB AC ==,4BC =,分别以点A ,点B 为圆心,大于12AB 的长为半径作弧,两弧交于点E ,F ,过点E ,F 作直线交AC 于点D ,连接BD ,则BCD △的周长为()A .7B .8C .10D .128.(2024·湖北·中考真题)平面坐标系xOy 中,点A 的坐标为()4,6-,将线段OA 绕点O 顺时针旋转90︒,则点A 的对应点A '的坐标为()A .()4,6B .()6,4C .()4,6--D .()6,4--9.(2024·北京·中考真题)下面是“作一个角使其等于AOB ∠”的尺规作图方法.(1)如图,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;(2)作射线O A '',以点O '为圆心,OC 长为半径画弧,交O A ''于点C ';以点C '为圆心,CD 长为半径画弧,两弧交于点D ¢;(3)过点D ¢作射线O B '',则A O B AOB '''∠=∠.上述方法通过判定C O D COD '''△≌△得到A O B AOB '''∠=∠,其中判定C O D COD '''△≌△的依据是()A .三边分别相等的两个三角形全等B .两边及其夹角分别相等的两个三角形全等C .两角及其夹边分别相等的两个三角形全等D .两角分别相等且其中一组等角的对边相等的两个三角形全等10.(2024·广东广州·中考真题)下列图案中,点O 为正方形的中心,阴影部分的两个三角形全等,则阴影部分的两个三角形关于点O 对称的是()A .B .C .D .11.(2024·青海·中考真题)如图,OC 平分AOB ∠,点P 在OC 上,PD OB ⊥,2PD =,则点P 到OA 的距离是()A .4B .3C .2D .112.(2024·四川凉山·中考真题)一副直角三角板按如图所示的方式摆放,点E 在AB 的延长线上,当DF AB 时,EDB ∠的度数为()A .10︒B .15︒C .30︒D .45︒13.(2024·天津·中考真题)如图,Rt ABC △中,90,40C B ∠=︒∠=︒,以点A 为圆心,适当长为半径画弧,交AB 于点E ,交AC 于点F ;再分别以点,E F 为圆心,大于12EF 的长为半径画弧,两弧(所在圆的半径相等)在BAC ∠的内部相交于点P ;画射线AP ,与BC 相交于点D ,则ADC ∠的大小为()A .60B .65C .70D .7514.(2024·四川宜宾·中考真题)如图,在ABC 中,2AB AC ==,以BC 为边作Rt BCD ,BC BD =,点D 与点A 在BC 的两侧,则AD 的最大值为()A .2+B .6+C .5D .815.(2024·山东烟台·中考真题)某班开展“用直尺和圆规作角平分线”的探究活动,各组展示作图痕迹如下,其中射线OP 为AOB ∠的平分线的有()A .1个B .2个C .3个D .4个16.(2024·安徽·中考真题)在凸五边形ABCDE 中,AB AE =,BC DE =,F 是CD 的中点.下列条件中,不能推出AF 与CD 一定垂直的是()A .ABC AED∠=∠B .BAF EAF ∠=∠C .BCF EDF ∠=∠D .ABD AEC∠=∠17.(2024·浙江·中考真题)如图,正方形ABCD 由四个全等的直角三角形(,,,)ABE BCF CDG DAH △△△△和中间一个小正方形EFGH 组成,连接DE .若4,3AE BE ==,则DE =()A .5B .26C 17D .418.(2024·内蒙古赤峰·中考真题)等腰三角形的两边长分别是方程210210x x -+=的两个根,则这个三角形的周长为()A .17或13B .13或21C .17D .13二、填空题19.(2024·四川成都·中考真题)如图,ABC CDE △≌△,若35D ∠=︒,45ACB ∠=︒,则DCE ∠的度数为.20.(2024·甘肃临夏·中考真题)如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()4,1,点C 的坐标为()3,4,点D 在第一象限(不与点C 重合),且ABD △与ABC 全等,点D 的坐标是.21.(2024·黑龙江牡丹江·中考真题)如图,ABC 中,D 是AB 上一点,CF AB ∥,D 、E 、F 三点共线,请添加一个条件,使得AE CE =.(只添一种情况即可)22.(2024·四川凉山·中考真题)如图,ABC 中,3080BCD ACB CD ∠∠=︒=︒,,是边AB 上的高,AE 是CAB ∠的平分线,则AEB ∠的度数是.23.(2024·江苏连云港·中考真题)如图,直线a b ,直线l a ⊥,1120∠=︒,则2∠=︒.24.(2024·黑龙江绥化·中考真题)如图,AB CD ∥,33C ∠=︒,OC OE =.则A ∠=︒.25.(2024·黑龙江绥化·中考真题)如图,已知50AOB ∠=︒,点P 为AOB ∠内部一点,点M 为射线OA 、点N 为射线OB 上的两个动点,当PMN 的周长最小时,则MPN ∠=.26.(2024·四川广元·中考真题)点F 是正五边形ABCDE 边DE 的中点,连接BF 并延长与CD 延长线交于点G ,则BGC ∠的度数为.27.(2024·湖南·中考真题)如图,在锐角三角形ABC 中,AD 是边BC 上的高,在BA ,BC 上分别截取线段BE ,BF ,使BE BF =;分别以点E ,F 为圆心,大于12EF 的长为半径画弧,在ABC ∠内,两弧交于点P ,作射线BP ,交AD 于点M ,过点M 作MN AB ⊥于点N .若2MN =,4AD MD =,则AM =.28.(2024·重庆·中考真题)如图,在ABC 中,延长AC 至点D ,使CD CA =,过点D 作DE CB ∥,且DE DC =,连接AE 交BC 于点F .若CAB CFA ∠=∠,1CF =,则BF =.29.(2024·陕西·中考真题)如图,在ABC 中,AB AC =,E 是边AB 上一点,连接CE ,在BC 右侧作BF AC ∥,且BF AE =,连接CF .若13AC =,10BC =,则四边形EBFC 的面积为.30.(2024·黑龙江齐齐哈尔·中考真题)如图,在平面直角坐标系中,以点O 为圆心,适当长为半径画弧,交x 轴正半轴于点M ,交y 轴正半轴于点N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在第一象限交于点H ,画射线OH ,若()21,1H a a -+,则=a .31.(2024·四川内江·中考真题)如图,在ABC 中,40DCE ∠=︒,AE AC =,BC BD =,则ACB ∠的度数为;三、解答题32.(2024·四川乐山·中考真题)知:如图,AB 平分CAD ∠,AC AD =.求证:C D ∠=∠.33.(2024·四川内江·中考真题)如图,点A 、D 、B 、E 在同一条直线上,AD BE =,AC DF =,BC EF=(1)求证:ABC DEF ≌△△;(2)若55A ∠=︒,45E ∠=︒,求F ∠的度数.34.(2024·江苏盐城·中考真题)已知:如图,点A 、B 、C 、D 在同一条直线上,AE BF ∥,AE BF =.若________,则AB CD =.请从①CE DF ∥;②CE DF =;③E F ∠=∠这3个选项中选择一个作为条件(写序号),使结论成立,并说明理由.35.(2024·广西·中考真题)如图,在ABC 中,45A ∠=︒,AC BC >.(1)尺规作图:作线段AB 的垂直平分线l ,分别交AB ,AC 于点D ,E :(要求:保留作图痕迹,不写作法,标明字母)(2)在(1)所作的图中,连接BE ,若8AB =,求BE 的长.36.(2024·四川南充·中考真题)如图,在ABC 中,点D 为BC 边的中点,过点B 作BE AC ∥交AD 的延长线于点E .(1)求证:BDE CDA ≌ .(2)若AD BC ⊥,求证:BA BE=37.(2024·云南·中考真题)如图,在ABC 和AED △中,AB AE =,BAE CAD ∠=∠,AC AD =.求证:ABC AED ≌△△.38.(2024·江苏苏州·中考真题)如图,ABC 中,AB AC =,分别以B ,C 为圆心,大于12BC 长为半径画弧,两弧交于点D ,连接BD ,CD ,AD ,AD 与BC 交于点E .(1)求证:ABD ACD △≌△;(2)若2BD =,120BDC ∠=︒,求BC 的长.39.(2024·黑龙江绥化·中考真题)已知:ABC .(1)尺规作图:画出ABC 的重心G .(保留作图痕迹,不要求写作法和证明)(2)在(1)的条件下,连接AG ,BG .已知ABG 的面积等于25cm ,则ABC 的面积是______2cm .40.(2024·福建·中考真题)如图,已知直线1l 2l .(1)在12,l l 所在的平面内求作直线l ,使得l 1l 2l ,且l 与1l 间的距离恰好等于l 与2l 间的距离;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若1l 与2l 间的距离为2,点,,A B C 分别在12,,l l l 上,且ABC 为等腰直角三角形,求ABC 的面积.。

