分子生物学总结(朱玉贤版)

分子生物学总结(朱玉贤版)
分子生物学总结(朱玉贤版)

结合着下载的资料复习吧~~~~

绪论

分子生物学的发展简史

Schleiden和Schwann提出“细胞学说”

孟德尔提出了“遗传因子”的概念、分离定律、独立分配规律

Miescher首次从莱茵河鲑鱼精子中分离出DNA

Morgan基因存在于染色体上、连锁遗传规律

Avery证明基因就是DNA分子,提出DNA是遗传信息的载体

McClintock首次提出转座子或跳跃基因概念

Watson和Crick提出DNA双螺旋模型

Crick提出了“中心法则”

Meselson与Stah用N重同位素证明了DNA复制是一种半保留复制

Jacob和Monod提出了著名的乳糖操纵子模型

Arber首次发现DNA限制性内切酶的存在

Temin和Baltimore发现在病毒中存在以RNA为模板,逆转录成DNA的逆转录酶

哪几种经典实验证明了DNA是遗传物质? (Avery等进行的肺炎双球菌转化实验、Hershey 利用放射性同位素35S和32P分别标记T2噬菌体的蛋白质外壳和DNA)

第二章染色体与DNA

第一节染色体

一、真核细胞染色体的组成

DNA:组蛋白:非组蛋白:RNA = 1:1:(1-1.5):0.05 (一)蛋白质(组蛋白、非组蛋白)

(1)组蛋白:H1、H2A、H2B、H3、H4

功能:①核小体组蛋白(H2A、H2B、H3、H4)作用是将DNA分子盘绕成核小体

②不参加核小体组建的组蛋白H1,在构成核小体时起连接作用

(2)非组蛋白:包括以DNA为底物的酶、作用于组蛋白的酶、RNA聚合酶等。常见的有(HMG蛋白、DNA结合蛋白)

二、染色质

染色体:分裂期由染色质聚缩形成。

染色质:线性复合结构,间期遗传物质存在形式。

常染色质(着色浅)

具间期染色质形态特征和着色特征染色质

异染色质(着色深)

结构性异染色质兼性异染色质

(在整个细胞周期内都处于凝集状态)(特定时期处于凝集状态)三、核小体

由H2A、H2B、H3、H4各2 分子组成的八聚体和绕在八聚体外的DNA、一分

子H1组成。八聚体在中央,DNA分子盘绕在外,由此形成核心颗粒。,H1结合在核心颗粒外侧DNA双链的进出口端,如搭扣将绕在八聚体外DNA链固定,核心颗粒之间的连接部分为连接DNA。

核小体的定位对转录有促进作用

中期染色体由着丝粒、染色体臂、次缢痕、随体、端粒(由重复的寡核苷酸序列构成)5部分组成。

核型:指染色体组在有丝分裂中期的表型, 是染色体数目、大小、形态特征的总和。

第二节DNA

Chargaff定则:(1) 同一生物的不同组织的DNA碱基组成相同

(2) 一种生物DNA碱基组成不随生物体的年龄、营养状态或者环境变

化而改变

(3) [A]=[T]、[G]=[C],总的嘌呤摩尔含量与总的嘧啶摩尔含量相同([A

+G]=[C+T])

(4)不同生物来源的DNA碱基组成不同,表现在A+T/G+C比值的不

(一)DAN的结构

一级结构:四种脱氧核糖核苷酸dAMP、dGMP、dCMP、dTMP,通过3',5'-磷酸二酯键连接起来的直线形或环形多聚体。

某DNA分子的一条多核苷酸链由100个不同的碱基组成,其可能的排列方

式有4^100种

右手螺旋:A-DNA 、B-DNA(最常见)

二级结构:双螺旋结构左手螺旋:Z-DNA

B-DNA:(Watson-Crick)92%湿度下的钠盐结构

补配对原则,相邻碱基对平面间的距离为0.34nm,

双旋旋的螺距为3.4nm,每圈螺旋有10个碱基对,

螺旋直径为2.0nm。A=T(两个氢键),G=C(三个

氢键),具大沟和小沟。

A-DNA:相对湿度75%以下的结构,每圈螺旋有11个碱基对,螺体较宽而短,

碱基对与中心轴的倾角也不同,呈19°大沟变窄、变深,小沟变宽、变

浅。若DNA 双链中一条链被相应RNA替换,则变构为A-DNA。(基

因表达)

Z-DNA:左手螺旋,螺距延长(4.5nm左右),直径变窄(1.8nm),每个螺旋含12

个碱基对。螺旋骨架呈Z字形。(转录调控)

正超螺旋(左旋、双螺旋圈数增加而拧紧)

三级结构:双螺旋进一步扭曲形成超螺旋负超螺旋(右旋、减少而拧松,绝大多数)

White方程:L=T+W

L(Linking number):连环数或称拓扑环绕数,指cccDNA中一条链绕另一条链的总次数。其特点是:(1)L是整数;(2)在cccDNA中任何拓扑学状态中其值保持不变;(3)右手螺旋对L取正值。

T(Twisting number):缠绕数,DNA一条链绕另一条链的扭转数即双螺旋的圈数。其特点:(1) 可以是非整数(2) 是变量;

W(Writhing number):扭曲数,即超螺旋数,指双螺旋分子在空间上相对于双螺旋轴的扭曲。特点是:(1)可以是非整数(2)是变量;

I型:转变超螺旋为松弛状态

拓扑异构酶(改变DNA拓扑异构体的L值)II 型:引入负超螺旋&同I型

(二)DNA主要序列类型

高度重复序列(卫星DNA、分散高度重复序列)、中度重复序列、低度重复序列、反向重复序列。

(三)DNA的理化性质

溶解度:微溶于水,钠盐在水中的溶解度较大。可溶

于2-甲氧乙醇,但不溶于乙醇等一般有机溶

剂,常用乙醇从溶液中沉淀核酸。

紫外吸收:DNA钠盐的紫外吸收在260nm附近有最

大吸收值

核酸的沉降特性(如右图)

(四)DNA的变性与复性

变性:DNA分子由稳定的双螺旋结构松解为无规则线性结构的现象,不涉及到其一级

结构的改变。

伴随变性,会发生增色效应(紫外吸收明显增加)

溶液粘度下降等现象。

熔解——DNA加热变性的过程。

溶解温度(Tm):核酸加热变性过程中,紫外光吸

收值达到最大值的50%时的温度称为核酸的解链

温度。(G+T含量越高Tm越大:DNA分子序列越

均一,变形过程温度范围越窄:溶液的离子强度较低时,Tm值较低。)

复性:热变性DNA一般经缓慢冷却后即可复性,此过程称之为退火

影响DNA复性的因素:①温度和时间②DNA浓度↑,复性↑③DNA顺序的复杂

性④DNA片段的大小⑤盐的浓度

1/k值越大表明反应越慢

核酸外切酶

酶解: 核酸核酸酶:I型和Ⅲ型限制性内切酶(需要消耗A TP)、Ⅱ型(不需要A TP)

DNA的复制

Meselson与Stah用N重同位素证明了DNA复制是一种半保留复制

(一)基本概念:

半保留复制:每个子代分子的一条链来自亲本DNA,另一条则来是新合成的,这种复制方式称半保留复制。

半不连续复制:DNA复制时,一条链连续复制,另一条不连续复制,这种复制方式称先导链:DNA复制时,连续合成的链后随链:不连续合成的链

冈崎片段:后随链复制中出现的不连续的DNA片段

复制子:从起始点开始至终止点而独立进行复制的单位(细菌只有一个,真核多个)一个复制子只含一个复制起始点,启动单向复制or双向取决于起始点形成一

个复制叉or两个。

复制终止点:复制子中控制复制终点的位点θ型——大肠杆菌质粒DNA

(二)DNA复制的几种方式滚环型——噬菌体

线性DNA(单向、双向),环状DNA D环(D-loop)型——动物线粒体(三)复制的过程(起始、延伸、终止)

不能从头开始,必须有引物

参与复制的酶:解旋酶、DNA单链结合蛋白质、、引物酶、DNA聚合酶(Ⅰ、Ⅱ、Ⅲ)连接酶,拓扑异构酶

单链结合蛋白(SSB):防止被解链形成的单链重新配对或被核酸酶降解

引物酶(RNA聚合酶)引物是一段RNA分子

DnaB+DnaC+DNA复制起始区域+ 引物酶=引发体

DNA聚合酶(Ⅰ、Ⅱ、Ⅲ)

DNA聚合酶ⅠDNA聚合酶ⅡDNA聚合酶Ⅲ5′→3′聚合活性+++

3′→5′外切活性+++

5′→3′外切活性+--

功能

修复不详染色体DNA的复

制校对

去除引物、水解

DNA聚合酶有6个结合位点:模板结合位点;引物结合位点;引物3’-OH结合位点;底物dNTP结合位点;5’→3’外切酶结合位点;3'→5'校正位点。

连接酶:DNA聚合酶只能催化多核苷酸链的延长,不能催化各片段间的连接,复制中的单链缺口由DNA连接酶催化,但是它不能催化两条游离链的连接。

原核生物DNA复制的基本过程

(1)起始:包括DNA复制起点双链解开及RNA引物的合成(整个DNA复制过程中,只有复制起始受细胞周期的严格调控)

