卡尔曼滤波算法及其在组合导航中的应用综述
自适应卡尔曼滤波在组合导航中的应用研究

K:P l H H H \ P l+R\ -
^ 一
X
X
.
一
l
+
.
—
l
F =E X ] [
=
E ( 一 +X 1 一 +X 1 [ 1 一)( l 一) ]
F + P
=
式中 F=E[ k-1X鼬 k r
不稳 定问题 , 并容易 引起 滤波 发散 。文 中主要探 讨在
噪声统计特征未知 的情况下 , 自适 应 卡尔曼 滤波算 将 法运用到组合导航 中去 。经 过仿 真得 出 , 自适 应 卡尔 曼滤波算法相对于 常规卡尔 曼滤 波 , 高 了收敛速 度 提 和滤波精度 , 具有较高 的 自适应能力 , 对导航精度有进
术 。通 过在 自适应 滤 波算 法 中推算最 优稳 态增 益来 调 整量 测 噪声 , 制 滤 波器 的发 散 , G SIS组 合 导航 系 统实 现 高 抑 为 P/N 精 度导航 提供 了有 效 的途 径 。仿 真结 果表 明该 算法 能很 好地 对 系统状 态进 行最 优 估计 并适 应 系 统 噪声 的变 化 , 具有 比常 规 卡尔 曼滤 波更 高 的导航精 度 。 关 键词 : 合 导航 ; P/N ; 组 G SIS 卡尔 曼滤 波 ; 自适应 滤 波 中图分 类号 :N 6 T 9 文献 标 识码 : A 文章 编号 : 7 — 2X 2 1 )0 0 8 —3 1 3 6 9 (0 1 1 — 13 0 6
( eo at a A tma o ol e Cvl it nU iesyo hn ,ini 3 0 0 , hn ) A rn u cl uo t nC l g , iiAva o nvr t f iaTaj 0 30 C ia i i e i i C n
卡尔曼滤波与组合导航原理pdf

卡尔曼滤波与组合导航原理pdf
1 卡尔曼滤波和组合导航原理
卡尔曼滤波(Kalman filtering)是一种广泛应用于机器人技术、控制工程、通信科学、经济学等多个领域的一种小波处理技术。
卡尔
曼滤波是一种采用双向更新的状态估计算法,具有自适应性和准确度。
因此,卡尔曼滤波在导航定位、控制与优化等领域得到了广泛的应用。
组合导航的原理是通过混合不同种类的测量模式,克服个别模式
的局限性,实现更加可靠的导航定位。
它通过四轴机载飞行控制系统、空降定位系统、气溶胶吸收系统、惯性导航系统等不同的传感技术和
测量原理,实现更精确和可靠的导航定位。
同时,组合导航系统可以利用运动学位置确定性的抗差特性,利
用卡尔曼滤波,将运动学观测与动态运动方程校准,使系统在估计模
型的非线性变换和噪声的影响下,保持稳定运行,以达到精确定位的
目的。
因此,通过将卡尔曼滤波与组合导航原理联合起来的方式,组合
导航系统能够实现精确定位,并且更加可靠,具有自适应性和准确度。
另外,由于基于组合导航的定位精度对所采用的传感器类型不敏感,
因此也更具有灵活性,可以根据实际应用情况不断添加和发展新的传
感器。
卡尔曼滤波算法及其在组合导航中的应用综述

V 1 9 No 1 o. .2 2
企 业 技 术 开 发
TECHNOLOGI CAL DEVELOPMENT OF ENTERPRI SE
21 0 0年 6 月
J n .01 u e2 0
卡 尔曼滤 波算法及 其在 组合 导航 中的应 用综述
刘 星 。 谢
利 用 系统 状 态 方 程 、 测 方 程 、 统 噪声 和观 测 噪声 的统 观 系 计 特 性形 成 滤 波 算 法 。
滤 波发 散 。
2 卡 尔曼 滤 波 算法 及 其 发散 抑 制方 法
21 K l n滤 波 算 法 . ama 设 随 线性 离散 系 统 的 方 程 为 :