2017年浙江中考数学真题分类汇编解直角三角形(解析版)

2017年浙江中考数学真题分类汇编解直角三角形(解析版)

2017年浙江中考真题分类汇编(数学):专题09 解直角三角形一、单选题(共3题;共6分)1、(2017·金华)在直角三角形Rt ABC中,C=90°,AB=5,BC=3,则tanA的值是()A、B、C、D、2、(2017•湖州)如图,已知在中,,,,则的值是()A、B、C、D、3、(2017•温州)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα= ,则小车上升的高度是()A、5米B、6米C、米D、12米二、填空题(共1题;共2分)4、(2017·嘉兴)如图,把个边长为1的正方形拼接成一排,求得,,,计算________,……按此规律,写出________(用含的代数式表示).三、解答题(共6题;共40分)5、(2017·衢州)计算:6、(2017·金华)(本题6分)计算:2cos60°+(−1)2017+|−3|−(2−1)0.7、(2017·台州)如图是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧与墙MN平行且距离为米,已知小汽车车门宽AO为米,当车门打开角度∠AOB为40°时,车门是否会碰到墙?请说明理由。

(参考数据:sin40°≈,cos40°≈,tan40°≈)8、(2017•绍兴)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶总D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.(结果精确到。

参考数据:tan20°≈,tan18°≈)(1)求∠BCD的度数.(2)求教学楼的高BD9、(2017·嘉兴)如图是小强洗漱时的侧面示意图,洗漱台(矩形)靠墙摆放,高,宽,小强身高,下半身,洗漱时下半身与地面成(),身体前倾成(),脚与洗漱台距离(点,,,在同一直线上).(1)此时小强头部点与地面相距多少?(2)小强希望他的头部恰好在洗漱盆的中点的正上方,他应向前或后退多少?(,,,结果精确到)10、(2017·丽水)如图是某小区的一个健向器材,已知BC=,AB=,∠BOD=70°,求端点A到地面CD的距离(精确到).(参考数据:sin70°≈,cos70°≈,tan70°≈)答案解析部分一、单选题1、【答案】A【考点】勾股定理,锐角三角函数的定义【解析】【解答】解:在△ABC中,∵∠C=90°,AB=5,BC=3,∴AC===4,∴tanA==;故答案为A。

