计量经济学第6章 序列相关性
序列相关性

back
四、序列相关性的检验
1、基本思路
• 序列相关性检验方法有多种,但基本思路是相 同的。 • 首先采用普通最小二乘法估计模型,以求得随 机误差项的“近似估计量”:
~ = Y - (Y ) ˆ ei i i 0 ls
• 然后,通过分析这些“近似估计量”之间的相 关性,以达到判断随机误差项是否具有序列相关 性的目的。
2、一阶差分法
一阶差分法是将原模型
Yi = b 0 + b 1 X i + m i
i=1,2,
…,n …,n
变换为
DYi = b 1 DX i + m i - m i -1
i=2,
( 2.7.6)
其中
DYi = Yi - Yi -1
L
• 如果原模型存在完全一阶正自相关,即在 mi=rmi-1+ei 中,r=1。 (2.7.6)可变换为: DYi= b1DXi+eI 由于ei不存在序列相关,该差分模型满足应用OLS 法的基本假设,用OLS法估计可得到原模型参数的 无偏的、有效的估计量。
i
对各方程估计并进行显著性检验,如果存在某 一种函数形式,使得方程显著成立,则说明原模 型存在序列相关性。
• 具体应用时需要反复试算。
• 回归检验法的优点是:
一旦确定了模型存在序列相关性,也就同时 知道了相关的形式; 它适用于任何类型的序列相关性问题的检验。
(2) 冯诺曼比检验法 冯诺曼比检验法在于构造统计量
Yi - r 1Yi -1 - L - r l Yi - l = b 0 (1 - r 1 - L - r l ) + b 1 ( X i - r 1 X i -1 - L - r l X i - l ) + e i
序列相关性

5.滞后效应 在经济中,因变量受到自身或另一解释变量的前几期值影响的现象称为 滞后效应。在一个消费支出对收入的时间序列回归中,人们常常发现当前时 期的消费支出除了依赖于其他变量外,还依赖于前期的消有效 因为,在有效性证明中利用了 E(NN’)=2I 即同方差性和互相独立性条件。而且,在大样本情况下,参数估计量 虽然具有一致性,但仍然不具有渐近有效性。 2、变量的显著性检验失去意义 在变量的显著性检验中,统计量是建立在参数方差正确估计基础之 上的,这只有当随机误差项具有同方差性和互相独立性时才能成立。如果存 在序列相关,估计的参数方差 S ˆ ,出现偏误(偏大或偏小) ,t 检验就失去
~ e ~ e t t 1 t
,
~ e ~ ~ e t 1 t 1 2 et 2 t
3
, 。 。 。
醉客天涯之计量经济学
如果存在某一种函数形式,使得方程显著成立,则说明原模型存在序列相关性。 回归检验法的优点是: (1)能够确定序列相关的形式 (2)适用于任何类型序列相关性问题的检验。 3、杜宾-瓦森(Durbin-Watson)检验法(最常用) (1)方法使用条件: ①解释变量 X 非随机; ②随机误差项 i 为一阶自回归形式: i=i-1+i ③回归模型中不应含有滞后应变量作为解释变量,即不应出现下列形式: Yi=0+1X1i+kXki+Yi-1+i ④回归含有截距项 ⑤误差项被假定为正态分布 (2)D.W.统计量: 杜宾和瓦森针对原假设:H0: =0, 即不存在一阶自回归,构如下造统计量:
D.W .