(2)延长:DNA链的延长主要由DNA聚合酶Ⅲ催化

(3)终止

真核与原核生物复制的区别:

1.原核生物单一起点;真核生物多起始点

2.真核生物复制速度比原核生物慢

3.原核生物催化先导链、后随链的酶相同;真核不同

4.原核细胞中引物酶与解旋酶相连;真核中引物酶与DNA聚合酶相连

5.真核生物的染色体在全部完成复制之前,各个起始点上的DNA的复制不能再

开始,而原核生物,复制起始点可以连续开始新的DNA复制,表现为虽只有

一个复制单元,但可有多个复制叉。

6.真核生物DNA复制的起始需要起始原点识别复合物(ORC)参与

7.在真核生物中主要有5种DNA聚合酶(α、β、γ、δ、ε),一半都不具有

核酸外切酶活性。

端粒的复制:依赖于端粒酶(逆转录酶,由蛋白质和RNA组成)

DNA的损伤和修复与基因突变

(一)DNA的损伤

自发性损伤:脱嘌呤、嘧啶;碱基脱氨基作用;碱基的互变异构(烯醇式与酮式)、细胞正常代谢产物对DNA的损伤

物理因素:高能离子化辐射(X射线、γ射线);非离子化辐射(紫外线)

化学因素:烷化剂;碱基类似物

(二)DNA损伤的修复

直接修复、切除修复、错配修复、重组修复、SOS修复

直接修复:常见的有光复活修复,作用于紫外线引起的DNA嘧啶二聚体的损伤修复,由DNA光复活酶识别并催化光复活反应。

切除修复:切除修复是指在一系列酶的作用下,将DNA分子中受损伤部分切除,然后

以另一条完整的互补链为模板,重新合成切除的部分,使DNA恢复正常结

构的过程。——修复DNA损伤的主要方式

基本步骤:识别(核酸内切酶)、切除+ 修补(DNA聚合酶Ⅰ)、连接(DNA

连接酶)

错配修复:区别模板链和新合成的DNA链是通过碱基的甲基化来实现的。刚合成的子代分子中,亲代链甲基化,新合成链的GA TC中的A 未被甲基化,故子代

DNA暂时是半甲基化的,细胞发现错配碱基,首先切除未甲基化链上的错

配碱基。

重组修复:

SOS修复:当DNA受到严重损伤,细胞为了生存诱发的一些复杂的反应。其诱发了修复机制相关酶与蛋白质产生。

(三)基因突变

概念:在DNA分子碱基序列水平上所发生的一种永久性、可遗传的变化。

点突变(转换——嘧啶与嘧啶,嘌呤与嘌呤、颠换——嘧啶与嘌呤)、缺失、插入

DNA的转座

转座子:基因组上可自主复制和位移的DNA片段,可以直接从基因组内的一个位点移到另一个位点,发生转座重组,从而改变染色体的结构。转座子的转移过程

叫转座。转座子每次移动时携带着转座必需的基因一起在基因组内跃迁,所

以转座子又称跳跃基因。

类型:简单转座子和复合转座子

结构特征:(1)结构中含有一个或多个开放阅读框,其中有一个编码转座酶的

基因,这种酶催化转座子插入新的位置;

(2)两端有20-40bp的反向末端重复序列,末端重复序列是转座所

必需的,因为它们是转座酶所识别的底物。

转座机制:

转座作用的遗传学效应:1. 引起插入突变2. 产生新的基因3. 产生染色体畸变

4. 引起生物进化

反转座子:以RNA为中间体进行转座

第三章RNA的合成

转录的概念与特点

转录:以DNA中一条链为模板,在RNA聚合酶催化下,以四种NTP为原料,合成RNA 的过程。

有两种方式:

DNA指导的RNA合成——生物体内的主要合成方式。

RNA指导的RNA合成——病毒。

合成的RNA中,如只含一个基因的遗传信息,称为单顺反子;如含有几个基因的遗传信息,则称为多顺反子。

转录特点:

不对称性:指以双链DNA中的一条链作为模板进行转录,该链称为模板链(无意

义链、负链),另一条不作为模板的链称为编码链(有意义链、正链)

●连续性:RNA转录合成时为连续合成一段RNA链,各条RNA链之间无需再进行

连接。

●单向性:合成方向为5'→3'

●有特定的起始和终止位点:RNA转录合成时,只能以DNA分子中的某一段作为模

●转录可同时进行

DNA复制与转录的比较

相同点:

●都以DNA为模板

●碱基的加入严格遵循碱基配对原则

●都生成磷酸二酯键

●新链合成方向为5’→3’

不同点:

●复制需要引物,转录不需引物

●转录时,模板DNA的信息全保留,复制时模板信息是半保留

●转录时,RNA聚合酶只有5’→3’聚合作用,无5’→3’及3’→5’外切活性●复制过程是整条染色体复制,而转录是有选择的,在某个时期,只有某个特定的基

因或一组基因被转录

●复制--半保留,转录--不对称

转录反应体系:DNA模板,NTP,酶,Mg2+,Mn2+

合成方向:5’→3’

连接方式:3’,5’磷酸二酯键

原核与真核生物RNA聚合酶组成与功能

该酶在单链DNA模板以及四种核糖核苷酸存在的条件下,不需要引物,即可从5'→3'聚合RNA。

(一)原核

核心酶+全酶(α2ββ′ωσ)

核心酶:不能起始RNA的合成

σ:转录起始因子,识别转录起始开始部位

作用:识别DNA分子中转录的起始部位,促进与模板链结合,催化NTP的聚合,识别转录终止信号。

(二)真核

功能:识别DNA双链上的启动子

使DNA变性在启动子处解旋成单链

通过阅读启动子序列,RNA pol确定它自己的转录方向和模板链

达到终止子时,通过识别停止转录

启动子与终止子

(一)启动子

基因转录起始所必需的一段DNA序列,位于结构基因上游。启动子本身不转录原核生物启动子:包括转录起始点、结合部位(-10区)、识别部位(-35区)、及二者之间的间隔区。

-10区:位于起始点上游-10bp处,5’-TA TAA T-3’,AT较丰富,易于解链,为RNA 聚合酶结合部位。

-35区:位于-35bp处,5’-TTGACA-3’,为RNA 聚合酶识别位点

真核生物启动子:(三类)RNA聚合酶Ⅱ识别的启动子包括基础元件、上游元件、应答元件

基础元件:包括TA TAbox和起始子,TA TAbox与-10区相似,是转录因子与DNA 结合部位

上游元件:作用是提高转录效率,并不是所有的启动子必须的

(二)终止子

在基因编码区下游的可被RNA聚合酶识别和停止合成RNA的一段DNA序列特点:富含GC与A T,形成发卡结构和连续的U区,以终止转录。

蛋白ρ因子辅助识别终止信号,参与终止。

大肠杆菌中的两类终止子:

强终止子:发夹结构,3′端上有6个U

弱终止子-需要ρ因子

原核生物RNA的合成

分为起始,延长、终止三个阶段

转录起始不需要引物

RNA按5’~3’方向延伸

真核生物转录过程与原核生物的不同点

(1)转录在细胞不同位置进行

(2)原核只有一种RNA聚合酶,而真核细胞有三种聚合酶;

(3)启动子的结构特点不同,真核有三种不同的启动子和有关的元件;

(4)真核生物RNA聚合酶自身不能识别和结合到启动子上,需要转录因子先于启

动子结合后才能结合上去。

RNA转录后加工

减少部分片段:切除5′端前导序列,3′端拖尾序列和中部的内含子

增加部分片段:5′加帽,3′加poly(A),通过编辑加入一些碱基

修饰:对某些碱基进行甲基化

(一)原核生物RNA转录后加工

转录过程中几个结构基因利用共同的启动子和共同的终止信号,转录形成一条mRNA分子,一条mRNA链可编码几种不同的蛋白质。形成的mRNA称为多顺反子Mrna。

(二)真核生物RNA转录后加工

tRNA加工:与原核生物不同的一点是先将内含子切除,再由连接酶将外显子连接

mRNA加工:一个结构基因转录成一个mRNA分子且内含子与外显子一起被转录

包括:5’末端加帽子、3’端多聚A尾、剪接去除内含子将外显子连接

5’末端加帽子:脱磷、加GTP、甲基化(细胞核内完成)

0型帽子:7—甲基鸟苷三磷酸吗m^7GpppN

Ⅰ型、Ⅱ型

3’端多聚A尾:poly(A)不为基因编码,由poly(A)聚合酶合成(细胞核)

