世界大地测量系统 WGS-84(World Geodetic System--GPS )
GPS测量坐标系有哪些

GPS测量坐标系有哪些1. 地球坐标系(WGS84)地球坐标系(World Geodetic System 1984,简称WGS84)是一种全球通用的地球坐标系统。
它是由美国国防部制定的,用于GPS(全球定位系统)和其他导航系统。
WGS84使用经纬度(latitude 和 longitude)来表示地球上任意一个点的位置。
2. 大地坐标系(NAD83)大地坐标系(North American Datum 1983,简称NAD83)是在北美地区广泛使用的坐标系统。
它在WGS84基础上进行了一些微小的调整,以更精确地反映北美地区的地球形状和位置。
3. 区域坐标系(UTM)区域坐标系(Universal Transverse Mercator,简称UTM)是一种广泛使用的地理坐标系统,特别适用于大范围地图的制作和测量。
UTM以地球为基准,将地球划分成若干个地带,每个地带使用不同的投影方式来表示地理坐标。
这种系统使得测量和导航更加简单和方便。
4. 相对坐标系相对坐标系是相对于已知点或基准点的坐标系统。
在GPS测量中,常用的相对坐标系有局部坐标系和工程坐标系。
4.1 局部坐标系局部坐标系是以某个已知点为基准点建立的坐标系统。
在局部坐标系中,通常以基准点为原点,对其他点进行偏移和描述。
这种坐标系在地理勘测、土地测量和工程测量中经常使用。
4.2 工程坐标系工程坐标系是一种与工程建设相关的坐标系统,常用于工程测绘和定位。
工程坐标系可以相对于某个基准点或基准线进行描述,可以更好地满足特定工程测量的需求。
5. 其他坐标系除了上述提到的坐标系,还存在一些特定的坐标系,如:•地心坐标系(Geocentric Coordinate System):在地球内部使用的三维坐标系,常用于地震学和地球物理学研究。
•极坐标系(Polar Coordinate System):使用极角和极径来表示点的位置,适用于某些特定的测量场景。
测绘技术中常见的坐标系统介绍

测绘技术中常见的坐标系统介绍在测绘领域中,坐标系统是一个非常关键的概念。
它的作用在于将地球上的点与数学上的坐标相对应,从而达到精确定位的目的。
在这篇文章中,我们将介绍一些常见的测绘坐标系统,以及它们的特点和应用。
1. WGS84(World Geodetic System 1984)WGS84是目前最常用的大地坐标系,被广泛应用于全球卫星导航系统(GNSS)定位和测绘工作中。
它以椭球体模型为基础,在全球范围内提供标准的经纬度坐标,适用于测量地球上各个点的位置。
WGS84的优势在于精度高且覆盖范围广,但受到地球形状和重力畸变的影响,在极地地区精度会有所下降。
2. UTM(Universal Transverse Mercator)UTM是全球通用的投影坐标系统,适用于局部地理区域的测量和绘制。
它将地球表面划分为若干个投影带,每个带都采用了横轴墨卡托投影,从而保证了在该投影带内的点的坐标精度。
UTM坐标以东西向的X坐标和南北向的Y坐标表示,单位为米。
UTM的优点在于能够提供良好的尺度和精度,适合于大规模的测绘工程。
3. 地方坐标系统地方坐标系统又称为本地坐标系统,主要用于小范围的地理测量和地方性的工程项目。
它基于特定的数学模型和局部控制点,将区域内的点与局部坐标相对应。
地方坐标系统在城市规划、建筑工程和地下管线布局中特别有用。
由于地方坐标系统的参考基准点是局部控制点,所以在不同地区之间无法直接进行坐标的转换。
4. 坐标系统转换在实际测绘工作中,经常需要将不同的坐标系统进行转换。
这样可以实现不同数据源之间的协调,并提高测绘成果的准确性和一致性。
常用的坐标系统转换方法包括参数法、大地转换法和仿射变换法。
通过这些方法,可以将不同的坐标系统之间的坐标进行精确定位。
总结:坐标系统在测绘技术中起到了至关重要的作用,它能够帮助我们在地球表面实现精确的定位。
在实际应用中,我们常见的测绘坐标系统包括WGS84、UTM和地方坐标系统。
什么是WGS84坐标系

什么是WGS84坐标系1.概述WGS84坐标系,全称为世界大地测量系统(英语:World Geodetic System)是一种用于地图学、大地测量学和导航(包括全球定位系统)的大地测量系统标准。
WGS包含一套地球的标准经纬坐标系、一个用于计算原始海拔数据的参考椭球体,和一套用以定义海平面高度的引力等势面数据。
2.WGS84椭球体WGS84坐标是一种地心坐标系,坐标原点为地球质心,它采用一个十分近似于地球自然形状的参考椭球作为描述和推算地面点位置和相互关系的基准面。
一个大地坐标系统必须明确定义其三个坐标轴的方向和其中心的位置。
通常人们用旋转椭球的短轴与某一规定的起始子午面分别平行干地球某时刻的平均自转轴和相应的真起始子午面来确定坐标轴的方向。
若使参考椭球中心与地球平均质心重合,则定义和建立了地心大地坐标系。
它是航天与远程武器和空间科学中各种定位测控测轨的依据。
WGS84椭球参数如下:WGS84椭球体3.WGS84坐标系历史WGS84坐标系是为GPS全球定位系统使用而建立的坐标系统,通过遍布世界的卫星观测站观测到的坐标建立,其初次WGS84的精度为1-2m。
在1994年1月2号,通过10个观测站在GPS测量方法上改正,得到了WGS84(G730),G表示由GPS测量得到,730表示为GPS时间第730个周。
GPS观测站1996年,National Imagery and Mapping Agency (NIMA) 为美国国防部 (U.S.Departemt of Defense, DoD)做了一个新的坐标系统。
这样实现了新的WGS版本:WGS(G873)。
其因为加入了USNO站和北京站的改正,其东部方向加入了31-39cm 的改正。
所有的其他坐标都有在1分米之内的修正。
海军导航卫星系统第三次精化:WGS84(G1150),于2002年1月20日启用,它是全球定位系统使用的参考系统,整体误差在±1 m之内。
gps测量坐标方式及对应精度是多少合适

GPS测量坐标方式及对应精度是多少合适GPS是全球定位系统的简称,是一种卫星导航系统,被广泛应用于测量、导航和定位等领域。
在进行GPS测量时,选择合适的坐标方式和对应精度是非常重要的。
本文将介绍常见的GPS测量坐标方式以及对应的精度要求。
1. WGS84坐标系WGS84坐标系是GPS系统主要采用的坐标系之一,全称为“World Geodetic System 1984”。
这是一种地心地固坐标系,以地球质心为原点,以地球自转轴为Z轴建立直角坐标系。
WGS84坐标系的经纬度用度(°)作为单位,精度为小数点后的位数。