() 3 () 4
一 T , 1 K k k+rk P- 1 - () 5
k1 _
Q _ 。 k k F。, 1 1 _
估 计 误 差 方 差 阵 : IKHJk P — k - F【 Pk _ 滤 波增 益 :k K= k k - 1 l
Hk k l T R P H k k k + _
一
1 组合导航系统基本特性描述
要描述一个实际系统 , 首先要对其进行建模 , 即建立 系 统 的状 态 方 程 和 测量 方 程 。 于组 合 导 航 系 统 , 进 行 对 要
滤 波计 算 必 须 建 立 数学 模 型 , 模 型具 有 以下 特 点 。 此 11 非 线 性 . 组 合 导 航 系 统 本 质 上 是非 线 性 系 统 ,有 时 为 了减 少 计 算 量及 提 高 系 统 实 时 性 ,在 某些 假 设 条 件 下 组 合 导 航 系 统 的非 线 性 因素 可 以忽 略 ,其 可 以用 线 性 化 的数 学 模
卡尔曼滤波与H∞滤波在INS/GPS组合导航中的应用

0 弓I
舌
式 中 x() 为状 态矩 阵
组 合 导航通 常 采用传 统 的卡尔 曼 ( l n 滤 Kama )
波方法 将 各种传 感 器 的信息融 合在 一起 , 使得 构成 组 合 系统 的各项 性 能 指标 均优 于 2个 子 系 统 单独 工 作 时的性 能 。但 是 在 对 参数 不确 定 系 统 和 有 色 噪声情 况 下 , l n滤波器 效果 难 以令人 满意口 , Kama ] 而近 年来 提 出的 H 滤波方 法对 不 确定 和 有色 噪声
I / S组合 导航 , 何 确 定 y值 以更 好 地 提 高 NS GP 如 精度 是下 一 步研究 的重 点 。
原 理 [ . 安 : 北 工 业 大 学 出 版社 ,0 7 M] 西 西 20.
作者简 介
参 考 文献
波算 法 与 H。滤波 算 法 , 过 VS 0 8编 程 实 现算 。 通 20
法 。对 于滤波 初值 的选 取 , 样 频率 为 1 oHz下 采 0 , 列参 数 由经验 确定 : 状态 X 的初 值 全部 取 零 , 陀螺
2 卡尔 曼 滤 波 与 H。 波 方 程 。 滤
将 上 述 I / S组 合 导 航 模 型 离 散 化 后 分 NS GP 别 建立标 准 卡尔 曼滤 波算 法与 H 滤 波算 法
具 有 较 强 的 鲁 棒 性 能 , 满 足 人 们 对 性 能 的 要 能
x()一 [
8 v
8 8 1 w f] ×  ̄
F £为连 续系 统 的状 态 转移矩 阵 ()
o o 0 o
F = =
一
2
求[ 。研究 了 I / S线 性 系 统 的 滤波 问题 , 2 ] NS GP 分 别用 卡尔 曼滤 波和 H 滤 波解 的实 例仿 真 说 明 了所 提 出方法 的可行性 和正 确性 。
卡尔曼滤波与组合导航原理

卡尔曼滤波与组合导航原理卡尔曼滤波与组合导航原理卡尔曼滤波是一种常用于噪声系统的估计方法,被广泛应用于导航、通信、自动控制、图像处理以及机器学习等领域。
组合导航则是指使用多种导航传感器(如GPS、惯性导航、磁力计等)进行融合导航,以实现更精确的导航定位。
本文将围绕着这两个概念,从基础概念入手,逐渐深入,介绍其原理和应用。
一、简介卡尔曼滤波起源于20世纪60年代的美国,是由卡尔曼和贝鲁(R. E. Belman)等人提出的一种数据滤波和估计方法。
该方法适用于含有噪声干扰的线性系统,它通过权衡测量数据和模型预测结果,以最小化预测误差和测量误差之和,从而得出精确的状态估计值。
组合导航在军事、民航、航天等领域有着广泛的应用,通过融合多种导航系统的数据信息,就能够实现更加准确、可靠的导航定位。