剪接:核内不均一RNA (hnRNA): 为mRNA的前体,转录物中外显子与内含子间隔排列,需经剪接加工后生成mRNA。

外显子: 在真核生物基因中编码蛋白质的序列。

内含子: 非编码蛋白的序列

5’端剪切点为GU;3’端剪切点为AG

核酶:具有酶的催化活性的RNA称为核酶

第四章蛋白质的生物合成和转运

翻译:从mRNA链上一个特定的起始位点开始,按每三个核苷酸代表一个氨基酸的原则,依次合成一条多肽链的过程。包括起始、延长、终止。

(一)参与蛋白质生物合成的物质

20种氨基酸、mRNA、tRNA、核糖核蛋白体(RNA和核糖体)、辅助因子mRNA:起始密码----AUG

终止密码----UAA/UGA/UAG

(1)通用性与特殊性(人线粒体中,UGA不是终止码,而是色氨酸的密码

子)

(2)简并性(一种以上密码子编码同一个氨基酸)

(3)摆动性(前两个碱基决定其专一性,第三位碱基可有变异)

(4)连续性和方向性

(5)不重叠性

tRNA:(1)具反密码子识别mRNA上密码子,反密码子阅读方向5’~3’,反密码子第一位碱基与密码子第三位碱基配对。

(2)携带氨基酸,氨基酸结合在tRNA 3’端CCA的位置。一种氨基酸可被几种tRNA携带,一种tRNA只携带一种氨基酸。tRNA以所运氨基酸命名,如携带丙氨酸的叫丙氨酸—tRNA,结合氨基酸后,成为丙氨酰—tRNA。

(3)连接多肽链和核糖

核糖核蛋白体:蛋白质肽键的合成就是在这种核糖体上进行的。一类附着于粗面内质网,参与分泌蛋白的合成。另一类游离于胞质,参与细胞固有蛋白质的合成。

原核生物与真核生物核糖体组分

核糖体上活性位点

(二)蛋白质合成的过程

氨基酸的活化与转运、多肽链合成的起始、肽链的延长、肽链合成终止、折叠与加工

(1)氨基酸的活化与转运:氨酰-tRNA合成酶催化氨基酸的活化和与特异的tRNA 结合

(2)多肽链合成的起始:辨认起始密码子,核糖体与mRNA、第一个氨酰-tRNA、起始因子结合形成起始复合物。

原核生物中:真核生物中:

起始氨基酸是:甲酰甲硫氨酸甲硫氨酸

起始AA-tRNA是:fMet-tRNAfMet Met-tRNAMet

原核起始tRNA:tRNAf 真核生物起始:tRNAi 延伸:tRNAm

(3)肽链的延长——结合、转肽、移位

(4)肽链合成的终止:当核蛋白体A位出现终止密码后,多肽链合成停止,肽链

从肽酰-tRNA中释出,mRNA、核蛋白体大小亚基等分离

真核生物与原核生物蛋白质合成的异同

(1)起始

核糖体为80S

用于起始的氨酰-tRNA为Met-tRNAMet(甲硫氨酸没有被甲酰化)

起始因子较多

mRNA的5′端帽子结构和3′端polyA都参与形成翻译起始复合物

(三)蛋白质合成的抑制剂

(1)抗生素类阻断剂

?链霉素、卡那霉素、新霉素

抑制G﹣蛋白质合成的三个阶段:

①阻止起始复合物的形成,使氨基酰tRNA从复合物中脱落;

②在肽链延伸阶段,使氨基酰tRNA与mRNA错配;

③在终止阶段,阻碍终止因子与核蛋白体结合,使已合成

的多肽链无法释放,而且还抑制70S核糖体的解离。

?四环素和土霉素

①作用于细菌内30S小亚基,抑制起始复合物的形成;

②抑制氨基酰tRNA进入核糖体的A位,阻滞肽链的延伸;

③影响终止因子与核糖体的结合,使已合成的多肽链不能脱落离核糖体。?氯霉素—广谱抗生素。

?①与核糖体上的A位紧密结合,因此阻碍氨基酰tRNA进入A位。

?②抑制转肽酶活性,使肽链延伸受到影响,菌体蛋白质不能合成,因此有较强的抑菌作用

?嘌呤霉素

代一些氨基酰tRNA进入核糖体的A位,当延长中的肽转入此异常A位时,

容易脱落,终止肽链合成。

?白喉霉素

(2)干扰素对病毒蛋白合成的抑制

干扰素是真核细胞感染病毒后能分泌的一类有抗病毒作用的蛋白质,能抑制病毒的繁殖。

扰素诱导的蛋白激酶使真核eIF2磷酸化失活

(三)蛋白质的运转

分泌蛋白—翻译-转运同步机制;细胞器需要-翻译后转录机制

(1)翻译-运转同步机制

信号肽假说

信号肽:常指新合成多肽链中用于指导蛋白质跨膜转移的N-末端氨基酸序列

假说的基础:蛋白质定位的信息存在于该蛋白质自身结构中,并且通过与膜上特殊受体的相互作用得以表达

假说的内容:蛋白质跨膜运转信号也是由mRNA编码的。在起始密码子后,有一段编码疏水性氨基酸序列的RNA区域,这个氨基酸序列就被称为信号序列。信号序列在结合核糖体上合成后便与膜上特定受体相互作用,产生通道,允许这段多肽在延长的同时穿过膜结构,因此,这种方式是边翻译边跨膜运转。

●当翻译进行到50~0个氨基酸后,信号肽开始从核糖体上露出,被糙面内质

网上受体识别并结合,信号肽进入内质网后,被水解,正在合成的新生肽随之通过蛋白孔道穿越磷脂双分子层,当核糖体移至终止子,蛋白质合成结束,膜上的蛋白通道消失,核糖体重新处于自由态。

(2)翻译后转运机制:线粒体蛋白质跨膜运转、叶绿体蛋白质的跨膜运转(四)蛋白质的降解

泛素——蛋白酶体系统,包括两个主要步骤:(1)底物蛋白的泛素化标记(2)蛋白酶体水解底物蛋白

(1)底物蛋白的泛素化标记

A.泛素激活酶(E1)活化泛素形成E1-泛素复合物,消耗1分子ATP;

B.泛素载体蛋白(E2)催化泛素分子从E1转到E2,形成E2-泛素复合物,

释放出E1;

分子生物学总结(朱玉贤版)(2020年10月整理).pdf

结合着下载的资料复习吧~~~~ 绪论 分子生物学的发展简史 Schleiden和Schwann提出“细胞学说” 孟德尔提出了“遗传因子”的概念、分离定律、独立分配规律 Miescher首次从莱茵河鲑鱼精子中分离出DNA Morgan基因存在于染色体上、连锁遗传规律 Avery证明基因就是DNA分子,提出DNA是遗传信息的载体 McClintock首次提出转座子或跳跃基因概念 Watson和Crick提出DNA双螺旋模型 Crick提出了“中心法则” Meselson与Stah用N重同位素证明了DNA复制是一种半保留复制 Jacob和Monod提出了著名的乳糖操纵子模型 Arber首次发现DNA限制性内切酶的存在 Temin和Baltimore发现在病毒中存在以RNA为模板,逆转录成DNA的逆转录酶 哪几种经典实验证明了DNA是遗传物质? (Avery等进行的肺炎双球菌转化实验、Hershey 利用放射性同位素35S和32P分别标记T2噬菌体的蛋白质外壳和DNA) 第二章染色体与DNA 第一节染色体 一、真核细胞染色体的组成 DNA:组蛋白:非组蛋白:RNA = 1:1:(1-1.5):0.05 (一)蛋白质(组蛋白、非组蛋白) (1)组蛋白:H1、H2A、H2B、H3、H4 功能:①核小体组蛋白(H2A、H2B、H3、H4)作用是将DNA分子盘绕成核小体

②不参加核小体组建的组蛋白H1,在构成核小体时起连接作用 (2)非组蛋白:包括以DNA为底物的酶、作用于组蛋白的酶、RNA聚合酶等。常见的有(HMG蛋白、DNA结合蛋白) 二、染色质 染色体:分裂期由染色质聚缩形成。 染色质:线性复合结构,间期遗传物质存在形式。 常染色质(着色浅) 具间期染色质形态特征和着色特征染色质 异染色质(着色深) 结构性异染色质兼性异染色质 (在整个细胞周期内都处于凝集状态)(特定时期处于凝集状态)三、核小体 由H2A、H2B、H3、H4各2 分子组成的八聚体和绕在八聚体外的DNA、一分 子H1组成。八聚体在中央,DNA分子盘绕在外,由此形成核心颗粒。,H1结合在核心颗粒外侧DNA双链的进出口端,如搭扣将绕在八聚体外DNA链固定,核心颗粒之间的连接部分为连接DNA。 核小体的定位对转录有促进作用

现代分子生物学总结(朱玉贤、最新版)

现代分子生物学总结(朱玉贤、最新版)