对于一般的日常定位和导航需求,WGS84坐标系的精度可以设定在小数点后4-6位。
这个精度范围已经可以满足大部分的日常使用,如城市导航、地图标注等。
2. UTM坐标系UTM坐标系是一种通用的地理坐标系统,广泛应用于地形图制作和工程测量等领域。
UTM坐标系将地球表面分成一系列的投影带和网格,每个投影带都有一个唯一的中央经线。
UTM坐标系采用米(m)作为单位,在工程测量等需要较高精度的情况下,可以设定精度到小数点后的位数更多,一般可以设置在小数点后的位数在6-8位之间。
这样可以满足更高要求的测量工作,如土地测量、地质调查等。
3. 高精度测量除了上述常见的坐标方式外,对于一些特殊的应用场景或者测量需求,可能需要更高精度的坐标测量。
例如,对于建筑物精确定位、导弹精确制导等需要非常高精度的场景,可以使用更精确的坐标方式,如RTK(Real-time Kinematic)技术来实现。
在使用RTK技术测量时,可以获得厘米级的精度,因此可以满足高精度定位的要求。
RTK测量一般需要在专业测量设备的支持下进行,同时还需要具备良好的信号接收条件。
总结在进行GPS测量时,根据实际需求选择合适的坐标方式和对应精度是非常重要的。
对于一般的日常使用,WGS84坐标系和UTM坐标系提供的精度已经足够满足绝大部分需求。
【干货】两种七参数坐标转换方法

目前国内所用GNSS (Global Navigation Satellite System)即全球卫星导航系统,已经发展到多星,尤其随着北斗导航系统的逐步完善,正在向CGCS2000椭球过渡,但还是以WGS-84 坐标系统为主流,即仍以美国GPS为主,所发布的星历参数也是基于此坐标系统。
WGS-84 坐标系统(World Geodetic System-84,世界大地坐标系-84) 的坐标原点位于地球的质心,Z 轴指向BIH1984.0定义的协议地球极方向,X 轴指向BIH1984.0的启始子午面和赤道的交点,Y 轴与X轴和Z 轴构成右手系。
WGS-84 系所采用椭球参数为:长半轴6378137;扁率1:298.25 7223563。
而我国目前广泛采用的大地测量坐标系有3种:①北京1954 坐标系。
该坐标系采用的参考椭球是克拉索夫斯基椭球,该椭球的主要参数为:长半轴6378245;扁率1:298.3。
②1980 年国家大地坐标系。
该坐标系是参心坐标系,采用地球椭球基本参数为1975 年国际大地测量与地球物理联合会第十六届大会推荐的数据,大地原点设在我国中部的陕西省泾阳县永乐镇,也称西安80 坐标系。
长半轴6378140±5;扁率1:298.257。
③2000 中国大地坐标系。
该坐标系是地心坐标系,与WGS-84坐标类似。
原点在包括海洋和大气的整个地球的质量中心;定向在1984.0时与BIH(国际时间局)。
长半轴6378137.0;扁率1:298.257 222 101。
各坐标系之间的转换是工作中的经常遇到的问题,主要的转换方法有三参数、四参数和七参数法,而这三种方法中,七参数是一种空间直角坐标系的转换模型,是基于椭球间的三维转换,精度最高。
如果用七参数法来实现WGS84 坐标系与1980 年国家大地坐标系的转换,求解前必须确定控制网中各点对的距离。
如果两点间距离超过15 公里,必须考虑曲面因素即两种不同坐标系的椭球参数,避免因椭球的差异,导致转换后所得坐标残差过大,精度过低,为了保证精度必须采用七参数法。
kml文件默认坐标系 -回复

kml文件默认坐标系-回复标题:深入理解KML文件默认坐标系KML(Keyhole Markup Language)是一种基于XML的语言,主要用于在Google Earth、Google Maps等地图应用程序中表示地理数据。
在KML文件中,坐标系的选择对于准确地表示和解析地理位置信息至关重要。
本文将详细探讨KML文件的默认坐标系,以及如何理解和处理相关的坐标转换问题。
一、KML文件的默认坐标系KML文件的默认坐标系是WGS84(World Geodetic System 1984)。
这是一种全球大地测量系统,由美国国家地理空间情报局(NGA)开发和维护。
WGS84坐标系的主要特点是其地球模型和定位方法,它定义了地球的形状、大小和重力场,并提供了一种全球统一的经纬度坐标系统。
在KML文件中,地理位置通常以经纬度的形式表示,如下所示:<Placemark><name>Example Location</name><Point><coordinates>-122.0822,37.4218</coordinates> </Point></Placemark>在这个例子中,"-122.0822"是经度值,表示位置位于西经122.0822度;"37.4218"是纬度值,表示位置位于北纬37.4218度。
这些坐标值都是基于WGS84坐标系的。
二、理解WGS84坐标系WGS84坐标系的核心是一个地球椭球体模型,该模型通过精确测量地球的形状和大小来定义。
这个椭球体的参数包括长半轴a(约为6378137米)和扁率f(约为1/298.257223563)。
WGS84还定义了一个原点,即地球的质心,以及一个参考框架,用于确定地球上的任何一点相对于这个原点的位置。
在WGS84坐标系中,经纬度是以弧度或度为单位的。
wgs84坐标系的几何定义

WGS84坐标系,全名为世界测绘系统1984(World Geodetic System 1984),是国际上广泛采用的地心坐标系,其几何定义具有深远的科学意义和应用价值。
WGS84坐标系的几何定义基于一个理想化的地球模型,这个模型是一个旋转对称的椭球体,所有的大地测量和地图绘制工作都基于这个椭球体进行。
这个椭球体的形状和大小由一系列参数定义,包括长半轴、短半轴、扁率等。
这些参数是通过全球的大地测量观测数据拟合得到的,能够尽可能准确地反映地球的真实形状。
WGS84坐标系的原点位于地球质心,Z轴指向国际时间局(BIH)定义的协议地球极(CTP)方向,X轴指向格林威治平均子午面与CTP赤道的交点,Y轴与Z轴、X轴构成右手坐标系。
这种定义方式使得WGS84坐标系既考虑了地球的整体形状,又考虑了地球的旋转动态。
WGS84坐标系采用经度、纬度、高度三个参数来描述地球上任意一点的位置。
其中,经度和纬度的定义基于大圆弧长和与赤道面的夹角,高度的定义则是基于椭球面的法线方向。
这三个参数的组合构成了所谓的地理坐标。
WGS84坐标系还具有一系列的数学性质,包括正交性、均匀性、各向同性等,这些性质保证了WGS84坐标系在大地测量、地理信息系统、全球定位系统等领域中的广泛应用。
总的来说,WGS84坐标系的几何定义是建立在对地球形状和大小的深入理解之上的,它为我们提供了一种准确、统一的方式来描述和测量地球上的位置信息。