~ (e
t 2
n
t
~ )2 e t 1
2 t
统计学计量经济学课件 4.2 序列相关性

序列相关性的应用
相关性的实际意义
序列相关性可以帮助我们分析经济数据、预测未来 变动、制定政策和投资策略。
序列相关性的应用案例
例如,我们可以利用股票价格与宏观经济指标的相 关性来制定股票投资策略。
总结
序列相关性的重要性
了解序列相关性对于理解经 济现象、预测未来变动和制 定决策至关重要。
序列相关性的局限性
统计学计量经济学课件 4.2 序列相关 性
# 统计学计量经济学课件 4.2 序列相关性 ## 1. 前言 - 序列相关性简介 - 为什么需要了解序列相关性 ## 2. 什么是序列相关性 - 相关性定义 - 序列相关性和相关系数 ## 3. 序列相关性的性质 - 线性相关 - 相关性的方向 - 相关性的强弱 ## 4. 序列相关性的度量 - 协方差和相关系数 - 样本系数计算公式 - 相关性的范围
3 相关性的强弱
相关性的强度取决于相关 系数的值,接近-1或1表示 强相关,接近0表示弱相 关。
序列相关性的度量
1
协方差和相关系数
协方差是衡量变量之间关系强弱的指标。相关系数是标准化的协方差值,用于比较不同变量 之间的相关性。
2
样本系数计算公式
样本相关系数通过对样本数据进行计算得出,它可以估计总体相关系数。
2 序列相关性和相关系数
相关系数是衡量序列相关性强度的指标。它的取值范围在-1和1之间,负值表示负相关, 正值表示正相关。
序列相关性的性质
1 线性相关
2 相关性的方向
序列相关性通常是线性的, 即变量之间的关系可以用 一条直线表示。
相关性可以是正相关(变 量同时增加或减少)或负 相关(一个变量增加时, 另一个变量减少)。
3
6.2 序列相关性的后果和检验

d
et
t 1 n t 2 n t 1 2 et et 1 t 2 t 2 t 2 2 e t t 1 n n
2
2 et 2 2 et et 1
t 2 2 e t t 1
n
2(1
e e
t 2 n t 1
t t 1
2 e t
ˆ) ) 2(1
© 电子科大经管学院
8
第六讲 序列相关性
序列相关的检验
d 统计量的检验
由于 d 统计量依赖于残差,而残差又依赖于X,故无法 推导出d 统计量的准确分布 Durbin-Watson根据样本容量n和待估参数个数k,在给 定的显著性水平下,给出了 d 统计量的上、下两个临界 值dU和dL
序列相关的检验
布劳殊-戈弗雷(BG)检验
又称为LM检验,克服了DW检验的缺陷,适合于高阶 序列相关以及模型中存在滞后因变量的情形,更具有 一般性 基本思想: 针对回归模型 Yt 0 1 X1t ... k X kt t
假设干扰项存在p 阶序列相关 检验原假设
第六讲序列相关性德宾沃森durbinwatson检验利用方程的残差构成统计量推断误差项是否存在一阶序列相关基本假定回归模型包含截距项序列相关是一阶序列相关回归模型不能把滞后被解释变量作为解释变量第六讲序列相关性检验统计量称为d统计量该统计量仅依赖于残差一般回归软件都会报告该统计量无论是横截面数据还是时间序列数据统计量的检验由于d统计量依赖于残差而残差又依赖于x故无法推导出d统计量的准确分布durbinwatson根据样本容量n和待估参数个数k在给定的显著性水平下给出了d统计量的上下两个临界值du和dl第六讲序列相关性电子科大经管学院10统计量的检验序列相关的判别规则不能拒绝电子科大经管学院11检验序列正相关拒绝原假设不能拒绝原假设电子科大经管学院12检验序列相关拒绝原假设不能拒绝原假设拒绝原假设电子科大经管学院13dw检验的缺陷统计量落在两个不确定区域时无法判断是否存在序列相关当滞后因变量作为解释变量时检验无效只能检验一阶序列相关不适用于高阶序列相关若误差项不是iid正态分布d检验也不可靠第六讲序列相关性电子科大经管学院14布劳殊戈弗雷bg检验又称为lm检验克服了dw检验的缺陷适合于高阶序列相关以及模型中存在滞后因变量的情形更具有一般性基本思想