一、绪论 两个经典实验 1、肺炎球菌在老鼠体内的毒性实验:先将光滑型致病菌(S型)烧煮杀活性以后、以及活的粗糙型细菌(R型)分别侵染小鼠发现这些细菌自然丧失了治病能力;当他们将经烧煮杀死的S型细菌和活的R型细菌混合再感染小鼠时,实验小鼠每次都死亡。解剖死鼠,发现有大量活的S型细菌。实验表明,死细菌DNA 进行了可遗传的转化,从而导致小鼠死亡。 2、T2噬菌体感染大肠杆菌:当细菌培养基中分别带有35S或32P标记的氨基酸或核苷酸,子代噬菌体就相应含有35S标记的蛋白质或32P标记的核酸。分别用这些噬菌体感染没有放射性标记的细菌,经过1~2个噬菌体DNA 复制周期后进行检测,子代噬菌体中几乎不含带35S标记的蛋白质,但含30%以上的32P 标记。说明在噬菌体传代过程中发挥作用的可能是DNA而不是蛋白质。 基因的概念:基因是产生一条多肽链或功能RNA分子所必需的全部核苷酸序列。

二、染色体与DNA 嘌呤嘧啶 腺嘌呤鸟嘌呤胞嘧啶尿嘧啶胸腺嘧啶 染色体 性质:1、分子结构相对稳定;2、能够自我复制,使亲、子代之间保持连续性;3、能指导蛋白质的合成,从而控制生命过程;4、能产生可遗传的变异。 组蛋白一般特性:1、进化上极端保守,特别是H3、H4;2、无组织特异性;3、肽链上氨基酸分布的不对称性;4、存在较普遍的修饰作用;5、富含赖氨酸的组蛋白H5 非组蛋白:HMG蛋白;DNA结合蛋白;A24非组蛋白

真核生物基因组DNA 真核细胞基因组最大特点是它含有大量的重复序列,而且功能DNA序列大多被不编码蛋白质的非功能蛋白质所隔开。人们把一种生物单倍体基因组DNA的总量称为C值,在真核生物中C 值一般是随着生物进化而增加的,高等生物的C 值一般大于低等动物,但某些两栖类的C值甚至比哺乳动物还大,这就是著名的C值反常现象。真核细胞DNA序列可被分为3类:不重复序列、中度重复序列、高度重复序列。 真核生物基因组的特点:1、真核生物基因组庞大,一般都远大于原核生物的基因组;2、真核基因组存在大量的的重复序列;3、真核基因组的大部分为非编码序列,占整个基因组序列的90%以上,这是真核生物与细菌和病毒之间的最主要的区别;4、真核基因组的转录产物为单顺反之;5、真核基因组是断裂基因,有内含子结构;6、真核基因组存在大量的顺式元件,包括启动子、增强子、沉默子等;7、真核基因组中存在大量的DNA多态性;8、真核基因组具有端粒结构。

分子生物学问题汇总

Section A 细胞与大分子 简述复杂大分子的生物学功能及与人类健康的关系。 Section C 核酸的性质 1.DNA的超螺旋结构的特点有哪些? A 发生在闭环双链DNA分子上 B DNA双链轴线高卷曲,与简单的环状相比,连接数发生变化 C 当DNA扭曲方向与双螺旋方向相同时,DNA变得紧绷,为正超螺旋,反之变得松弛为负超螺旋。自然界几乎所有DNA分子超螺旋都为负的,因为能量最低。 2.简述核酸的性质。 A 核酸的稳定性:由于核酸中碱基对的疏水效应以及电荷偶极作用而趋于稳定 B 酸效应:在强酸和高温条件下,核酸完全水解,而在稀酸条件下,DNA的核苷键被选择性地断裂生成脱嘌呤核酸 C 碱效应:当PH超出生理范围时(7-8),碱基的互变异构态发生变化 D 化学变性:一些化学物质如尿素,甲酰胺能破坏DNA和RNA二级结构中的 而使核酸变性。 E 粘性:DNA的粘性是由其形态决定的,DNA分子细长,称为高轴比,可被机械力和超声波剪切而粘性下降。 F 浮力密度:1.7g/cm^3,因此可利用高浓度分子质量的盐溶液进行纯化和分析 G 紫外线吸收:核酸中的芳香族碱基在269nm 处有最大光吸收 H 减色性,热变性,复性。 思考题:提取细菌的质粒依据是核酸的哪些性质? 质粒是抗性基因,,在基因组或者质粒DNA中用碱提取法。 Sectio C 课前提问 1.在1.5mL的离心管中有500μL,取出10 μL稀释至1000 μL后进行检测,测得A260=0.15。 问(1):试管中的DNA浓度是多少? 问(2):如果测得A280=0.078, .A260/A280=?说明什么问题? (1)稀释前的浓度:0.15/20=0.0075 稀释后的浓度:0.0075/100=0.75ug/ml (2)0.15/0.078=1.92〉1.8,说明DNA中混有RNA样品。 2.解释以下两幅图

现代分子生物学课后习题及答案(朱玉贤 第3版)

现代分子生物学课后习题及答案(共10章) 第一章绪论 1.你对现代分子生物学的含义和包括的研究范围是怎么理解的? 答:分子生物学是从分子水平研究生命本质的一门新兴边缘学科,它以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究对象,是当前生命科学中发展最快并正在与其它学科广泛交叉与渗透的重要前沿领域。狭义:偏重于核酸的分子生物学,主要研究基因或DNA的复制、转录、表达和调节控制等过程,其中也涉及与这些过程有关的蛋白质和酶的结构与功能的研究。分子生物学的发展为人类认识生命现象带来了前所未有的机会,也为人类利用和改造生物创造了极为广阔的前景。所谓在分子水平上研究生命的本质主要是指对遗传、生殖、生长和发育等生命基本特征的分子机理的阐明,从而为利用和改造生物奠定理论基础和提供新的手段。这里的分子水平指的是那些携带遗传信息的核酸和在遗传信息传递及细胞内、细胞间通讯过程中发挥着重要作用的蛋白质等生物大分子。这些生物大分子均具有较大的分子量,由简单的小分子核苷酸或氨基酸排列组合以蕴藏各种信息,并且具有复杂的空间结构以形成精确的相互作用系统,由此构成生物的多样化和生物个体精确的生长发育和代谢调节控制系统。阐明这些复杂的结构及结构与功能的关系是分子生物学的主要任务。 2.分子生物学研究内容有哪些方面? 答:分子生物学主要包含以下三部分研究内容:A.核酸的分子生物学,核酸的分子生物学研究核酸的结构及其功能。由于核酸的主要作用是携带和传递遗传信息,因此分子遗传学(moleculargenetics)是其主要组成部分。由于50年代以来的迅速发展,该领域已形成了比较完整的理论体系和研究技术,是目前分子生物学内容最丰富的一个领域。研究内容包括核酸/基因组的结构、遗传信息的复制、转录与翻译,核酸存储的信息修复与突变,基因表达调控和基因工程技术的发展和应用等。遗传信息传递的中心法则(centraldogma)是其理论体系的核心。B.蛋白质的分子生物学蛋白质的分子生物学研究执行各种生命功能的主要大分子——蛋白质的结构与功能。尽管人类对蛋白质的研究比对核酸研究的历史要长得多,但由于其研究难度较大,与核酸分子生物学相比发展较慢。近年来虽然在认识蛋白质的结构及其与功能关系方面取得了一些进展,但是对其基本规律的认识尚缺乏突破性的进展。 3.分子生物学发展前景如何? 答:21世纪是生命科学世纪,生物经济时代,分子生物学将取得突飞猛进的发展,结构基因组学、功能基因组学、蛋白质组学、生物信息学、信号跨膜转导成为新的热门领域,将在农业、工业、医药卫生领域带来新的变革。 4.人类基因组计划完成的社会意义和科学意义是什么? 答:社会意义:人类基因组计划与曼哈顿原子计划、阿波罗登月计划并称为人类科学史上的三大工程,具有重大科学意义、经济效益和社会效益。1)极大地促进生命科学领域一系列基础研究的发展,阐明基因的结构与功能关系、生命的起源和进化、细胞发育、生产、分化的分子机理,疾病发生的机理等,为人类自身疾病的诊断和治疗提供依据,为医药产业带来翻天覆地的变化;2)促进生命科学与信息科学、材料科学和与高新技术产业相结合,刺激相关学科与技术领域的发展,带动起一批新兴的高技术产业;3)基因组研究中发展起来的技术、数据库及生物学资源,还将推动对农业、畜牧业(转基因动、植物)、能源、环境等相关产业的发展,改变人类社会生产、生活和环境的面貌,把人类带入更佳的生存状态。 科学意义:1)确定人类基因组中约5万个编码基因的序列基因在基因组中的物理位置,研究基因的产物及其功能;2)了解转录和剪接调控元件的结构和位置,从整个基因组结构