wgs84坐标系 原理

wgs84坐标系原理世界大地测量系统 1984 (WGS84)WGS84 是一种全球大地测量系统,为测量地球形状和地球上位置提供框架。
它由美国国防部于 1984 年开发,旨在为定位和导航系统(如全球定位系统 (GPS))提供统一的参考框架。
原理WGS84 基于地球椭球体的数学模型。
地球椭球体是一种扁球体,其赤道半径大于极半径。
WGS84 使用以下参数定义地球椭球体:赤道半径:6,378,137.0 米极半径:6,356,752.314245 米扁率:1/298.257223563WGS84 坐标系使用三个坐标来唯一标识地球上的位置:纬度(φ):赤道以北或以南的角度,从 -90°(南极点)到+90°(北极点)经度(λ):格林威治经线以东或以西的角度,从 -180°(国际日期变更线)到+180°(国际日期变更线)高度 (h):以米为单位,从椭球体表面到指定点的垂直距离坐标转换由于地球不是完美的椭球体,不同的数据集(例如航空照片或地形图)可能会使用不同的坐标系。
为了使用不同的数据集,需要将坐标从一个坐标系转换到另一个坐标系。
WGS84 是一个广泛使用的坐标系,因此通常不需要从其他坐标系转换到 WGS84。
但是,当需要从其他坐标系转换到 WGS84 时,可以使用椭球体参数(赤道半径、极半径和扁率)来进行转换。
应用WGS84 坐标系广泛用于全球定位和导航系统、制图、测绘和地球科学等应用中。
它为世界各地建立了一个统一的坐标框架,允许不同来源的数据集成和比较。
局限性WGS84 坐标系是一个近似的地球模型。
它不考虑地球形状的细微变化,例如山脉和海洋盆地。
对于非常精确的应用,可能需要使用更准确的地球形状模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
World Geodetic System----世界大地测量系统(主要参量、历史演变和基本原理)The World Geodetic System is a standard for use in cartography, geodesy, and navigation. It comprises a standard coordinate frame for the Earth, a standard spheroidal reference surface (the datum or reference ellipsoid) for raw altitude data, and a gravitational equipotential surface (the geoid) that defines the nominal sea level. The latest revision is WGS 84 (dating from 1984 and last revised in 2004), which was valid up to about 2010[1]. Earlier schemes included WGS 72, WGS 66, and WGS 60. WGS 84 is the reference coordinate system used by the Global Positioning System.Main parametersThe coordinate origin of WGS 84 is meant to be located at the Earth's center of mass; the error is believed to be less than 2 cm [2].The WGS 84 meridian of zero longitude is the IERS Reference Meridian[3], 5.31 arc seconds or 102.5 metres (336.3 ft) east of the Greenwich meridian at the latitude of the Royal Observatory[4]&[5].The WGS 84 datum surface is an oblate spheroid (ellipsoid) with major (transverse) radius a = 6378137 m at the equator and flattening f = 1/298.257223563[6]. The polar semi-minor (conjugate) radius b then equals a times (1−f), or 6356752.3142 m.[6]Presently WGS 84 uses the EGM96 (Earth Gravitational Model 1996) geoid, revised in 2004. This geoid defines the nominal sea level surface by means of a spherical harmonics series of degree 360 (which provides about 100 km horizontal resolution)[7]. The deviations of the EGM96 geoid from the WGS 84 reference ellipsoid range from about −105 m to about +85 m[8]. EGM96 differs from the original WGS 84 geoid, referred to as EGM84.HistoryEfforts to supplement the various national surveying systems began in the 19th century with F.R. Helmert's famous books Mathematische und Physikalische Theorien der Physikalischen Geodäsie (Mathematical and Physical Theory of Physical Geodesy). Austria and Germany founded the Zentralbüro für die Internationale Erdmessung (Central Bureau of International Geodesy), and a series of global ellipsoids of the Earth were derived (e.g., Helmert 1906, Hayford 1910/ 1924).A unified geodetic system for the whole world became essential in the 1950s for several reasons:(1)International space science and the beginning of astronautics.