在越来越多的领域中,组合导航成为一种不可或缺的技术手段,广泛运用于导航器材、飞行器、无人机、机器人、智能车等设备中。
二、卡尔曼滤波原理1.状态方程:状态方程描述了预测状态量的动态演变规律。
假设现在想要估计一个物体的位置p和速度v,那么状态方程可以表示为: X(k)=F(k-1)*X(k-1) + w(k-1)其中,X(k)表示在时间k的状态,F(k-1)表示状态在时间 (k-1) 和 k 之间转移的过程,w(k-1)表示噪声干扰项。
2.观测方程:观测方程描述了测量状态量的方程。
如果使用传感器测量物体的位置p和速度v,那么观测方程可以表示为:Z(k)=H(k)*X(k) + v(k)其中,Z(k)是在时间k通过传感器得到的观测值,H(k)是观测矩阵,v(k)是噪声干扰项。
3.基于卡尔曼滤波的状态估计:卡尔曼滤波根据状态方程和观测方程,将传感器测量的观测值与预测值进行融合,得出最终的状态估计值。
k-1时刻的估计值为:X^(k-1|k-1)k-1时刻的协方差矩阵为:P(k-1|k-1)k时刻的观测值为:Z(k)k时刻的观测噪声方差为:R(k)卡尔曼增益K(k)的计算:K(k)=P(k-1|k-1)*H(k)T / (H(k)*P(k-1|k-1)*H(k)T + R(k))速度误差和位置误差的更新:v(k)=Z(k) - H(k)*X^(k-1|k-1) , X^(k|k-1)=X^(k-1|k-1) + K(k)*v(k)协方差矩阵的更新:P(k|k-1)=(I - K(k)*H(k))*P(k-1|k-1)三、组合导航的实现组合导航的实现需要多传感器之间的配合和信息融合。
卡尔曼滤波算法及其在组合导航中的应用综述

卡尔曼滤波算法及其在组合导航中的应用综述摘要:由于描述系统特性的数学模型和噪声的统计模型不准确,不能真实反映物理过程,使模型与获得的观测值不匹配从而会导致滤波器发散。
文章在描述组合导航基本特性和卡尔曼滤波原理的基础上提出了滤波发散的问题并提出了抑制发散的方法,最后介绍了卡尔曼滤波在组合导航中的应用。
关键词:卡尔曼滤波;组合导航;发散随着计算机技术的迅速发展,它有条件提供运算速度高、存贮量大的机载计算机,这为组合导航系统的发展创造了一个很好的技术条件,现代控制理论中最优估计理论的数据处理方法为组合导航系统提供了理论基础。
Kalman滤波是R.E.Kalman于1960年提出的从众多与被提取信号有关的观测量中通过算法估计出所需信号的一种滤波算法。
他把状态空间的概念引入到随机估计理论中,把信号过程视为白噪声作用下的一个线性系统的输出,用状态方程来描述这种输入-输出关系,估计过程中利用系统状态方程、观测方程、系统噪声和观测噪声的统计特性形成滤波算法。
1组合导航系统基本特性描述要描述一个实际系统,首先要对其进行建模,即建立系统的状态方程和测量方程。
对于组合导航系统,要进行滤波计算必须建立数学模型,此模型具有以下特点。
1.1非线性组合导航系统本质上是非线性系统,有时为了减少计算量及提高系统实时性,在某些假设条件下组合导航系统的非线性因素可以忽略,其可以用线性化的数学模型来近似描述。
但当假设条件不满足时,组合导航系统就必须采用能反映自身实际特性的非线性模型来描述。
所以说,非线性是组合导航系统本质的特性。
1.2模型不确定性组合导航系统处于实际运行环境当中时,受系统本身以及外部应用环境不确定性因素的影响,系统实际模型与建立的理论模型不能完全匹配,即组合导航系统具有模型不确定性。
造成系统模型不确定性的主要原因如下:①模型简化。
采用较少的状态变量来描述系统,忽略掉实际系统某些不重要的状态特征。
由此造成模型与实际不匹配。
卡尔曼滤波在组合导航数据处理中的应用