分子生物学课件整理朱玉贤

1、广义分子生物学:在分子水平上研究生命本质的科学,其研究对象是生物大分子的结构和功能。2 2、狭义分子生物学:即核酸(基因)的分子生物学,研究基因的结构和功能、复制、转录、翻译、表达调控、重组、修复等过程,以及其中涉及到与过程相关的蛋白质和 酶的结构与功能 3、基因:遗传信息的基本单位。编码蛋白质或RNA等具有特定功能产物的遗传信息 的基本单位,是染色体或基因组的一段DNA序列(对以RNA作为遗传信息载体的 RNA病毒而言则是RNA序列)。 4、基因:基因是含有特定遗传信息的一段核苷酸序列,包含产生一条多肽链或功能RNA所必需的全部核苷酸序列。 5、功能基因组学:是依附于对DNA序列的了解,应用基因组学的知识和工具去了解 影响发育和整个生物体的特定序列表达谱。 6、蛋白质组学:是以蛋白质组为研究对象,研究细胞内所有蛋白质及其动态变化规律的科学。 7、生物信息学:对DNA和蛋白质序列资料中各种类型信息进行识别、存储、分析、模拟和转输 8、蛋白质组:指的是由一个基因组表达的全部蛋白质 9、功能蛋白质组学:是指研究在特定时间、特定环境和实验条件下细胞内表达的全部蛋白质。 10、单细胞蛋白:也叫微生物蛋白,它是用许多工农业废料及石油废料人工培养的微 生物菌体。因而,单细胞蛋白不是一种纯蛋白质,而是由蛋白质、脂肪、碳水化合物、核酸及不是蛋白质的含氮化合物、维生素和无机化合物等混合物组成的细胞质团。 11、基因组:指生物体或细胞一套完整单倍体的遗传物质总和。 12、C值:指生物单倍体基因组的全部DNA的含量,单位以pg或Mb表示。 13、C值矛盾:C值和生物结构或组成的复杂性不一致的现象。 14、重叠基因:共有同一段DNA序列的两个或多个基因。 15、基因重叠:同一段核酸序列参与了不同基因编 码的现象。 16、单拷贝序列:单拷贝顺序在单倍体基因组中只出现一次,因而复性速度很慢。单 拷贝顺序中储存了巨大的遗传信息,编码各种不同功能的蛋白质。 17、低度重复序列:低度重复序列是指在基因组中含有2~10个拷贝的序列 18、中度重复序列:中度重复序列大致指在真核基因组中重复数十至数万(<105)次的重复顺序。其复性速度快于单拷贝顺序,但慢于高度重复顺序。 19、高度重复序列:基因组中有数千个到几百万个拷贝的DNA序列。这些重复序列 的长度为6~200碱基对。

(完整版)分子生物学总结完整版

分子生物学 第一章绪论 分子生物学研究内容有哪些方面? 1、结构分子生物学; 2、基因表达的调节与控制; 3、DNA重组技术及其应用; 4、结构基因组学、功能基因组学、生物信息学、系统生物学 第二章DNA and Chromosome 1、DNA的变性:在某些理化因素作用下,DNA双链解开成两条单链的过程。 2、DNA复性:变性DNA在适当条件下,分开的两条单链分子按照碱基互补原则重新恢复天然的双螺旋构象的现象。 3、Tm(熔链温度):DNA加热变性时,紫外吸收达到最大值的一半时的温度,即DNA分子内50%的双链结构被解开成单链分子时的温度) 4、退火:热变性的DNA经缓慢冷却后即可复性,称为退火 5、假基因:基因组中存在的一段与正常基因非常相似但不能表达的DNA序列。以Ψ来表示。 6、C值矛盾或C值悖论:C值的大小与生物的复杂度和进化的地位并不一致,称为C值矛盾或C值悖论(C-Value Paradox)。 7、转座:可移动因子介导的遗传物质的重排现象。 8、转座子:染色体、质粒或噬菌体上可以转移位置的遗传成分 9、DNA二级结构的特点:1)DNA分子是由两条相互平行的脱氧核苷酸长链盘绕而成;2)DNA分子中的脱氧核苷酸和磷酸交替连接,排在外侧,构成基本骨架,碱基排列在外侧;3)DNA分子表面有大沟和小沟;4)两条链间存在碱基互补,通过氢键连系,且A=T、G ≡ C(碱基互补原则);5)螺旋的螺距为3.4nm,直径为2nm,相邻两个碱基对之间的垂直距离为0.34nm,每圈螺旋包含10个碱基对;6)碱基平面与螺旋纵轴接近垂直,糖环平面接近平行 10、真核生物基因组结构:编码蛋白质或RNA的编码序列和非编码序列,包括编码区两侧的调控序列和编码序列间的间隔序列。 特点:1)真核基因组结构庞大哺乳类生物大于2X109bp;2)单顺反子(单顺反子:一个基因单独转录,一个基因一条mRNA,翻译成一条多肽链;)3)基因不连续性断裂基因(interrupted gene)、内含子(intron)、外显子(exon);4)非编码区较多,多于编码序列(9:1) 5)含有大量重复序列 11、Histon(组蛋白)特点:极端保守性、无组织特异性、氨基酸分布的不对称性、可修饰作用、富含Lys的H5 12、核小体组成:由组蛋白和200bp DNA组成 13、转座的机制:转座时发生的插入作用有一个普遍的特征,那就是受体分子中有一段很短的被称为靶序列的DNA会被复制,使插入的转座子位于两个重复的靶序列之间。 复制型转座:整个转座子被复制,所移动和转位的仅为原转座子的拷贝。 非复制型转座:原始转座子作为一个可移动的实体直接被移位。 第三章DNA Replication and repair 1、半保留复制:DNA生物合成时,母链DNA解开为两股单链,各自作为模板(template)按碱

现代分子生物学课后答案(朱玉贤_第三版)上

第一章绪论 2.写出DNA和RNA的英文全称。 答:脱氧核糖核酸(DNA, Deoxyribonucleic acid),核糖核酸(RNA, Ribonucleic acid)4.早期主要有哪些实验证实DNA是遗传物质?写出这些实验的主要步骤。 答:一,肺炎双球菌感染实验,1,R型菌落粗糙,菌体无多糖荚膜,无毒,注入小鼠体内后,小鼠不死亡。2,S型菌落光滑,菌体有多糖荚膜,有毒,注入到小鼠体内可以使小鼠患病死亡。3,用加热的方法杀死S型细菌后注入到小鼠体内,小鼠不死亡; 二,噬菌体侵染细菌的实验:1,噬菌体侵染细菌的实验过程:吸附→侵入→复制→组装→释放。2,DNA中P的含量多,蛋白质中P的含量少;蛋白质中有S而DNA中没有S,所以用放射性同位素35S标记一部分噬菌体的蛋白质,用放射性同位素32P标记另一部分噬菌体的DNA。用35P标记蛋白质的噬菌体侵染后,细菌体内无放射性,即表明噬菌体的蛋白质没有进入细菌内部;而用32P标记DNA的噬菌体侵染细菌后,细菌体内有放射性,即表明噬菌体的DNA进入了细菌体内。 三,烟草TMV的重建实验:1957年,Fraenkel-Conrat等人,将两个不同的TMV株系(S株系和HR株系)的蛋白质和RNA分别提取出来,然后相互对换,将S株系的蛋白质和HR株系的RNA,或反过来将HR株系的蛋白质和S株系的RNA放在一起,重建形成两种杂种病毒,去感染烟草叶片。 6.说出分子生物学的主要研究内容。 答:1,DNA重组技术;2,基因表达调控研究;3,生物大分子的结构功能研究----结构分子生物学;4,基因组、功能基因组与生物信息学研究。 第二章染色体与DNA 3.简述真核生物染色体的组成及组装过程 真核生物染色体除了性细胞外全是二倍体,DNA以及大量蛋白质及核膜构成的核小体是染色体结构的最基本单位。核小体的核心是由4种组蛋白(H2A、H2B、H3和H4)构成的扁球状8聚体。 蛋白质包括组蛋白与非组蛋白。组蛋白是染色体的结构蛋白,它与DNA组成核小体,含有大量赖氨酸核精氨酸。非组蛋白包括酶类与细胞分裂有关的蛋白等,他们也有可能是染色体的结构成分 由DNA和组蛋白组成的染色体纤维细丝是许多核小体连成的念珠状结构。 1.由DNA与组蛋白包装成核小体,在组蛋白H1的介导下核小体彼此连接形成直径约10nm的核小体串珠结构,这是染色质包装的一级结构。 2.在有组蛋白H1存在的情况下,由直径10nm的核小体串珠结构螺旋盘绕,每圈6个核小体,形成外径为30nm,内径10nm,螺距11nm的螺线管,这是染色质包装的二级结构。 3.由螺线管进一步螺旋化形成直径为0.4μm的圆筒状结构,称为超螺线管,这是染色