(2)The lack of inter-continental geodetic information.(3)The inability of the large geodetic systems, such as European Datum (ED50), North AmericanDatum (NAD), and Tokyo Datum (TD), to provide a worldwide geo-data basis(4)Need for global maps for navigation, aviation, and geography.(5)Western Cold War preparedness necessitated a standardised, NATO-wide geospatial referencesystem, in accordance with the NATO Standardisation AgreementIn the late 1950s, the United States Department of Defense, together with scientists of otherinstitutions and countries, began to develop the needed world system to which geodetic data could be referred and compatibility established between the coordinates of widely separated sites of interest. Efforts of the U.S. Army, Navy and Air Force were combined leading to the DoD World Geodetic System 1960 (WGS 60). The term datum as used here refers to a smooth surface somewhat arbitrarily defined as zero elevation, consistent with a set of surveyor's measures of distances between various stations, and differences in elevation, all reduced to a grid of latitudes, longitudes, and elevations. Heritage surveying methods found elevation differences from a local horizontal determined by the spirit level, plumb line, or an equivalent device that depends on the local gravity field (see physical geodesy). As a result, the elevations in the data are referenced to the geoid, a surface that is not readily found using satellite geodesy. The latter observational method is more suitable for global mapping. Therefore, a motivation, and a substantial problem in the WGS and similar work is to patch together data that were not only made separately, for different regions, but to re-reference the elevations to an ellipsoid model rather than to the geoid.In accomplishing WGS 60, a combination of available surface gravity data, astro-geodetic data and results from HIRAN [9] and Canadian SHORAN surveys were used to define a best-fitting ellipsoid and an earth-centered orientation for each of initially selected datum. (Every datum is relatively oriented with respect to different portions of the geoid by the astro-geodetic methods already described.) The sole contribution of satellite data to the development of WGS 60 was a value for the ellipsoid flattening which was obtained from the nodal motion of a satellite.Prior to WGS 60, the U.S. Army and U.S. Air Force had each developed a world system by using different approaches to the gravimetric datum orientation method. To determine their gravimetric orientation parameters, the Air Force used the mean of the differences between the gravimetric and