we c o mp a r e a n d a n a l y z e t h e n a v i g a t i o n t r a j e c t o r i e s o f d e a d r e c k o n i n g a n d GPS,a n d f i n d t h a t t h e n a v i g a t i o n t r a j e c t o r i e s
电
子
测
量
技
术
第 4 O卷 第 3期
2 0 1 7年 3月
ELECTR0NI C M EAS UREM ENT TECHN0L0GY
卡 尔 曼 滤 波在 组 合 导 航数 据 处 理 中的应 用
黎 蓉
( 1 .三 峡 大 学 电 气 与新 能 源 学 院 宜 昌 4 4 3 0 0 2 ; 2 .新 能 源微 电 网 湖 北 省 协 同 创 新 中心 ( 三 峡 大 学) 宜昌 4 4 3 0 0 2 )
o f d e a d r e c kon i n g a nd G PS a r e a l m os t c o i nc i de n t ,a nd t h e Ka l ma n f i l t e r i ng al g or i t h m c a n i mp r o ve t he a c c ur a cy of
2 .Hu b e i Pr o v i n c i a l Co l l a b o r a t i v e I nn o v a t i o n Ce n t e r f o r Ne w En e r g y Mi c r o g r i d . ( CTGU ) , Yi c ha n g 4 4 3 0 0 2, Ch i n a )
区间卡尔曼滤波算法在组合导航数据融合中的应用

+ ,12 , xx 2z 1 ,12] 1 }ma { 1 , 12 } z ( ) 区 间 除 法 “ ” 1x 一 [ 1 ]×[ 2 4 / :z / 2 z , z, ] ; ~ 。 一[ ,/ ]0 ] 1 lx , ,] ; 如果 一 个 矩阵 ( 矢量 )的每 个元 素 都是 区 间 , 该矩 阵( 量 )被 称 为 区 间矩 阵 ( 量 ) 区 间矩 矢 矢 。 阵遵 循 很多适 用 于 一般 区 间 的代 数 运算法 则 。 3 基 于 区间 的卡 尔曼滤 波 算法
马 云峰 ( 潍坊 学 院 ,Fra bibliotek山东潍坊
2 16 ) 6 0 1
摘 要 : 统 卡 尔曼 滤 波算 法在 系统 参数 不确 切 已知 或 随 时间 变化 时无 法直 接 应用 。本 文通 过 将 传 参 数 变化 的 系统建 立成 区间模 型 , 出 了一种处 理 系统参 数 不确 定 性 的 区间卡 尔曼 滤波 算 法 , 算法 运 给 该 用 一种 较 为简 单 的 区间矩 阵求逆 方 案 , 统 计最 优 性能及 迭 代形 式方 面 与标 准卡 尔曼滤 波算 法相 当, 在 仿 真 验证 了该 算 法在低 成本 I / S组合 导航 数 据 融合 中应用 的可行 性 。 Ns GP
称 为 y 的上 界 。
国外 对 多传感 器 信息 融合 技术 的研 究 起步 较
早、 发展 较 快 , 仅 在 C I 指 挥 、 制 、 信 与 情 不 ( 控 通 报、 算机) 计 系统 中采 用 多 种 传 感 器 来 收集 信 息 , 而且 在 工业 控制 、 机器 人 、 洋 监 视 和 管 理 、 海 目标 识别 等领 域也 在 朝 着 多 传 感 器 方 向发 展 。“ 息 信 融合 ” 时不加 区分 地 称为 “ 据融 合” 但 数据 融 有 数 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卡尔曼滤波算法及其在组合导航中的应用综述