2017年中考真题分类解析 全等三角形

2017年中考真题分类解析   全等三角形

二、填空题1.(2017年贵州省黔东南州,12,4分)如图,点B,F,C,E在一条直线上,已知FB=CE,AC//DF,请你添加一个适当的条件使得△ABC≌△DEF.答案:答案不唯一,例如AC=FD,∠B=∠E,解析:证明三角形全等的方法有多种,选择合适的即可.所添条件,可以直接证全等也可间接得出结论证明全等.2.(2017陕西,14,3分)四边形ABCD中,AD=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为.DBAC答案:18,解析:过点A作AE⊥AC交CD的延长线于点E,有题意易证△AED≌△ACB,故四边形ABCD 的面积等于△ACE的面积,即四边形ABCD的面积=12AC×AE=12×6×6=18.3.15.(2017湖南怀化,4分)如图,AC=DC,BC=EC,请你添加一个适当的条件:,使得△ABC≌△DEC.答案第14题图EBDAC组边对应相等,利用SSS即可判定两三角形全等了.4.(2017湖南娄底,14,3分)如图5,在Rt△ABC与Rt△DCB中,已知∠A=∠D=90°,请你添加一个条件(不添加字母和辅助线),使△ABC≌△DCB.你添加的条件是__________.DB CA答案:AB=CD或AC=DB或∠ABC=∠DCB或∠ACB=∠DBC,解析:已知一斜边和一直角,要使两三角形全等,可考虑“HL”“AAS”.三、解答题1. (2017四川泸州,18,6分)如图,点A,F,C,D在同一条直线上,已知AF=DC,∠A=∠D,BC∥EF.求证:AB=DE.思路分析:根据AF=DC推导AC=DF,根据BC∥EF推导∠ACB=∠DFE,根据ASA判断△ABC≌△DEF 说明结论.证明:∵BC∥EF,∴∠ACB=∠DFE,又∵AF=DC,∴AF+FC=DC+FC,即:AC=DF.在△ABC与△DEF中,(第15题图)⎩⎪⎨⎪⎧∠A=∠D ,AC=DE ,∠ACB=∠DFE ,∴△ABC ≌△DEF (ASA ), ∴AB =DE .2. (2017重庆,24,10分)(本小题满分10分)在∆ABM 中,∠ABM =45゜,AM ⊥BM ,垂足为M .点C 是BM 延长线上一点,连接A C .(1)如图1,若AB =23,BC =5,求AC 的长;(2)如图2,点D 是线段AM 上一点,MD =MC ,点E 是∆ABC 外一点,EC =AC ,连接ED 并延长交BC 于点F ,且点F 是线段BC 的中点,求证:∠BDF =∠CEF .思路分析:(1)由AM ⊥BM ,易知∠AMB =∠AMC =90゜,利用三角形内角和定理可求得∠ABM =∠BAM ,由“等角对等边”可得AM =BM ,利用特殊角三角函数计算出AM =BM =3,又因BC =5,可得MC 的长度,最后在Rt∆AMC 中利用勾股定理即可求解出AC 的长度;(2)见中点易联想到做辅助线:延长EF 到点G ,使得FG =EF ,连接BG ,分别利用SAS 判定出∆BMD ≌∆AMC ,∆BFG ≌∆CFE ,从而将∠E 、线段CE 转化到∆BDG 中,由等腰三角形性质可证得∠BDG =∠G ,问题便可获得解决.解:(1)∵AM ⊥BM ,∴∠AMB =∠AMC =90゜,∵∠ABM =45゜,∴∠ABM =∠BAM =45゜,∴AM =BM ,∵AB =23,∴AM =BM =3,∵BC =5,∴MC =2,∴AC =133222=+;(2)延长EF 到点G ,使得FG =EF ,连接BG .由DM =MC ,∠BMD =∠AMC =90゜,BM =AM ,∴∆BMD ≌∆AMC ,故AC =BD ; 又CE =AC ,因此BD =CE ,∵点F 是线段BC 的中点,∴BF =FC ,由BF =FC ,∠BFG =∠EFC ,FG =FE ,∴∆BFG ≌∆CFE ,故BG =CE ,∠G =∠E ,所以BD =CE =BG ,∴∠BDG =∠G ,∴∠BDG =∠E .(2017年四川南充,19,8分)如图7,DE ⊥AB ,CF ⊥AB ,垂足分别是E ,F ,DE =CF ,AE =BF .求证:AC BD .思路分析:欲证AC ∥BD ,需证∠A =∠B ,即需证△AFC ≌△BED .这可利用“边角边”证得. 证明:∵AE =BF ,∴AE +EF =BF +EF , AF =BE .DE ⊥AB ,CF ⊥AB ,∴∠AFC =∠BED =90°. 在△AFC 和△BED 中,,,,AF BE AFC BED CF DE =∠=∠=∴△AFC ≌△BED (SAS). ∴∠A =∠B .∴AC ∥BD . 4. 18.(2017浙江温州,18, 8分)如图,在五边形ABCDE 中, ∠BCD =∠EDC =90°,BC =ED ,AC =A D .(1)求证:△ABC ≌△AE D. (2)当∠B =140°时,求∠BAE 的度数.EABCF图7第18题EDCB思路分析:(1)根据边角边判定△ABC 与△AED 三角形全等;(2)由三角形全等的性质得∠B =∠E =140°,五边形内角和为(5-2)×180°=540°,再求∠BAE 的度数.解:(1)∵AC =AD∴∠ACD =∠ADC又∵∠BCD =∠EDC =90°∴∠BCD -∠ACD =∠EDC -∠ADC 即∠BCA =∠ADE 在△ABC 和△AED 中 BC =ED∠BCA =∠ADE AC =AD∴△ABC ≌△AED (SAS ).(2) 由△ABC ≌△AED 得∠B =∠E =140°,五边形内角和为(5-2)×180°=540° ∴∠BAE =540°-2×140°-2×90°=80°.5. (2017江苏苏州,24,8分)如图,∠A=∠B ,AE =BE ,点D 在AC 边上,∠1=∠2,AE 和BD 相交于点O . (1)求证:△AEC ≌△BED ; (2)若∠1=42°,求∠BDE 的度数.思路分析:(1)用ASA 证明两三角形全等;(2)利用全等三角形的性质得出EC =ED ,∠C=∠BDE ,再利用等腰三角形性质:等边对等角,即可求出底角∠BDE =69°.解:(1)证明:∵AE 和BD 相交于点O ,AOD BOE ∴∠=∠.在AOD ∆和BOE ∆中,,2A B BEO ∠=∠∴∠=∠.又12,1,BEO AEC BED ∠=∠∴∠=∠∴∠=∠Q .在AEC ∆和BED ∆中,(),A B AE BEAEC BED ASA AEC BED ∠=∠⎧⎪=∴∆≅∆⎨⎪∠=∠⎩. (2),,AEC BED EC ED C BDE ∆≅∆∴=∠=∠Q . 在oo6.∠7. .AEDCB思路分析:利用同一三角形中等角对等边说明AB=AC,再利用中点的性质说明BD=CE,进而判断△BDC和△CEB全等,然后利用全等三角形的性质说明BE=CD.证明:∵∠ABC=∠ACB,∴AB=AC,∵点D,E分别为边AB,AC的中点,∴BD=CE,在△BDC和△CEB中,BD=CE,∠ABC=∠ACB,BC=CB,∴△BDC≌△CEB,∴BE=CD.8. (2017江苏常州,23,8分)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC =∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.【解析】(1)证明:∵∠BCE=∠ACD=90°,∴∠BCA=∠ECD.在△BCA和△ECD中,BCA ECDBAC DBC CE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCA≌△ECD,∴AC=CD;(2)∵AC=AE,∴∠AEC=∠ACE.又∵∠ACD=90°,AC=CD,∴△ACD是等腰直角三角形,∴∠DAC=45°,∴∠AEC=12(180°-∠DAC)=12(180°-45°),∴∠DEC=180°-∠AEC=180°-12(180°-45°)=112.5°.9. 18.(2017广东广州)(本小题满分9分)如图,点E,F在AB上,AD=BC,∠A=∠B,AE=BF.求证:△ADF≌△BCE.思路分析:根据SAS证明两个三角形全等.证明:∵AE=BF,∴AE+EF=BF+EF,即AF =BE .在△ADF 和△BCE 中,AD BC A B AF BE =⎧⎪∠=∠⎨⎪=⎩,,, ∴△ADF ≌△BCE (SAS ).10. 18.(2017湖北恩施中考·分)如图7,△ABC,△CDE 均为等边三角形,连接BD ,AE 交于点O ,BC 与AE 交于点P .求证:∠AOB=600.思路分析:先由等边三角形的性质得到相等的线段和相等的角,进而证得△ACE ≌△BCE,得出∠CAE=∠CBD,再由180=∠AOB °-BAO ABD ∠-∠不难得出60=∠AOB ˚. 18.证明:在中中和BCD ACE ∆∆,⎪⎩⎪⎨⎧=∠=∠=.,,CD CE BCD ACE BC AC∴△ACE ≌△BCE,∴∠CAE=∠CBD,∴∠AOB=1800-∠BAO-∠ABO=1800-∠BAO-∠ABC-∠CBD=1800-∠ABC-∠BAO-∠CAE=1800-600-600=600.11. 18.(2017年武汉,18,8分)(本题8分)如图,点C 、F 、E 、B 在一条直线上,∠CFD =∠BEA ,CE =BF ,DF =AE ,写出CD 与AB 之间的关系,并证明你的结论.第18题图EBD F AC思路分析:判断两条线段的关系,一般包括数量关系与位置关系,这里根据已知条件,证明两个三角形全等即可,需要注意的是CE =BF 不是对应边相等,需转化. 解:CD 与AB 之间的关系为:CD =AB ,且CD ∥AB . 证明:∵CE =BF ,∴CF =BE .在△CDF 和△BAE 中 CF BE CFD BEA DF AE =⎧⎪∠=∠⎨⎪=⎩,∴△CDF ≌△BAE . ∴CD =BA , ∠C =∠B . ∴CD ∥BA18. (2017吉林,5分)如图,点E ,F 在BC 上,BE =CF ,AB =DC ,∠B =∠C . 求证:∠A =∠D .思路分析:证明两个三角形中的两个角相等,可以考虑这两个三角形全等,利用全等的性质证得. 解析:∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE ,在△ABC 和△DCE 中,∵AB =DC ,∠B =∠C ,BF =CE ,∴△ABC ≌△DCE , ∴∠A =∠D .(2017福建,18,8分)(本小题满分8分)如图,点B ,E ,C ,F 在一条直线上,AB =DE ,AC =DF ,BE =CF .求证:∠A =∠D .思路分析:由BE =CF ,可得BC =EF ,进而利用全等三角形的判定条件“SSS ”可证△ABC ≌△DEF ,即得∠A =∠D .证明:∵BE =CF ,∴BE +EC =CF +EC ,即BC =EF .ABCFDE在△ABC和△DEF中,⎪⎩⎪⎨⎧===,,,EFBCDFACDEAB∴△ABC≌△DEF,∴∠A=∠D.14.((2017云南,15,6分))如图,点E、C在线段BF上,BE=CF,AB=DE,AC=DF.求证:∠ABC=∠DEF.思路分析:根据BE=CF,利用等式的性质可得BC=EF,又有条件AB=DE和AC=DF这三个条件得到三角形全等,再根据全等三角形的对应角相等得即可求证.证明:∵CF=BE,∴BE+EC=CF+EC,即BC=EF,在△AEB和△CFD中,⎪⎩⎪⎨⎧===DEABDFACEFBC,∴△ABC≌△DEF (SSS),∴∠ABC=∠DEF.。