现代分子生物学朱玉贤课后习题答案

现代分子生物学(第3版)朱玉坚第二章染色体与DNA课后思考 题答案 1 染色体具有哪些作为遗传物质的特征? 1 分子结构相对稳定 2 能够自我复制,使亲子代之间保持连续性 3 能够指导蛋白质的合成,从而控制整个生命过程 4 能够产生可遗传的变异 2.什么是核小体?简述其形成过程。 由DNA和组蛋白组成的染色质纤维细丝是许多核小体连成的念珠状结构。核小体是由H2A,H2B,H3,H4各两个分子生成的八聚体和由大约200bp的DNA组成的。八聚体在中间,DNA分子盘绕在外,而H1则在核小体外面。每个核小体只有一个H1。所以,核小体中组蛋白和DNA的比例是每200bpDNA有H2A,H2B,H3,H4各两个,H1一个。用核酸酶水解核小体后产生只含146bp核心颗粒,包括组蛋白八聚体及与其结合的146bpDNA,该序列绕在核心外面形成1.75圈,每圈约80bp。由许多核小体构成了连续的染色质DNA细丝。 核小体的形成是染色体中DNA压缩的第一阶段。在核小体中DNA盘绕组蛋白八聚体核心,从而使分子收缩至原尺寸的1/7。200bpDNA完全舒展时长约68nm,却被压缩在10nm的核小体中。核小体只是DNA压缩的第一步。 核小体长链200bp→核酸酶初步处理→核小体单体200bp→核酸酶继续处理→核心颗粒146bp 3简述真核生物染色体的组成及组装过程 除了性细胞外全是二倍体是有DNA以及大量蛋白质及核膜构成核小体是染色体结构的最基本单位。核小体的核心是由4种组蛋白(H2A、H2B、H3和H4)各两个分子构成的扁球状8聚体。 蛋白质包括组蛋白与非组蛋白。组蛋白是染色体的结构蛋白,它与DNA组成核小体,含有大量赖氨酸核精氨酸。非组蛋白包括酶类与细胞分裂有关的蛋白等,他们也有可能是染色体的结构成分 由DNA和组蛋白组成的染色体纤维细丝是许多核小体连成的念珠状结构---- 1.由DNA与组蛋白包装成核小体,在组蛋白H1的介导下核小体彼此连接形成直径约10nm的核小体串珠结构,这是染色质包装的一级结构。 2.在有组蛋白H1存在的情况下,由直径10nm的核小体串珠结构螺旋盘绕,每圈6个核小体,形成外径为30nm,内径10nm,螺距11nm的螺线管,这是染色质包装的二级结构。 3.由螺线管进一步螺旋化形成直径为0.4μm的圆筒状结构,称为超螺线管,这是染色质包装的三级结构。 4.这种超螺线管进一步螺旋折叠,形成长2-10μm的染色单体,即染色质包装的四级结构。 4. 简述DNA的一,二,三级结构的特征 DNA一级结构:4种核苷酸的的连接及排列顺序,表示了该DNA分子的化学结构 DNA二级结构:指两条多核苷酸链反向平行盘绕所生成的双螺旋结构 DNA三级结构:指DNA双螺旋进一步扭曲盘绕所形成的特定空间结构 5.原核生物DNA具有哪些不同于真核生物DNA的特征? 1, 结构简练原核DNA分子的绝大部分是用来编码蛋白质,只有非常小的一部分不转录,这与真核DNA的冗余现象不同。 2, 存在转录单元原核生物DNA序列中功能相关的RNA和蛋白质基因,往往丛集在基因组的一个或几个特定部位,形成功能单元或转录单元,它们可被一起转录为含多个mRNA的分子,称为多顺反子mRNA。 3, 有重叠基因重叠基因,即同一段DNA能携带两种不同蛋白质信息。主要有以下几种情况①一个基因完全在另一个基因里面②部分重叠③两个基因只有一个碱基对是重叠的 6简述DNA双螺旋结构及其在现代分子生物学发展中的意义 DNA的双螺旋结构分为右手螺旋A-DNA B-DNA 左手螺旋Z-DNA DNA的二级结构是指两条都核苷酸链反向平行

分子生物学总结完整版

分子生物学总结完整版 1、结构分子生物学; 2、基因表达的调节与控制; 3、DNA重组技术及其应用; 4、结构基因组学、功能基因组学、生物信息学、系统生物学 第二章DNA and Chromosome 1、DNA的变性:在某些理化因素作用下,DNA双链解开成两条单链的过程。 2、 DNA复性:变性DNA在适当条件下,分开的两条单链分子按照碱基互补原则重新恢复天然的双螺旋构象的现象。 3、 Tm(熔链温度): DNA加热变性时,紫外吸收达到最大值的一半时的温度,即DNA分子内50%的双链结构被解开成单链分子时的温度) 4、退火:热变性的DNA经缓慢冷却后即可复性,称为退火 5、假基因:基因组中存在的一段与正常基因非常相似但不能表达的DNA序列。以Ψ来表示。 6、 C值矛盾或C值悖论:C值的大小与生物的复杂度和进化的地位并不一致,称为C值矛盾或C值悖论(C-Value Paradox)。 7、转座:可移动因子介导的遗传物质的重排现象。 8、转座子:染色体、质粒或噬菌体上可以转移位置的遗传成分

9、 DNA二级结构的特点:1)DNA分子是由两条相互平行的脱氧核苷酸长链盘绕而成;2)DNA分子中的脱氧核苷酸和磷酸交替连接,排在外侧,构成基本骨架,碱基排列在外侧;3)DNA分子表面有大沟和小沟;4)两条链间存在碱基互补,通过氢键连系,且A=T、G ≡ C(碱基互补原则);5)螺旋的螺距为 3、4nm,直径为2nm,相邻两个碱基对之间的垂直距离为0、34nm,每圈螺旋包含10个碱基对;6)碱基平面与螺旋纵轴接近垂直,糖环平面接近平行 10、真核生物基因组结构:编码蛋白质或RNA的编码序列和非编码序列,包括编码区两侧的调控序列和编码序列间的间隔序列。特点:1)真核基因组结构庞大哺乳类生物大于2X109bp;2)单顺反子(单顺反子:一个基因单独转录,一个基因一条mRNA,翻译成一条多肽链;)3)基因不连续性断裂基因(interrupted gene)、内含子(intron)、外显子(exon);4)非编码区较多,多于编码序列(9:1) 5)含有大量重复序列1 1、Histon(组蛋白)特点:极端保守性、无组织特异性、氨基酸分布的不对称性、可修饰作用、富含Lys的H5 12、核小体组成: 由组蛋白和200bp DNA组成 13、转座的机制:转座时发生的插入作用有一个普遍的特征,那就是受体分子中有一段很短的被称为靶序列的DNA会被复

-朱玉贤分子生物学习题题库

第一章绪论练习题 请就你感兴趣的分子生物学发展史上的重大事件或重要人物或重要理论作以相关论述? 第二章染色体和DNA练习题1 一、【单选题】 1.生物遗传信息传递中心法则是【】 A.DNA→RNA→蛋白质 B.RNA→DNA→蛋白质 C.DNA→蛋白质→RNA D.RNA→蛋白质→DNA 2.关于DNA复制的叙述,下列哪项是错误的【】 A.为半保留复制 B.为不对称复制 C.为半不连续复制 D.新链合成的方向均为3'→5' 3.合成DNA的原料有【】 A.dAMP dGMP dCMP dTMP B.dADP dGDP dCDP dTDP C.dA TP dGTP dCTP dTTP D.AMP UMP CMP GMP 4.DNA合成时碱基互补规律是【】 A.A-UC-G B.T-AC-G C.A-GC-U D.A-GC-T 5.关于DNA的复制错误的【】: A包括一个双螺旋中两条子链的合成 B遵循新的子链和其亲本链相配对的原则 C依赖于物种特异的遗传密码 D是碱基错配最主要的来源 6.一个复制子是:【】 A细胞分裂期间复制产物被分离之后的DNA片段 B复制的DNA片段和在此过程中所需的酶和蛋白 C任何自发复制的DNA序列(它和复制起始点相连) D任何给定的复制机制的产物(如:单环) E复制起点和复制叉之间的DNA片段 7.真核生物复制子有下列特征,它们:【】 A比原核生物复制子短得多,因为有末端序列的存在 B比原核生物复制子长得多,因为有较大的基因组 C通常是双向复制且能融合 D全部立即启动,以确保染色体在S期完成复制 E不是全部立即启动,在任何给定的时间只有大约15%是有活性的 8.下述特征是所有(原核生物、真核生物和病毒)复制起始位点都共有的是:【】 A起始位点是包括多个短重复序列的独特DNA片段 B起始位点是形成稳定二级结构的回文序列 C多聚体DNA结合蛋白专一性识别这些短的重复序列 D起始位点旁侧序列是A-T丰富的,能使DNA螺旋解开 E起始位点旁侧序列是G-C丰富的,能稳定起始复合物 9.下列关于DNA复制的说法是正确的有:【】 A按全保留机制进行 B接3’→5’方向进行 C需要4种dNMP的参和 D需要DNA连接酶的作用 E涉及RNA引物的形成 F需要DNA聚合酶Ⅰ 10.在原核生物复制子中以下哪种酶除去RNA引发体并加入脱氧核糖核苷酸? 【】 A DNA聚合酶III B DNA聚合酶II C DNA聚合酶I D外切核酸酶MFl E DNA连接酶 【参考答案】1.A2.D3.C4.B5.C6.C7.C8.D9.D10.C 二、【多项选择题】 1.DNA聚合酶I的作用有【】 A.3’-5’外切酶的活性 B.修复酶的功能 C.在细菌中5’-3’外切酶活性是必要的 D.外切酶活性,可以降解RNA/DNA杂交体中的RNA引物 E.5’-3’聚合酶活性 2.下列关于大肠杆菌DNA聚合酶I的叙述哪些是正确的?【】 A.该酶能从3’羟基端逐步水解单链DNA B.该酶在双螺旋区具有5’-3’外切酶活性 C.该酶在DNA中需要游离的3’-OH D.该酶在DNA中需要游离的5’-OH E.有校对功能 3.下列有关DNA聚合酶I的描述,哪些是正确的?【】 A.催化形成3’-5’-磷酸二酯键 B.有3’-5’核酸外切酶作用 C.有5‘-3’核酸外切酶作用 D.是原核细胞DNA复制时的主要合成酶 E.是多功能酶 4.有关DNA复制时的引物的说法下列正确的有【】 A.一般引物是RNA B.催化引物合成的酶称引发酶 C.哺乳动物的引物是DNA D.引物有游离的3‘-OH,成为合成DNA的起点 E.引物有游离的5‘-OH 5.DNA聚合酶I的作用是【】 A.修复DNA的损伤和变异 B.去除复制过程中的引物 C.填补合成DNA片段间的空隙 D.将DNA片段连接起来 E.合成RNA片段 6.下列关于DNA复制的叙述哪些是正确的? A.每条互补链的合成方向是5‘-3’ B.DNA聚合酶沿母链滑动方向从3‘-5’ C.两条链同时复制只有一个起点 D.真核细胞的每个染色体的复制合成原料是dNMP 7.下列有关DNA聚合酶作用的叙述哪些是正确的? A.酶I在DNA损伤的修复中发挥作用 B.酶II是DNA复制的主要酶 C.酶III是DNA复制的主要酶 D.酶IV在DNA复制时有切除引物的作用 E.酶I切除RNA引物 8.DNA聚合酶I具有的酶活性包括 A.5’-3’外切酶活性 B.3’-5’外切酶活性 C.5’-3’聚合酶活性 D.3’-5’聚合酶活性 E.内切酶活性 9.下列有关大肠杆菌DNA复制的叙述哪些是正确的? A.双螺旋中一条链进行不连续合成 B.生成冈崎片断 C.需要RNA引物 D.单链结合蛋白可防止复制期间的螺旋解链 E.DNA聚合酶I是DNA复制最主要酶 10.DNA复制的特点是 A.半保留复制 B.半不连续 C.一般是定点开始,双向等速进行 D.复制的方向是沿模板链的5‘-3’方向 E. 一般需要RNA引物