序列相关性

(四)拉格朗日乘数检验(Lagrange Multiplier)
• LM检验是由布劳殊(Breusch)与戈弗雷(Godfrey) 于1978年提出的,也被称为GB检验。 • 拉格朗日乘数检验克服了DW检验的缺陷,适合于高阶序 列相关以及模型中存在滞后被解释变量的情形。
对于模型
Yt 0 1 X1t 2 X 2t k X kt t
§4.2
序列相关性
一、序列相关性的概念
二、实际经济问题中的序列相关性
三、序列相关性的后果
四、序列相关性的检验
五、序列相关性的补救
四、序列相关性的检验
基本思路 :
首先, 采用 OLS 法估计模型, 以得随机误差项的
~ e i 表示: “近似估计量” ,用
~ Y (Y ˆ) e i i i 0 ls
t 2 n t
n
t 1
其中:ρ为一阶自相关系数
) 2(1 )
et 2 ~
t 1
一阶自回归模型:i=i-1+i 的参数估计。
由于自相关系数的值介于-1和+1之间,因此:
0≤DW≈2(1-ρ)≤4 如果存在完全一阶正相关,即=1,则 D.W. 0 完全一阶负相关,即= -1, 则 D.W. 4 完全不相关,即=0,则 D.W.2
检验时需要事先确定准备检验的阶数P,实际检验中,可从1阶、2
阶、…逐次向更高阶检验。
检验结果显著时,可以说明存在序列相关,但是并不一定代表序列 相关的阶数一定能够达到所检验的阶数。
◦ 低阶序列相关的存在往往会导致高阶序列相关检验的显著性 ◦ 具体阶数的判断,需要结合辅助回归中自相关系数的显著性
4-dL
# D.W.检验统计量的说明
统计学计量经济学课件4.2序列相关性

对于长期趋势的数据,如果只使 用部分样本数据进行分析,可能 会导致残差序列相关。
03
序列相关性对回归分析的 影响
估计量的偏误
偏误类型
序列相关性会导致回归系数的估计量 产生偏误,即估计的系数不再等于真 实系数。
偏误原因
解决方法
采用适当的统计方法,如广义最小二 乘法(GLS)或广义差分法(GDM) ,以消除序列相关性对估计量的影响 。
统计学计量经济学课 件4.2序列相关性
xx年xx月xx日
• 序列相关性的定义 • 序列相关性产生的原因 • 序列相关性对回归分析的影响 • 检验序列相关性的方法 • 解决序列相关性的方法
目录
01
序列相关性的定义
什么是序列相关性
序列相关性是指时间序列数据之间存在某种相关性,即一个 时间点的数值可能与下一个时间点的数值之间存在一定的依 赖关系。
用于检验时间序列数据是否存 在序列相关性,如杜宾瓦森检
验和LM检验。
02
序列相关性产生的原因
模型设定误差
模型遗漏重要变量
在计量经济学模型中,如果遗漏了重 要的解释变量,会导致残差序列相关 ,从而产生序列相关性。
错误地设定滞后变量
在模型中错误地引入滞后变量,会导 致模型残差出现序列相关性。
数据生成过程
在回归分析中,应充分考虑序列相关性对 检验和推断的影响,采用适当的统计方法 和模型进行修正,以提高推断的准确性。
04
检验序列相关性的方法
图检验法
散点图
通过绘制时间序列数据的散点图,观察数据点是否呈现出某种趋势或模式,从而 判断是否存在序列相关性。
自相关图
利用自相关系数或偏自相关系数来绘制自相关图,通过观察自相关系数或偏自相 关系数的变化趋势,判断是否存在序列相关性。
自相关(序列相关性)

i
β X
1
β
=
1
∑ x y ∑ x
=
β
1
+
∑k u
i
i
所以,E (
Var( β ) = + 2σ ∑ x x ρ σ 2 ∑x (∑ xt )
1
2 2 t s 1 2 u u t s<t 2
)=β β
1
其中,
k
i
=
x ∑x
i
2 i
1
t s
即 Var(
β)
1
>
1
∑x
2 t
σu2
(一) OLS估计值方差增大 估计值方差增大
k ≠s k ≠s
检验, 检验失效 (二) t检验, F检验失效 检验
(三)预测精度降低
第二节 自相关的检验
一、图示法