2017年中考数学专题复习资料--全等三角形含答案(共11页)

2017年中考数学专题复习资料--全等三角形含答案(共11页)

A 12
F
C D E B
4 已知: AD 平分∠ BAC , AC=AB+BD ,求证:: AC 平分∠ BAD , CE⊥ AB ,∠ B+ ∠ D=180°,求证: AE=AD+BE
6 如图,四边形 ABCD 中,AB ∥ DC ,BE 、CE 分别平分∠ ABC 、∠ BCD ,且点 E 在 AD 上。求证:BC=AB+DC 。
P D A
C E
B
11 如图,△ ABC 中, AD 是∠ CAB 的平分线,且 AB=AC+CD ,求证:∠ C=2∠B A
C
D
B
12 如图: AE、 BC交于点 M, F 点在 AM上, BE∥ CF,BE=CF。 求证: AM是△ ABC的中线。
A
F
B
M
C
E
13 已知:如图, AB=AC,BD AC, CE AB,垂足分别为 D、 E,BD、 CE 相交于点 F 。 求证: BE=CD. C D
7 已知: AB=CD ,∠ A= ∠D ,求证:∠ B= ∠ C
A
D
B
C
8.P 是∠ BAC 平分线 AD 上一点, AC>AB ,求证: PC-PB<AC-AB C
A
P
D
B
9 已知, E 是 AB 中点, AF=BD , BD=5 ,AC=7 ,求 DC D
F
C
A
E
B
10.如图,已知 AD∥ BC,∠ PAB 的平分线与∠ CBA 的平分线相交于 E,CE 的连线交 AP 于 D .求证: AD +BC = AB.
17.如图 9 所示,△ ABC 是等腰直角三角形,∠ ACB = 90°, AD 是 BC 边上的中线,过 C 作 AD 的垂 线,交 AB 于点 E,交 AD 于点 F,求证:∠ ADC =∠ BDE .