现代分子生物学要点总结(朱玉贤版)

现代分子生物学要点总结(朱玉贤版) 一、绪论 两个经典实验 1、肺炎球菌在老鼠体内的毒性实验:先将光滑型致病菌(S型)烧煮杀活性以后、以及活 的粗糙型细菌(R型)分别侵染小鼠发现这些细菌自然丧失了治病能力;当他们将经烧煮杀死的S型细菌和活的R型细菌混合再感染小鼠时,实验小鼠每次都死亡。解剖死鼠,发现有大量活的S型细菌。实验表明,死细菌DNA进行了可遗传的转化,从而导致小鼠死亡。 2、T2噬菌体感染大肠杆菌:当细菌培养基中分别带有35S或32P标记的氨基酸或核苷酸, 子代噬菌体就相应含有35S标记的蛋白质或32P标记的核酸。分别用这些噬菌体感染没有放射性标记的细菌,经过1~2个噬菌体DNA复制周期后进行检测,子代噬菌体中几乎不含带35S标记的蛋白质,但含30%以上的32P标记。说明在噬菌体传代过程中发挥作用的可能是DNA而不是蛋白质。 基因的概念:基因是产生一条多肽链或功能RNA分子所必需的全部核苷酸序列。 二、染色体与DNA 嘌呤嘧啶 腺嘌呤鸟嘌呤胞嘧啶尿嘧啶胸腺嘧啶 染色体 性质:1、分子结构相对稳定;2、能够自我复制,使亲、子代之间保持连续性;3、能指导蛋白质的合成,从而控制生命过程;4、能产生可遗传的变异。 组蛋白一般特性:1、进化上极端保守,特别是H3、H4;2、无组织特异性;3、肽链上氨基酸分布的不对称性;4、存在较普遍的修饰作用;5、富含赖氨酸的组蛋白H5 非组蛋白:HMG蛋白;DNA结合蛋白;A24非组蛋白 真核生物基因组DNA 真核细胞基因组最大特点是它含有大量的重复序列,而且功能DNA序列大多被不编码蛋白

质的非功能蛋白质所隔开。人们把一种生物单倍体基因组DNA的总量称为C值,在真核生物中C值一般是随着生物进化而增加的,高等生物的C值一般大于低等动物,但某些两栖类的C值甚至比哺乳动物还大,这就是著名的C值反常现象。真核细胞DNA序列可被分为3类:不重复序列、中度重复序列、高度重复序列。 真核生物基因组的特点:1、真核生物基因组庞大,一般都远大于原核生物的基因组;2、真核基因组存在大量的的重复序列;3、真核基因组的大部分为非编码序列,占整个基因组序列的90%以上,这是真核生物与细菌和病毒之间的最主要的区别;4、真核基因组的转录产物为单顺反之;5、真核基因组是断裂基因,有内含子结构;6、真核基因组存在大量的顺式元件,包括启动子、增强子、沉默子等;7、真核基因组中存在大量的DNA多态性;8、真核基因组具有端粒结构。 原核生物基因组的特点:1、结构简练,绝大部分用来编码蛋白质,只有很少一部分控制基因表达的序列不转录;2、存在转录单元,原核生物DNA序列中功能相关的RNA和蛋白质基因,往往丛集在基因组的一个或者几个特定部位,形成功能单位或转录单元,可以被一起转录为含多个mRNA的分子;3、有重叠基因,所谓重叠基因就是同一段DNA携带两种或以上不同的蛋白质的编码信息。 DNA的结构 DNA又称脱氧核糖核酸,是deoxyribonucleic acid的简称。 L=T+W,L指环形DNA分子两条链间交叉的次数,只要不发生断裂,L是一个常量。T为双螺旋的盘绕数,W为超螺旋数。双螺旋DNA的松开导致负超螺旋,而拧紧则导致正超螺旋。 双螺旋碱基间距(nm)螺旋直径(nm)每轮碱基数螺旋方向 A-DNA0.26 2.611右 B-DNA0.34 2.010右 Z-DNA0.37 1.812左 DNA的复制 半保留复制:Semi-conservative replication;半不连续复制:Semi-discontinuous replication 把生物体的复制单位称为复制子,一个复制子只含一个复制起始点。 归纳起来,无论是原核生物还是真核生物,复制起点是固定的,表现为固定的序列,并识别参与复制起始的特殊蛋白质。复制叉移动的方向和速度虽是多种多样的,但以双向等速方式为主。 复制的几种主要方式 双链DNA的复制大都以半包六复制方式进行的,通过“眼”型、θ型、滚环型或D-环型等以复制叉的形式进行。 1、线性DNA双链进行双向复制时,由于已知的DNA聚合酶和RNA聚合酶都只能从5’ 到3’移动,所以,复制叉呈眼型; 2、环状双链DNA复制可分为θ型、滚环型和D-环形几种类型 Ⅰ、θ型,大肠杆菌染色体DNA是环状双链DNA,它的复制是典型的θ型复制,从一个起点开始,同时向两个方向进行复制,当两个复制叉相遇时,复制就停止 Ⅱ、滚环型,是单向复制的一种特殊方式,在噬菌体中很常见。DNA的合成由对正链原点的专一切割开始,所形成的自由5’端被从双链环中置换出来并为单链DNA结合蛋白所覆盖,