通过et的变化来推断ut的变化规律 1.估计模型,求出 2.作 断
et
et 与 t
或
et 与et-1等的相关图,进行判
瓦特森( 二、杜宾--瓦特森(Durbin--Waston)检验 杜宾 瓦特森 ) 简称, 简称, D--W检验 检验
2.自相关产生的原因 自相关产生的原因 (1)随机项 ui 本身的自相关——“真自相关” 例如,一些随机因素:自然灾害、经济政策、战争 等的影响往往会持续若干时期,造成随机项自相关 (2)模型设定不当,包括遗漏重要解释变量或错误确 定模型的数学形式——“拟自相关” ( 3)数据处理不当造成的自相关 例如,对数据进行差分等变换,就可能产生自相关。
,直到其收敛为止。一般,迭代两步就可以
了,所以,又叫科克兰内--奥克特两步法。 杜宾两步法可以推广到高阶自相关的情况。 利用 d=2(1-
计量经济学试题计量经济学中的序列相关性与解决方法

计量经济学试题计量经济学中的序列相关性与解决方法计量经济学试题: 计量经济学中的序列相关性与解决方法序列相关性是计量经济学中重要的概念之一,它描述了时间序列数据之间的相关程度。
在许多经济学研究中,序列相关性可能会导致问题,如伪回归和自相关误差。
为了解决这些问题,研究人员采用了一些方法来处理序列相关性。
本文将介绍序列相关性的定义、影响和解决方法。
一、序列相关性的定义序列相关性是指一组时间序列数据之间存在的相关关系。
它反映了一个变量的当前值与过去值的相关程度。
序列相关性可以判断变量之间是否存在依赖关系,以及时间趋势的演变和预测。
在计量经济学中,序列相关性通常使用自相关函数(acf)和偏自相关函数(pacf)来度量。
自相关函数衡量了序列与其自身在不同滞后期的相关性,而偏自相关函数则控制了其他滞后期的效应。
二、序列相关性的影响序列相关性对计量经济分析的结果具有重要影响。
当存在序列相关性时,经济学模型的估计结果可能会产生偏误。
这是因为序列相关性违反了线性回归模型的基本假设,导致参数估计失真。
此外,当序列相关性存在时,标准误差和t统计量的计算也会出现问题。
标准误差的计算通常基于误差项的无关性假设,而序列相关性违反了这一假设,导致标准误差被低估。
因此,对参数的显著性检验将失去准确性。
三、解决序列相关性的方法为了解决序列相关性的问题,计量经济学提出了许多方法和技术。
下面介绍几种常用的解决方法。
1. 差分法(Differencing Method)差分法是通过对时间序列数据进行差分,消除序列相关性的方法。
差分法可以消除序列的线性趋势,使数据变得稳定。
这种方法利用变量的差分来消除序列的相关性,使得模型的估计结果更可靠。
2. 自相关修正法(Autoregressive Model)自相关修正法是通过引入滞后变量来建模序列相关性。
自相关修正模型考虑变量的滞后值与当前值之间的关系,以控制序列相关性的影响。
常见的自相关修正模型包括自回归移动平均模型(ARMA)和自回归条件异方差模型(ARCH)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 序列相关性习题与答案
1、对于线性回归模型,随机扰动项u 产生序列相关的原因有哪些?
2、DW 检验的局限性主要有哪些?
3、检验序列相关性的方法思路是什么?
4、在研究生产中的劳动在加值(value added )中所占分额(即劳动份额)的变动时,古扎拉蒂考虑如下模型:
模型A: Y t =β0+β1t+u t 模型B :Y t =α0+α1t+α2t 2+ u t
其中Y =劳动份额,t =时间。
根据1949—1964年数据,对初级金属工业得到如下结果:
模型A: Y t = 0.4529—0.0041t R 2=0.5284 d =0.8252 (-3.9608) 模型B :Y t =0.4786-0.0127t +0.0005t 2 R 2=0.6629 d =1.82 其中括弧中的数字是t 比率。
(1) 模型A 中有没有序列相关?模型B 呢? (2) 怎样说明序列相关?