2017全国中考数学真题 全等三角形(填空题+解答题)解析版

2017全国中考数学真题 全等三角形(填空题+解答题)解析版

2017全国中考数学真题分类知识点28全等三角形(填空题+解答题)解析版一、填空题1. (2017年贵州省黔东南州,12,4分)如图,点B ,F ,C ,E 在一条直线上,已知FB =CE ,AC //DF ,请你添加一个适当的条件 使得△ABC ≌△DEF .答案:答案不唯一,例如AC =FD ,∠B =∠E ,解析:证明三角形全等的方法有多种,选择合适的即可.所添条件,可以直接证全等也可间接得出结论证明全等.2. (2017陕西,14,3分)四边形ABCD 中,AD =AD ,∠BAD =∠BCD =90°,连接AC .若AC =6,则四边形ABCD的面积为 .DAC答案:18,解析:过点A 作AE ⊥AC 交CD 的延长线于点E ,有题意易证△AED ≌△ACB ,故四边形ABCD 的面积等于△ACE 的面积,即四边形ABCD 的面积=12AC ×AE =12×6×6=18. 3. 15.(2017湖南怀化,4分)如图,AC =DC ,BC =EC ,请你添加一个适当的条件: ,使得△ABC ≌△DEC .答案:AB =DE .本题答案不唯一.解析:本题要判定△ABC ≌△DEC ,已知AC =DC ,BC =EC ,具备了两组边答案第14题图BDA (第15题图)对应相等,利用SSS 即可判定两三角形全等了.二、解答题1. (2017四川泸州,18,6分)如图,点A ,F ,C ,D 在同一条直线上,已知AF =DC ,∠A =∠D ,BC ∥EF . 求证:AB =DE .思路分析:根据AF =DC 推导AC =DF ,根据BC ∥EF 推导∠ACB =∠DFE ,根据ASA 判断△ABC ≌△DEF 说明结论.证明:∵BC ∥EF , ∴∠ACB =∠DFE , 又∵AF =DC , ∴AF +FC =DC +FC , 即:AC =DF .在△ABC 与△DEF 中,⎩⎪⎨⎪⎧∠A=∠D ,AC=DE ,∠ACB=∠DFE ,∴△ABC ≌△DEF (ASA ), ∴AB =DE .2. (2017重庆,24,10分)(本小题满分10分)在∆ABM 中,∠ABM =45゜,AM ⊥BM ,垂足为M .点C 是BM 延长线上一点,连接A C .(1)如图1,若AB =23,BC =5,求AC 的长;(2)如图2,点D 是线段AM 上一点,MD =MC ,点E 是∆ABC 外一点,EC =AC ,连接ED 并延长交BC 于点F ,且点F 是线段BC 的中点,求证:∠BDF =∠CEF .思路分析:(1)由AM ⊥BM ,易知∠AMB =∠AMC =90゜,利用三角形内角和定理可求得∠ABM =∠BAM ,由“等角对等边”可得AM =BM ,利用特殊角三角函数计算出AM =BM =3,又因BC =5,可得MC 的长度,最后在Rt ∆AMC 中利用勾股定理即可求解出AC 的长度;(2)见中点易联想到做辅助线:延长EF 到点G ,使得FG =EF ,连接BG ,分别利用SAS 判定出∆BMD ≌∆AMC ,∆BFG ≌∆CFE ,从而将∠E 、线段CE 转化到∆BDG 中,由等腰三角形性质可证得∠BDG =∠G ,问题便可获得解决.解:(1)∵AM ⊥BM ,∴∠AMB =∠AMC =90゜,∵∠ABM =45゜,∴∠ABM =∠BAM =45゜,∴AM =BM ,∵AB =23,∴AM =BM =3,∵BC =5,∴MC =2,∴AC =133222=+;(2)延长EF 到点G ,使得FG =EF ,连接BG .由DM =MC ,∠BMD =∠AMC =90゜,BM =AM ,∴∆BMD ≌∆AMC ,故AC =BD ; 又CE =AC ,因此BD =CE ,∵点F 是线段BC 的中点,∴BF =FC ,由BF =FC ,∠BFG =∠EFC ,FG =FE ,∴∆BFG ≌∆CFE ,故BG =CE ,∠G =∠E ,所以BD =CE =BG ,∴∠BDG =∠G ,∴∠BDG =∠E .3. (2017年四川南充,19,8分)如图7,DE ⊥AB ,CF ⊥AB ,垂足分别是E ,F ,DE =CF ,AE =BF .求证:AC ∥BD .思路分析:欲证AC ∥BD ,需证∠A =∠B ,即需证△AFC ≌△BED .这可利用“边角边”证得. 证明:∵AE =BF ,∴AE +EF =BF +EF , 即AF =BE .∵DE ⊥AB ,CF ⊥AB ,∴∠AFC =∠BED =90°. 在△AFC 和△BED 中,EDABCF图7,,,AF BE AFC BED CF DE =⎧⎪∠=∠⎨⎪=⎩∴△AFC ≌△BED (SAS). ∴∠A =∠B .∴AC ∥BD . 4. 18.(2017浙江温州,18, 8分)如图,在五边形ABCDE 中, ∠BCD =∠EDC =90°,BC =ED ,AC =A D .(1)求证:△ABC ≌△AE D.(2)当∠B =140°时,求∠BAE 的度数.第18题EDB思路分析:(1)根据边角边判定△ABC 与△AED 三角形全等;(2)由三角形全等的性质得∠B =∠E =140°,五边形内角和为(5-2)×180°=540°,再求∠BAE 的度数.解:(1)∵AC =AD∴∠ACD =∠ADC又∵∠BCD =∠EDC =90°∴∠BCD -∠ACD =∠EDC -∠ADC 即∠BCA =∠ADE 在△ABC 和△AED 中 BC =ED∠BCA =∠ADE AC =AD∴△ABC ≌△AED (SAS ).(2) 由△ABC ≌△AED 得∠B =∠E =140°,五边形内角和为(5-2)×180°=540° ∴∠BAE =540°-2×140°-2×90°=80°.5. (2017江苏苏州,24,8分)如图,∠A=∠B ,AE =BE ,点D 在AC 边上,∠1=∠2,AE 和BD 相交于点O . (1)求证:△AEC ≌△BED ; (2)若∠1=42°,求∠BDE 的度数.思路分析:(1)用ASA 证明两三角形全等;(2)利用全等三角形的性质得出EC =ED ,∠C=∠BDE ,再利用等腰三角形性质:等边对等角,即可求出底角∠BDE =69°.解:(1)证明:∵AE 和BD 相交于点O ,AOD BOE ∴∠=∠.在AOD ∆和BOE ∆中,,2A B BEO ∠=∠∴∠=∠.又12,1,BEO AEC BED ∠=∠∴∠=∠∴∠=∠.在AEC ∆和BED ∆中,(),A B AE BEAEC BED ASA AEC BED ∠=∠⎧⎪=∴∆≅∆⎨⎪∠=∠⎩. (2),,AEC BED EC ED C BDE ∆≅∆∴=∠=∠.在EDC ∆中,,142,69EC ED C EDC =∠=∴∠=∠=,69BDE C ∴∠=∠=.6. (2017湖北黄冈,16,6分)(本小题满分6分)已知:如图,∠BAC =∠DAM ,AB =AN ,AD =AM .求证:∠B =∠ANM .思路分析:要证明∠B =∠ANM ,根据条件只需证明△ABD ≌△ANM ,而证明△ABD ≌△ANM 的三个条件中∠BAD =∠NAM 没有直接给出,所以要先交代.证明:∵∠BAC =∠DAM ,∴∠BAC -∠DAC =∠DAM -∠DAC .即∠BAD =∠NAM . 在△ABD 和△ANM 中, ,,,AB AN BAD NAM AD AM =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△ANM (SAS ) ∴∠B =∠ANM .7. (2017湖南郴州,19,6分).已知△ABC 中,∠ABC =∠ACB ,点D ,E 分别为边AB ,AC 的中点,求证:BE =CD .思路分析:利用同一三角形中等角对等边说明AB =AC ,再利用中点的性质说明BD =CE ,进而判断△BDC 和△CEB 全等,然后利用全等三角形的性质说明BE =CD . 证明:∵∠ABC =∠ACB ,∴AB=AC ,∵点D ,E 分别为边AB ,AC 的中点,∴BD =CE , 在△BDC 和△CEB 中,BD =CE ,∠ABC =∠ACB ,BC=CB , ∴△BDC ≌△CEB ,∴BE =CD .8. (2017江苏常州,23,8分)如图,已知在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE .(1)求证:AC =CD;(2)若AC =AE ,求∠DEC 的度数.【解析】(1)证明:∵∠BCE =∠ACD =90°,∴∠BCA =∠ECD . 在△BCA 和△ECD 中,BCA ECD BAC D BC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCA ≌△ECD ,∴AC =CD;(2)∵AC =AE ,∴∠AEC =∠ACE .又∵∠ACD =90°,AC =CD ,∴△ACD 是等腰直角三角形,∴∠DAC =45°, ∴∠AEC =12(180°-∠DAC)=12(180°-45°), ∴∠DEC =180°-∠AEC =180°-12(180°-45°)=112.5°.9. 18.(2017广东广州)(本小题满分9分)如图,点E ,F 在AB 上,AD =BC ,∠A =∠B ,AE =BF . 求证:△ADF ≌△BCE .AEDCB思路分析:根据SAS 证明两个三角形全等.证明:∵AE =BF , ∴AE +EF =BF +EF , 即AF =BE .在△ADF 和△BCE 中,AD BC A B AF BE =⎧⎪∠=∠⎨⎪=⎩,,, ∴△ADF ≌△BCE (SAS ).10. 18.(2017湖北恩施中考·分)如图7,△ABC,△CDE 均为等边三角形,连接BD ,AE 交于点O ,BC 与AE 交于点P .求证:∠AOB=600.思路分析:先由等边三角形的性质得到相等的线段和相等的角,进而证得△ACE ≌△BCE,得出∠CAE=∠CBD,再由180=∠AOB °-BAO ABD ∠-∠不难得出60=∠AOB ˚. 18.证明:在中中和BCD ACE ∆∆,⎪⎩⎪⎨⎧=∠=∠=.,,CD CE BCD ACE BC AC∴△ACE ≌△BCE,∴∠CAE=∠CBD,∴∠AOB=1800-∠BAO-∠ABO=1800-∠BAO-∠ABC-∠CBD=1800-∠ABC-∠BAO-∠CAE=1800-600-600=600.11. 18.(2017年武汉,18,8分)(本题8分)如图,点C 、F 、E 、B 在一条直线上,∠CFD =∠BEA ,CE =BF ,DF =AE ,写出CD 与AB 之间的关系,并证明你的结论.第18题图EBD F AC思路分析:判断两条线段的关系,一般包括数量关系与位置关系,这里根据已知条件,证明两个三角形全等即可,需要注意的是CE =BF 不是对应边相等,需转化. 解:CD 与AB 之间的关系为:CD =AB ,且CD ∥AB . 证明:∵CE =BF ,∴CF =BE .在△CDF 和△BAE 中 CF BE CFD BEA DF AE =⎧⎪∠=∠⎨⎪=⎩,∴△CDF ≌△BAE . ∴CD =BA , ∠C =∠B . ∴CD ∥BA。

2017届云南中考数学题型专项(二)全等三角形的判定与性质(含答案)

2017届云南中考数学题型专项(二)全等三角形的判定与性质(含答案)