现代分子生物学总结题库

第一章、基因的结构和功能实体及基因组 1、基因定义 基因(遗传因子)是遗传的物质基础,是DNA(脱氧核糖核酸)分子上具有遗传信息的特定核苷酸序列的总称,携带有遗传信息的DNA序列,是具有遗传效应的DNA分子片段,是控制性状的基本遗传单位,通过指导蛋白质的合成来表达自己所携带的遗传信息,从而控制生物个体的性状表现。 2、DNA修复 DNA修复(DNA repairing)是细胞对DNA受损伤后的一种反应,这种反应可能使DNA结构恢复原样,重新能执行它原来的功能;但有时并非能完全消除DNA的损伤,只是使细胞能够耐受这DNA的损伤而能继续生存。也许这未能完全修复而存留下来的损伤会在适合的条件下显示出来(如细胞的癌变等),但如果细胞不具备这修复功能,就无法对付经常在发生的DNA损伤事件,就不能生存。对不同的DNA损伤,细胞可以有不同的修复反应。3、DNA损伤 DNA损伤是复制过程中发生的DNA核苷酸序列永久性改变,并导致遗传特征改变的现象。情况分为:substitutation (替换)deletion (删除)insertion (插入)exon skipping (外显子跳跃)。 DNA损伤的改变类型:a、点突变:指DNA上单一碱基的变异。嘌呤替代嘌呤(A与G之间的相互替代)、嘧啶替代嘧啶(C与T之间的替代)称为转换(transition);嘌呤变嘧啶或嘧啶变嘌呤则称为颠换(transvertion)。b、缺失:指DNA链上一个或一段核苷酸的消失。c、插入:指一个或一段核苷酸插入到DNA链中。在为蛋白质编码的序列中如缺失及插入的核苷酸数不是3的整倍数,则发生读框移动(reading frame shift),使其后所译读的氨基酸序列全部混乱,称为移码突变(frame-shift mutaion)。d、倒位或转位:(transposition)指DNA链重组使其中一段核苷酸链方向倒置、或从一处迁移到另一处。 e、双链断裂:对单倍体细胞一个双链断裂就是致死性事件。 4、同源重组 同源重组,(Homologus Recombination)是指发生在姐妹染色单体(sister chromatin) 之间或同一染色体上含有同源序列的DNA分子之间或分子之内的重新组合。同源重组需要一系列的蛋白质催化,如原核生物细胞内的RecA、RecBCD、RecF、RecO、RecR等;以及真核生物细胞内的Rad51、Mre11-Rad50等等。同源重组反应通常根据交叉分子或holiday 结构(Holiday Juncture Structure) 的形成和拆分分为三个阶段,即前联会体阶段、联会体形成和Holiday 结构的拆分。 a、基因敲除 基因敲除(geneknockout),是指对一个结构已知但功能未知的基因,从分子水平上设计实验,将该基因去除,或用其它顺序相近基因取代,然后从整体观察实验动物,推测相应基因的功能。这与早期生理学研究中常用的切除部分-观察整体-推测功能的三部曲思想相似。基因敲除除可中止某一基因的表达外,还包括引入新基因及引入定点突变。既可以是用突变基因或其它基因敲除相应的正常基因,也可以用正常基因敲除相应的突变基因。 b、因转移法 同源重组(homologousrecombination)是将外源基因定位导人受体细胞染色体上的方法,因为在该座位有与导人基因同源的序列,通过单一或双交换,新基因片段可替换有缺陷的基因片段,达到修正缺陷基因的目的。位点特异性重组是发生在两条DNA链特异位点上的重组,重组的发生需一段同源序列即特异性位点(又称附着点;attachmentsite,att)和位点特异性的蛋白因子即重组酶参与催化。重组酶仅能催化特异性位点间的重组,因而重组具有特异性和高度保守性。

分子生物学课件重点整理__朱玉贤

1、错配修复(mismatch repair) ●Dam甲基化酶使母链位于5’GATC序列中腺甘酸甲基化 ●甲基化紧随在DNA复制之后进行(几秒种后至几分钟内) ●根据复制叉上DNA甲基化程度,切除尚未甲基化的子链上的错配碱基 2、碱基切除修复 excision repair 所有细胞中都带有不同类型、能识别受损核苷酸位点的糖苷水解酶,它能特意切除受损核苷酸上的N-β-糖苷键,在DNA链上形成去嘌呤或去嘧啶位点,统称为AP位点。一些碱基在自发或诱变下会发生脱酰胺,然后改变配对性质,造成氨基转换突变*腺嘌呤变为次黄嘌呤与胞嘧啶配对 *鸟嘌呤变为黄嘌呤与胞嘧啶配对 *胞嘧啶变为尿嘧啶与腺嘌呤配对 3、核苷酸切除修复 1)通过特异的核酸内切酶识别损伤部位 2)由酶的复合物在损伤的两边切除几个核苷酸 3) DNA 聚合酶以母链为模板复制合成新子链 4)DNA连接酶将切口补平 4 、DNA的直接修复 在DNA光解酶的作用下将环丁烷胸腺嘧啶二体和6-4光化物还原成为单体 甲基转移酶使O6-甲基鸟嘌呤脱甲基生成鸟嘌呤,防止G-T配对 SOS反应 (SOS response):是细胞DNA受到损伤或复制系统受到抑制的紧急情况下,细胞为求生存而产生的一种应急措施。 *包括诱导DNA损伤修复、诱变效应、细胞分裂的抑制以及溶原性细菌释放噬菌体等。细胞癌变也与SOS反应有关。两个作用(1)DNA的修复;(2)产生变异 五、 DNA的转座 DNA的转座或叫移位(transposition):由可移位因子(transposable element) 介导的遗传物质重排现象。 转座子(transposon Tn):存在于染色体DNA上可自主复制和位移的基本单位。 已经发现“转座”这一命名并不十分准确,因为在转座过程中,可移位因子的一个拷贝常常留在原来位置上,在新位点上出现的仅仅是它的拷贝。因此,转座有别于同源

现代分子生物学(第3版)-朱玉贤-课后答案(全)上课讲义

现代分子生物学(第3版)-朱玉贤-课后答 案(全)

第一章 1 简述孟德尔、摩尔根和沃森等人对分子生物学发展的主要贡献 答:孟德尔的对分子生物学的发展的主要贡献在于他通过豌豆实验,发现了遗传规律、分离规律及自由组合规律;摩尔根的主要贡献在于发现染色体的遗传机制,创立染色体遗传理论,成为现代实验生物学奠基人;沃森和克里克在1953年提出DAN反向双平行双螺旋模型。 2写出DNARNA的英文全称 答:脱氧核糖核酸(DNA, Deoxyribonucleic acid),核糖核酸(RNA, Ribonucleic acid) 3试述“有其父必有其子”的生物学本质 答:其生物学本质是基因遗传。子代的性质由遗传所得的基因决定,而基因由于遗传的作用,其基因的一半来自于父方,一般来自于母方。 4早期主要有哪些实验证实DNA是遗传物质?写出这些实验的主要步骤 答:一,肺炎双球菌感染实验,1,R型菌落粗糙,菌体无多糖荚膜,无毒,注入小鼠体内后,小鼠不死亡。2,S型菌落光滑,菌体有多糖荚膜,有毒,注入到小鼠体内可以使小鼠患病死亡。3,用加热的方法杀死S型细菌后注入到小鼠体内,小鼠不死亡;二,噬菌体侵染细菌的实验:1,噬菌体侵染细菌的实验过程:吸附→侵入→复制→组装→释放。 2,DNA中P的含量多,蛋白质中P 的含量少;蛋白质中有S而DNA中没有S,所以用放射性同位素35S标记一部分噬菌体的蛋白质,用放射性同位素32P标记另一部分噬菌体的DNA。用35P 标记蛋白质的噬菌体侵染后,细菌体内无放射性,即表明噬菌体的蛋白质没有进入细菌内部;而用32P标记DNA的噬菌体侵染细菌后,细菌体内有放射

分子生物学实习总结

分子生物学实习总结 三天的分子生物学实习,我能认真听老师的讲解和很好的按照老师的安排完成实验。期间,接触和学习到了很多有关分子生物学实验的方法、仪器的使用、技术,而且对分子生物学实验有一个大致的了解,学习到很多以前没有接触过的知识。 这几天来做的不足的地方有: 1.预习不够充分。只是浏览了实验报告上的原理、操作等内容,并没有深入了解每一个步骤的操作会对实验有什么的作用和影响。实验失败了,不能自主找到原因。 2.实验操作过程不够细心。实验要求十分细心,严谨和专注。实验中很多细小的地方还是没有很好的注意到。 3.遇到不懂的没有及时发问。实验就是一个让我们实操的过程,一边操作一边巩固书本上的知识。过程中,遇到不明白的地方应该及时问别人活着自己翻阅资料,力求把实验弄透彻。 但是我还是有很多收获的: 1.对分子生物学实验有了了解。例如实验的基本的流程和操作,常用的方法等基础知识已经有了一定了解,对以后的实验会有一定的帮助。 2.最基本的移液枪、离心机、涡旋器等的使用还有实验中的PCR仪、电泳等有一定的认。 3.学会了严谨和细心。实验所用的材料都是比较昂贵的,而且实验只要一步错了,就得重做。所以需要非常严谨。不仅仅是分子生物学实验,其他实验也要求,所以培养这个有点对以后的实验非常有好处。 4.学会了坚持。很多次因为实验做的时间很长,大家都会很累,但是,还是要坚持,一点点累都受不了是不能把实验做好的。开始慢慢了解到做科研的人员的辛酸,长时间整天呆在实验室做实验,这需要很大的毅力。 5.把握实验机会,让自己学得更多。实验过程中,只要有实操的机会,我都会去操作。因为说和做是不一样的。而且在操作中能加深巩固知识和学得更加深入。 三天的分子生物学实习虽然很累,因为要天天去院楼,而却实验时间都比较长。但是 还是很有意义的,因为学习到很到东西,收获了很多。 老师也为我们准备了很多的材料和准备,实验才做得那么快和顺利,其实,实验室简 化了很多了,而且我们所做的实验都是已经设计好的,按照操作做就行了。如果时间和资 金允许,应该设立一些自主完成的实验,这样可以培养我们更加多的能力,开阔知识面和 拓宽思维。

相关文档
最新文档