摘要:由于描述系统特性的数学模型和噪声的统计模型不准确,不能真实反映物理过程,使模型与获得的观测值不匹配从而会导致滤波器发散。
文章在描述组合导航基本特性和卡尔曼滤波原理的基础上提出了滤波发散的问题并提出了抑制发散的方法,最后介绍了卡尔曼滤波在组合导航中的应用。
关键词:卡尔曼滤波;组合导航;发散
随着计算机技术的迅速发展,它有条件提供运算速度高、存贮量大的机载计算机,这为组合导航系统的发展创造了一个很好的技术条件,现代控制理论中最优估计理论的数据处理方法为组合导航系统提供了理论基础。
Kalman滤波是R.E.Kalman于1960年提出的从众多与被提取信号有关的观测量中通过算法估计出所需信号的一种滤波算法。
他把状态空间的概念引入到随机估计理论中,把信号过程视为白噪声作用下的一个线性系统的输出,用状态方程来描述这种输入-输出关系,估计过程中利用系统状态方程、观测方程、系统噪声和观测噪声的统计特性形成滤波算法。
1组合导航系统基本特性描述
要描述一个实际系统,首先要对其进行建模,即建立系统的状态方程和测量方程。
对于组合导航系统,要进行滤波计算必须建立数学模型,此模型具有以下特点。
1.1非线性
组合导航系统本质上是非线性系统,有时为了减少计算量及提高系统实时性,在某些假设条件下组合导航系统的非线性因素可以忽略,其可以用线性化的数学模型来近似描述。
但当假设条件不满足时,组合导航系统就必须采用能反映自身实际特性的非线性模型来描述。
所以说,非线性是组合导航系统本质的特性。
1.2模型不确定性
组合导航系统处于实际运行环境当中时,受系统本身以及外部应用环境不确定性因素的影响,系统实际模型与建立的理论模型不能完全匹配,即组合导航系统具有模型不确定性。
造成系统模型不确定性的主要原因如下:
①模型简化。
采用较少的状态变量来描述系统,忽略掉实际系统某些不重要的状态特征。
由此造成模型与实际不匹配。
②系统噪声统计不准确。
所建模型的噪声统计特性与实际系统噪声统计特性有较大差异。
③对实际系统初始状态的统计特性建模不准确。
④实际系统出现器件老化、损坏等使系统参数发生了变动,造成模型与实际系统不匹配。
卡尔曼滤波要求系统数学模型必须为线性,当组合导航系统模型具有非线性特性时,仍然采用线性模型描述组合导航系统及使用卡尔曼滤波进行滤波,将会导致滤波发散。
2卡尔曼滤波算法及其发散抑制方法
2.1 Kalman滤波算法
设随线性离散系统的方程为:
Xk=φk,k-1Xk-1+Lk,k-1Wk-1(1)
Zk=HkXk+Vk(2)
式中,Xk是系统状态向量,φk,k-1是系统的状态转移矩阵,Lk,k-1是系统过程噪声输入矩阵,Wk是系统过程噪声向量,Zk是系统的观测向量,Hk是观测矩阵,Vk 是系统观测噪声向量。
其中,Qk是系统过程噪声向量的Wk对称非负定方差矩阵,Rk是系统观测噪声向量Vk的对称正定方差矩阵,δkj是kronecker-δ函数。
常规卡尔曼滤波方法可描述如下:
状态一步预测:Xk,k-1=φk,k-1Xk-1 (3)
状态估计:Xk=Xk,k-1+Kk[Zk-HkXk,k-1](4)
一步预测误差方差阵:Pk,k-1=φk,k-1Pk-1φTk,k-1+Γk,k-1Qk-1ΓTk,k-1(5)
估计误差方差阵:Pk=[I-KkHk]Pk,k-1(6)
滤波增益:Kk=(7)
在一个滤波周期内,Kalman滤波具有时间更新和观测更新两个过程,式3和式6将时间从k-1时刻推进至k时刻,其余的式子用来计算对时间更新值的修正量。