最大最全最精的教育资源网题型专项 ( 二)全等三角形的判断与性质三角形的相关证明与计算是云南省考题中必考的基础,常常以解答题的形式出现,一般都是直接考察全等三角形的性质与判断,证明三角形全等时,只要仔细察看图形即可从已知条件中找寻出证明三角形全等的条件,但需注意解题格式,平常要增强训练.1. ( 2016·云南考试说明) 如图,已知点 E, C在线段 BF 上, BE= CF,AB∥ DE,∠ ACB=∠ F,求证:△ ABC≌△DEF.证明:∵ AB∥ DE,∴∠ B=∠ DEF.∵BE=CF,∴ BC= EF.∵∠ ACB=∠ F,∴△ ABC≌△ DEF.2.(2015 ·红河模拟 ) 已知:如图,E、 F 在 AC上, AD∥ CB且 AD= CB,∠ D=∠ B. 求证: AE= CF.证明:∵ AD∥ CB,∴∠ A=∠ C.在△ ADF和△ CBE中,∠ A=∠ C,AD= CB,∠ D=∠ B,∴△ ADF≌△ CBE(ASA).∴AF=CE.∴AF+EF= CE+EF,即 AE= CF.3.(2016 ·云南模拟 ) 在△ ABC中, AB= AC,点 E, F 分别在 AB, AC上, AE= AF, BF 与 CE订交于点 P. 求证:△EBC ≌△ FCB.证明:∵ AB= AC, AE= AF,∴∠ ABC=∠ ACB, AB- AE= AC- AF,即 BE= CF.在△ EBC和△ FCB中,BE= CF,∠ABC=∠ ACB,BC= CB,∴△ EBC≌△ FCB(SAS).全国中小学教育资源门户网站|天量课件、教学设计、试卷、教案免费下载|最大最全最精的教育资源网4.已知四边形ABCD是正方形.(1)如图, G是 BC边上随意一点 ( 不与 B,C 两点重合 ) ,连结 AG,作 BF⊥ AG于点 F,DE⊥ AG于点 E. 求证:△ABF≌△ DAE;(2) 在 (1) 中,线段EF 与 AF, BF 的等量关系是EF= AF- BF. ( 直接写出结论即可,不需要证明)证明:在正方形ABCD中, AB= AD,∠ BAD=90°,∴∠ BAF+∠ DAE= 90° .在 Rt△ ABF中,∠BAF+∠ ABF=90°,∴∠ ABF=∠DAE.∠ABF=∠ DAE,在△ ABF和△ DAE中,∠ AFB=∠ DEA=90°,AB= DA,∴△ ABF≌△ DAE.5.如图,已知AB∥ DE, AB= DE, AF= DC,请问图中有哪几对全等三角形?并任选此中一对赐予证明.解:此图中有 3 对全等三角形,它们分别是△ABF≌△ DEC,△ ABC≌△ DEF,△ BCF≌△ EFC.证明:∵ AB∥ DE,∴∠ A=∠ D.又∵ AB= DE, AF= DC,∴△ ABF≌△ DEC.同理,可证△ABC≌△ DEF或△ BCF≌△ EFC.6.(2016 ·昆明市校际中学模拟) 已知:如图,菱形ABCD中, E、 F 分别是 CB、 CD上的点,且BE= DF.求证:(1)△ ABE≌△ ADF;(2)∠ AEF=∠ AFE.证明: (1) ∵四边形ABCD是菱形,∴AB=AD,∠ B=∠ D.又∵ BE= DF,∴△ ABE≌△ ADF.(2) ∵△ ABE≌△ ADF,全国中小学教育资源门户网站|天量课件、教学设计、试卷、教案免费下载|最大最全最精的教育资源网∴AE=AF.∴∠ AEF=∠ AFE.7.(2014 ·曲靖 ) 如图,∠ ACB=90°, AC= BC, AD⊥ CE于点 D, BE⊥CE于点 E.(1)求证:△ ACD≌△ CBE;(2)已知 AD= 4, DE= 1,求 EF 的长.解: (1) 证明:∵ AD⊥ CE,∴∠ DCA+∠ DAC= 90° .又∵∠ BCE+∠ DCA= 90°,∴ ∠ BCE=∠ DAC.又∵ BE⊥ CE, AD⊥ CE,∴∠ E=∠ ADC=90° .∠ADC=∠ E,在△ ACD和△ CBE中,∠DAC=∠ ECB,AC= CB,∴△ ACD≌△ CBE.(2)∵△ ACD≌ △CBE,∴ AD=CE= 4.∴CD=BE= CE-DE= 4- 1= 3.∵∠ E=∠ ADF,∠ BFE=∠ AFD,BE EF∴△ BEF∽△ ADF.∴=.AD DF设 EF= x,则 DF=1- x.3x 3∴4=1-x. 解得 x=7.3∴EF= .78.(2016 ·云南考试说明 ) 如图 1,在△ ABC中, AB= AC, D 是 BC边上一点 ( 不与 B, C 两点重合 ) ,以 AD 为一边在AD的右边作△ ADE,使 AD= AE,∠ DAE=∠ BAC,连结 CE.(1)已知∠ BAC=90°,则∠ BCE= 90°;(2)如图 2,设∠ BAC=α ,∠ BCE=β,当点 D 在线段 BC上挪动时,α与β之间有如何的数目关系?请说明理由.解:α+β= 180° .原因:∵∠ DAE=∠ BAC,∴∠ BAC-∠ DAC=∠ DAE-∠ DAC,即∠ BAD=∠ CAE.全国中小学教育资源门户网站|天量课件、教学设计、试卷、教案免费下载|最大最全最精的教育资源网又∵ AB= AC, AD= AE,∴△ ABD≌△ ACE.∴∠ B=∠ ACE.∴∠ B+∠ ACB=∠ ACE+∠ ACB.∴∠ B+∠ ACB=β .∵ α+∠ B+∠ ACB= 180°,∴ α+β = 180° .全国中小学教育资源门户网站|天量课件、教学设计、试卷、教案免费下载|。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