(3) 你会怎样区分“纯粹”自相关和设定偏误? 5、判明一下陈述的真伪,简单地申述你理由。
(1)当自相关出现时,OLS 估计量时偏误的和非有效的, (2)德宾—沃森d 检验假定误差项u i 的方差有同方差性。
(3)用一阶差分变换消除自相关时,假定自相关系数Ρ为-1。
(4)如果一个是一阶差分形式的回归,而另一个是水平形式的回归,那么,这两个模型的R 2值是不可直接比较的。
(5)一个显著的德宾—沃森d 不一定意味着一阶自相关。
(6)在自相关出现时,通常计算的预报值的方差和标准误就不是有效的。
(7)把一个(或多个)重要的变量从回归模型排除出去可能导致一个显著的d 值。
(8)在AR (1)模式中,假设Ρ=1即可通过贝伦布鲁特—韦布g 统计量,也可通过德宾—沃森d 统计量来检验。
(9)如果在Y 的一阶差分对X 的一阶差分的回归中有一常数项和一元线性趋势项,就意味着在原始模型中有一个线性和一个二次趋势项。
6、中国1980—2000年投资总额X 与工业总产值Y 的统计资料如表所示,问:
(1)当设定模型为t t t X Y μββ++=ln ln 10时,是否存在序列相关性? (2)若按一阶自相关假设t t t ερμμ+=-1,试用杜宾两步法估计原模型。
表1 中国1980—2000年投资总额与工业总产值资料
年份
全社会固定资产投资X
工业增加值 Y 年份
全社会固定资产投资X 工业增加值 Y 1980 910.9 1996.5 1991 5594.5 8087.1 1981 961.0 2048.4 1992 8080.1 10284.5 1982 1230.4 2162.3 1993 13072.3 14143.8 1983 1430.1 2375.6 1994 17042.1 19359.6 1984 1832.9 2789.0 1995 20019.3 24718.3 1985 2543.2 3448.7 1996 22913.5 29082.6 1986 3120.6 3967.0 1997 24941.1 32412.1 1987 3791.7 4585.8 1998 28854.7 33087.2 1988 4753.8 5777.2 1999 29854.7 35087.2 1989 4410.4 6484.0 2000 32917.7 39570.3 1990
4517.0
6858.0
答案:1、(1)在构造模型时,一些不太重要的解释变量被略去,这些被略去的解释变量的影响全部包含在了随机项u 中,而往往是这些被排除的解释变量有些存在着序列相关,因而随机项u 自相关。
(2)在构造模型时,可能会错误的确定模型的形式。
(3)随机项u 本身序列相关。
(4)内插统计值。
2、该方法仅适用于解释变量为非随机变量,随机扰动项的产生机制是一阶自相关,回归含有截距项,回归模型不把滞后被解释变量当作解释变量,没有缺失数据。
3、各种检验序列相关方法的思路大致相同,即先采用OLS 方法估计远模型,得到随机干扰项的“近似估计值”,然后通过分析这些“近似估计值”之间的相关性已达到判断随机扰动项是否具有 序列相关性的目的。
4、(1) 在n=16,'
k =1,0.05α=, 1.11L d =; 1.37u d =。
因此,模型A 中的d 值为0.8252,所以有一个正的,一阶自相关存在。
在n=16,'
k =2,0.05α=, D.W.值是:
0.98l d =, 1.54u d =,4 3.02l d -=,4 2.46u d -=
因此,在模型B 中的d 值是1.82,没有一阶自相关。
(2) 自相关也许可以归咎于模型A 的不规范,除了时间的平方外。
(3)对于函数的形式应该有一个事先的认识,也应该对检验不同的函数形式。
5、(1)错。
估计量将是无偏的。
(2)正确。
(3) 错误。
假定是相关系数是+1。
(4)正确,模型有不同的因变量。
(5)错误,D.W.检验显示一阶自相关。
(6) 正确。
(7) 正确。
这会导致偏误。
(8)正确。
注意D.W.检验统计量d 值给出了一个p 的近似值。
6、(1)运用软件可得D.W.值为0.45,小于显著水平为5%下,样本容量为21的D.W.分布的下限临界值1.22,因此,可以判定模型存在一阶序列相关。
(2)按杜宾法估计的模型:
11ln 132.0ln 4704.0ln 6319.04456.0ln ---++=t t t t X X Y Y
(2.95) (7.49) (6.04) (-1.16)
9986.02=R。