只要给定初值Xo和Po,根据k时刻的观测值Zk,就可以递推计算机的k时刻的观测值Zk,就可以递推计算机的k时刻的状态估计Xk(k=1,2,…)。
2.2卡尔曼滤波发散的抑制方法
当滤波模型不准确时通过加大新量测值的加权系数,相对减小过去量测值对滤波的影响来抑制滤波发散。
常用的方法有以下两种。
2.2.1衰减记忆滤波
当系统模型不准确时,新量测值对估计值的修正作用下降,过去量测值的修正
作用相对上升引发滤波发散。
因此通过逐渐减小过去量测值的权值,相应增大新量测值的权值来抑制滤波发散。
取卡尔曼滤波的最优增益矩阵公式中k=N,则KN =PNHTkR-1k。
为抑制滤波发散,应相对地突出KN,而逐渐减小时刻N以前的Kk值。
这样要减小Zi(i1,所以衰减记忆滤波中Pk,k-1、Kk都大于常规卡尔曼中的对应值,这就意味着采用衰减记忆卡尔曼滤波方程时,对新量测值的利用权重比常规卡尔曼进行滤波时的利用权重大,滤波发散从一定程度得到抑制。
2.2.2限定记忆滤波
由Xk=E[Xk|Z1Z2…Zk]可知,卡尔曼滤波基本方程对观测数据的记忆是无限增长的,即计算Xk是要用已有的全部观测值。
而采用限定记忆滤波估计时,只是用离k时刻最近的N个测量值Zk-N+1,Zk-N+2,…,Zk而完全截断K-N+1时刻以前的旧量测值对滤波值的影响。
3卡尔曼滤波在组合导航中的应用
卡尔曼滤波器是一种线性最小方差估计。
其最优估计准则是使估计值的方差最小。
估计值是观测值的线性函数,并且当系统的过程噪声为白噪声时,它是无偏估计。
采用卡尔曼滤波技术将两个或两个以上系统的信息融合在一起,估计出系统的各种参数。
3.1集中式Kalman滤波
集中式Kalman滤波是利用一个滤波器来集中处理所有子系统的信息。
在理论上,集中式Kalman滤波可以给出误差状态的最优估计,但存在以下缺点:
①集中式Kalman滤波的状态维数高,计算量以滤波器维数的三次方递增,不能保证滤波器的实时性。
②子系统的增加使系统故障率随之增加,只要其中一个子系统失效,整个系统会被污染,因此,集中式Kalman滤波器的容错性能差,不利于故障诊断。
3.2分布式Kalman滤波
分布式Kalman滤波就是各个子系统首先通过局部Kalman滤波器处理各自的测量信息以产生局部状态估计,局部状态估计结果再传递给融合中心,通过全局滤波器进行信息分析与综合,产生最优滤波结果。
分布式滤波具有计算简单,结构灵活和容错性强等性能。
联邦Kalman滤波理论是一种特殊形式的分布式Kalman滤波方法。
联邦卡尔曼滤波由若干个子滤波器和一个主滤波器组成,其特殊性在于联邦滤波器采用
信息分配原理。
联邦Kalman滤波各个子滤波器并行运行,将结果送至主滤波器以获得全局估计,全局估计再按照信息守恒的原则反馈给各个子滤波器,这种方法为容错导航系统的设计提供了理论基础。
联邦滤波器致力于解决以下几个问题:①滤波器的容错性能好。
当一个或几个导航系统出现故障时,能容易地检测和分离故障,并能很快地将剩下的正常导航子系统重新结合起来以继续给出所需的滤波解。
②滤波精度高。
③由局部滤波到全局滤波的算法简单,计算量小,数据通讯少,有利于算法的实时执行。
4结语
文章对卡尔曼滤波的基本原理进行了描述,通过对组合导航系统基本特性的描述提出了卡尔曼滤波的发散问题并提出两种解决发散问题的方法。
此外还介绍了卡尔曼滤波在组合导航中的应用。
相信随着计算机硬件和软件技术的发展以及计算技术的推广,卡尔曼滤波将会越来越受到广大科研工作者的青睐。
参考文献:
[1] 秦永元.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,1998.
[2] 付梦印.卡尔曼滤波理论及其在导航系统中的应用[M]. 北京:科学出版社,2003.。