已知a, b, c是厶ABC的三条边长,化简|a+b-c|-|c-a-b| 的结果为(【答案】D【答案】C.4. (2017湖南长沙第5题)一个三角形三个内角的度数之比为1: 2:A.锐角三角形B •直角三角形C •钝角三角形 D •等腰直角三角形【答案】B5.(2017 山东滨州第8题)如图,在厶ABC中,AB= AC D为BC上一点,且DA= DC BD= BA,则/ B的大小为(、选择题专题09三角形A. 2a+2b-2c B . 2a+2b C. 2c D.1. (2017甘肃庆阳第8题)2. (2017浙江嘉兴第2题)长度分别为7 , x的三条线段能组成一个三角形,x的值可以是()A. 4B. 5C.D.3. (2017天津第11题)如图,在ABC中, AB AC , AD,CE 是ABC的两条中线,P是AD上一个动点,AC3,则这个三角形- —定是B. 36°C. 80°D. 25°【答案】B.6. (2017山东滨州第11题)如图,点P为定角/ AOB的平分线上的一个定点,且/ MPN WZ AOB互补.若/ MPN在绕点P旋转的过程中,其两边分别与OA OB相交于M N两点,则以下结论:(1)PM= PN恒成立,(2)OW ON的值不变,(3)四边形PMO的面积不变,(4)MN的长不变,其中正确的个数为(A. 4B. 3C. 2D. 1【答案】B.EP最小值的是(C. AD DA. 40°M【答案】B.【薛析】如虱过点p作PC #£ AO于点G FD垂直BO于点D根IS角平分线的性质可得POPD,因N AOB ^ZMPN互补,可得Z'lPWZCPD即可得ZMPC=ZDPN,即可判走^CMP^NDP,所以PM=PN J(1)正确』由iCMP^iNDP可得CM-CN,所OM-OX=2OC, (2)正确」四边形PMON的面积等于四边形?COD 的面积,(3)正确!连待CD,ElPCXPD,PKI-PNj ZMPN-ZCPD, PM>PC;可得CD^XIX;所以(4)错误,故选B.Ur* 11 ■阳J7. (2017山东荷泽第5题)如图,将Rt ABC绕直角顶点C顺时针旋转90°,得到A'B'C,连接AA',若1 25°, 则BAA'的度数是()A. 55°B . 60° C. 65°D . 70°8. (2017浙江金华第3题)下列各组数中,不可能成为一个三角形三边长的是()A. 2,3, 4 B . 5,7,7 C . 5,6,12 D . 6,8,10【答案】C.9. (2017浙江省台州市)如图,点P是/ AOB平分线OC上一点,PD丄OB垂足为D,若PD=2,则点P到边OA的距离是()ABC AB=AC 若以点B 为圆心,BC 长为半径画弧,交腰 AC 于点Rt △ ABC 中,Z C=90,以顶点 A 为圆心,适当长为半径画弧,分别交AC, AB大于IM N 的长为半径画弧,两弧交于点P,作射线AP 交边BC 于点D,若CD=42ABC 中, AB > AC, / CAD ^^ ABC 的外角,观察图中尺规作图的痕迹,则下列结论错1B 和点D 为圆心,大于 丄BD 的长为半径作弧,两弧相交于点2A. 2B. 3 D. 4【答案】A.E ,则下列结论一定正确的是( / EBC=z BACA. AE=ECB. AE=BEC.D.Z EBC=z ABE【答案】C.AB=15,则厶ABD 的面积是( A. 15 B. 30CC.【答案】B误的是( ) A.Z DAE 玄 B B ./ EAC=/ CD.Z DAE=/ EAC【答案】D. 13 . (2017湖北省襄阳市)如图,在△ ABC 中,Z ACB=90 , Z A=30° , BC=4以点 C 为圆心,CB 长为半径作弧,则AF 的长为()10.(2017浙江省台州市)如图,已知等腰三角形11. (2017山东省枣庄市)如图,在于点M N,再分别以点 M N 为圆心,12. (2017广西四市)如图,△交AB 于点D;再分别以点E ,作射线 CE 交AB 于点F ,45°,30°的直角三角板如图摆放, 其中 C F 900, A 45°, D 30°,等于()试题分析:T/a =Z 1 + Z D,Z3 =/ 4+Z F ,.・./a +Z3 =Z 1 + / D+Z 4+Z F=Z 2+Z D+Z 3+Z F=Z 2+Z3+30° +90° =210°,故选 B.16. (2017河池第9题)三角形的下列线段中,能将三角形分成面积相等的两部分是()A.中线 B.角平分线C. 高 D .中位线【答案】A.A. 5B. 6 【答案】B. 【答案】B.150°14. ( 2017湖南株洲第5题)如图, C. 在厶ABC 中,/ BAC=x ,/ B=2x°,Z C=3x°,则/ BAD=( C. 155° D. 160°15. (2017郴州第8题)小明把一副A. 1800B . 2100C .360°D. 2700【解析】二、填空题1. (2017湖南怀化第15题)如图,AC=DC , BC=EC,请你添加一个适当的条件:_________________________________ ,使得△ ABC ◎△ DEC .【答案】CE=BC本题答案不唯一.2. (2017江苏盐城第12题)在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则【答案】120°3. (2017贵州黔东南州第12题)如图,点B、F、C E在一条直线上,已知FB=CE AC// DF,请你添加一个适当的条件________使得△ ABC^^ DEF【答案】/ A=Z D.4. (2017新疆建设兵团第15题)如图,在四边形ABCD中, AB=AD CB=CD对角线AC, BD相交于点O,下列结论中:①/ ABC d ADC②AC与BD相互平分;③AC BD分别平分四边形ABCD的两组对角;④四边形ABCD的面积1S=—AC?BD正确的是__________ (填写所有正确结论的序号)5._________________________________________________________________________________________________ (2017四川省达州市)△ ABC中,AB=5, AC=3 AD是厶ABC的中线,设AD长为m则m的取值范围是 _______________________【答案】1< m< 4.顶角的度数为【答案】30°或150°或90°..【解析】试题分析:①BC为腰,1•/ AD L BC于点D, AD=—BC, ACD=30 ,2如图1,人。

在厶ABC内部时,顶角/ C=30 , 如图2,人。

在厶ABC外部时,顶角/ ACB=180 - 30° =150°②BC为底,如图3,1•/ ADL BC 于点D, AD=—BC, • AD=BD=CD「./ B=Z BAD,2CD与AB之间的关系,并证明你的结论.2. (2017四川泸州第18题)如图,点A F、C、D在同一条直线上,已知AF=DC / A=/ D, BC// EF,求证:AB=DE3. (2017四川宜宾第18题)如图,已知点B E、C、F在同一条直线上,AB=DE / A=/ D, AC// DF.求证:BE=CF6. (2017黑龙江绥化第20题)在等腰ABC中,AD1BC交直线BC于点D,若AD - BC,贝V ABC的2/ C=Z CAD BAD/ CAD= 1X 180° =90°,21. 18题)如图,点C,F,E,B在一条直线上, CFD BEA, CE BF,DF AE •写出•••顶角/BAC=90 ,(2017湖北武汉第S3(2)用等式表示线段 MB 与PQ 之间的数量关系,并证明【答案】(1)【解析】分析: ⑴由直角三角形性质,两锐角互余,可得/ AMQ=18° -Z AHM - / PAM,解得/ AMQ=4° + .(2)由题意得AP=AQ=QM 再证RT ^AP 笑RT ^QME ,全等三角形对应边相等得出 PC=ME 得出△ MEB 为等腰直角三角形,贝U PQ= 2 BM. 本题解析:(1) Z AMQ=4° +.理由如下:4. (2017北京第19题)如图,在 ABC 中,AB AC,A 36° , BD 平分 ABC 交AC 于点D .求证:AD BC .2. (2017北京第28题)在等腰直角 ABC 中,ACB 900,P 是线段BC 上一动点(与点B 、C 不重合),连接 AP ,延长BC 至点Q ,使得CQ CP ,过点Q 作QHAP 于点H ,交AB 于点M .(1)若 PAC ,求 AMQ 的大小(用含的式子表示)•••/ PAC= , △ ACB是等腰直角三角形,•••/ PAB= 45°—,/ AHM=90 , A / AMQ=18°0 -Z AHM- / PAM= 45° +⑵线段MB与PQ之间的数量关系:PQ= 2 MB.理由如下:连接AQ过点M做ME I QB•/ ACLQP,CQ=CP/-Z QAC Z P AC= , •/ QAM= +45° =Z AMQ, • AP=AQ=QM; RT A APC和RT A QME MQE PAC中,ACP QEM •- RT A APC^ RT A QME, • PC=ME,「.A MEB 是等腰直角三角形,• 1PQ2MB,2 2AP QM• PQ= 2 MB.考点:全等三角形判定,等腰三角形性质5. (2017福建第19题)如图,ABC中,BAC 90o, AD BC,垂足为D •求作ABC的平分线,分别交AD.AC于P , Q两点;并证明AP AQ •(要求:尺规作图,保留作图痕迹,不写作法)【解析】试题分析;按作圉方法作出角平分线BQ,然后通过制用互为余角叹及等角的余角相等得到上肝沪么峻F, 从而证得AP=AQ.试题解析二作團如下,BQ就罡所求作的ZABC的平分线,Px Q就是所求作的点"证明如下:丁心丄BC, .\ZADB=90c, .\Z3FD+ZFBD=90P」/Z0AC=9O°, .\ZAQP+ZAEQ=90°, _._Z求证:ADF BCE .B, AE BF .【答案】作图见解析;证明见解析AE(i=ZPBD,二ZBPD二:ZEPD=Z:APQ, .'-ZAPO=Z AQP, ;.AP=AQ.和 D 相交于点 • (1)求证:C 也D ;(2)若 1 42°,求D 的度数.【答案】(1详见解析;(2) BDE 69°试题分析:先将AE BF 转化为AF = BE 再利用SAS 证明两个三角形全等试题解析:证明:因为 AE = BF ,所以,AE + EF = BF + EF ,即卩 AF = BEAD BCABAF BE所以, ADFBCE14. (2017四川泸州第18题)如图,点A,F,C,D 在同一直线上,已知 AF DC, A D,BC//EF ,.求证:AB DE .20.24题)(本题满分8分)如图,,点D 在 C 边上,1【解析】在厶ADF 和厶BCE 中,(2017江苏苏州第09 三角形【解析】试题分析:(1)用ASA证明两三角形全等;(2)利用全等三角形的性质得出EC ED, C BDE,再利用等边对等角求解即可•试题解析:⑴证明:Q AE和BD相交于点O, AOD BOE .在AOD和BOE中,A B, BEO 2.又Q 1 2, 1 BEO, AEC BED .在AEC和BED 中,A BAE BE , AEC BED ASA .AEC BED(2)Q AEC BED, EC ED, C BDE .在EDC 中,Q EC ED, 1 42°, C EDC 69°,BDE C 69°.考点:全等三角形的判定与性质43. (2017四川省南充市)如图,DE I AB CF丄AB 垂足分别是点E、F, DE=CF AE=BF求证:AC// BD58. (2017广东省)如图,在△ ABC中,/ A>Z B.(1)作边AB的垂直平分线DE,与AB, BC分别相交于点D, E (用尺规作图,保留作图痕迹,不要求写作法)(2)在(1)的条件下,连接AE若/ B=50°,求/ AEC的度数.【答案】(1)作图见见解析;(2)100°.【解析】试题分析:(1)根据题意作出图形即可;(2)由于DE是AB的垂直平分线,得到AE=BE根据等腰三角形的性质得到/ EAB2 B=50°,由三角形的外角的性质即可得到结论.09 三角形试题解析:(1)如图所示;(2)T DE是AB 的垂直平分线,••• AE=BE「・/ EAB2 B=50°,二/ AEC d EAB+Z B=100°5考点:1 •作图一基本作图;2 •线段垂直平分线的性质.63. (2017江苏省连云港市)如图,已知等腰三角形ABC中,AB=AC点D E分别在边AB. AC上,且AD=AE连接BE、CD交于点F.(1)判断/ ABE与/ ACD的数量关系,并说明理由;(2)求证:过点A F的直线垂直平分线段【答案】(1)Z ABE Z ACD (2)证明见解析.【解析】试题分析:(1)证得△ ABE^A ACD后利用全等三角形的对应角相等即可证得结论;(2)利用垂直平分线段的性质即可证得结论.试题解析:(1)Z ABE Z ACD在厶ABE 和厶ACD 中,T AB=AC Z A=Z A, AE=AD「.A ABE^A ACD •/ ABE Z ACDA、F均在(2)T AB=AC^Z ABC Z ACB 由(1)可知/ ABE Z ACD •/ FBC Z FCB • FB=FC T AB=AC •点线段BC的垂直平分线上,即直线AF垂直平分线段BC.考点:1.等腰三角形的性质;2.线段垂直平分线的性质; 3 .探究型.3. (2017郴州第19题)已知ABC中,ABC ACB ,点D, E分别为边AB, AC的中点,求证: BE CD .【答案】详见解析【解析】试题分析:由/ ABC d ACB可得AB=AC又点D E分别是AB AC的中点.得到AD=AE通过△ ABE^A ACD即可得到结果.证明! '.'Z ABC^Z ACB,T点臥E分别是皿AC的中点...AD=AE7在△血旺^A ACD中J=10 = ALjdC = AS/.AAaE^AACD,.'.BE=CD.考点:全等三角形的判定及性质•9. (2017哈尔滨第24题)已知:△ ACB和厶DCE都是等腰直角三角形,Z ACB = Z DCE =90°,连接AE , BD交于点O , AE与DC交于点M , BD与AC交于点N •(1)如图1,求证:AE= BD ;⑵如图2,若AC = DC,在不添加任何辅助线的情况下,请直接写出图【答案】(1)证明见解析;(2)A ACB^A DCE( SAS, △ EMC^A BCN( ASA), △ AON^A DO( AAS, △ AOB^A DOE2中四对全等的直角三角形(HL )【解析】试题分析:(1)根抿全等三角形的判定(SAS)证明"236 从而可扣AEFR(2)根据条件判断出圉中的全等直角三角形8卩可i试题解析:(i> '-'Aflca 和△DCE 都是等腰直吊三角形,Z ACS =Z DCE =90° , ;.AC =BC J DC =EG/. Z ACE +Z ACD = Z DCE 十 Z MD 八:Z BCD =Z ACI ,rAC = BC在厶 ACE ^AECD 中,£ACE~ ZB CD , .'.AACE^ABCD (SAS); .'.AE=BD ;CE^CDk.⑵ 二曲H 片EOCB F A ACB ^A DCE 〔弘S ”宙(I > 可知:Z AEC =Z BDC , Z EA ^Z DB C J /^Z DOH ^O * ,'.■ Z AEC =Z CAE = Z CBD , .\A EMC ^A ECN 辄站力/.CM=CN ;「•珊AA J ON^ADOM <MS ); \'DE=AB ? A0=D0』.\A^OB^ADOE <HL )考点:1.全等三角形的判定与性质;2.等腰直角三角形.10.(2017黑龙江齐齐哈尔第 23题)如图,在 ABC 中,AD BC 于D , BD AD , DG DC , E , F 分10,求EF 的长.【答案】(1)证明见解析;⑵EF=5.2别是BG ,AC 的中点.DF ;(2)连接EF ,若AC【解析】试题分析二(1)证明△⑪倉ZUDC.丰Rfe全等三角形的性质、直角三角形的性质证明;(2)根据直角三甬形的性J厉分别松tDE、D眄根据勾股定理计算P卩可.'BD二AD试题解析二(1) '/AD丄BC…:乂心氏厶血2=00冬;在△耽空和AADC中」ABDG = ZADC r\DG=DC/.A BDG^A ADC,.\BG^AC?Z EGD=Z C^■/ZAL0=ZWK=9O4J E, F 分别杲EG* 忆的中点/.DE=|D G^EG J DF^ - AC=AF,土£,'.DE=DF;ZErG=ZEGD, NlTA 乙理S ;.ZEDG+Zm=9O0,二DE丄DD⑵'/AC^O, .■-DE=D^5?由勾股是理得,E吐磁)尸十劝S专血.考点:1.全等三角形的判定与性质; 2.勾股定理.11. (2017湖北孝感第18题)如图,已知AB CD,AE BD,CF BD ,垂足分别为E,F,BF DE.求证AB PCD.【答案】证明见解析【解析】试题分析:根据全等三角形的判定与性质,可得/ B=Z D,根据平行线的判定,可得答案.试题解析:••• AE± BD CF丄BD •••/AEB2 CFD=90 ,•/ BF=DE「・BF+EF=DE+EF「. BE=DF亠AB CD在Rt△ AFB 和Rt△ CFD 中,,• Rt △AFB^ Rt △CFD( HL), •/ B=Z D,「. AB// CDBE DF考点:全等三角形的判定与性质。

相关文档
最新文档