astro-geodetic deflections and geoid heights (undulations) at specifically selected stations in the areas of the major datums. The Army performed an adjustment to minimize the difference between astro-geodetic and gravimetric geoids. By matching the relative astro-geodetic geoids of the selected datums with an earth-centered gravimetric geoid, the selected datums were reduced to an earth-centered orientation. Since the Army and Air Force systems agreed remarkably well for the NAD, ED and TD areas, they were consolidated and became WGS 60.Gravimetric datum orientationThe United States Department of Defense World Geodetic System 1966Steps to the improvement of a global system were the Astrogeoid of Irene Fischer and the astronautic Mercury datum. In January 1966, a World Geodetic System Committee composed of representatives from the United States Army, Navy and Air Force, was charged with the responsibility of developing an improved WGS needed to satisfy mapping, charting and geodetic requirements. Additional surface gravity observations, results from the extension of triangulation and trilateration networks, and large amounts of Doppler and optical satellite data had become available since the development of WGS 60. Using the additional data and improved techniques, WGS 66 was produced which served DoD needs for about five years after its implementation in 1967. The defining parameters of the WGS 66 Ellipsoid were the flattening (1/298.25), determined from satellite data and the semimajor axis (6,378,145 meters), determined from a combination of Doppler satellite and astro-geodetic data. A worldwide 5° × 5° mean free air gravity anomaly field provided the basic data for producing the WGS 66 gravimetric geoid. Also, a geoid referenced to the WGS 66 Ellipsoid was derived from available astrogeodetic data to provide a detailed representation of limited land areas.The United States Department of Defense World Geodetic System 1972After an extensive effort extending over a period of approximately three years, the Department of Defense World Geodetic System 1972 was completed. Selected satellite, surface gravity and astrogeodetic data available through 1972 from both DoD and non-DoD sources were used in a Unified WGS Solution (a large scale least squares adjustment). The results of the adjustment consisted of corrections to initial station coordinates and coefficients of the gravitational field.The largest collection of data ever used for WGS purposes was assembled, processed and applied in the development of WGS 72. Both optical and electronic satellite data were used. The electronic satellite data consisted, in part, of Doppler data provided by the U.S. Navy and cooperating non-DoD satellite tracking stations established in support of the Navy's Navigational Satellite System (NNSS). Doppler data was also available from the numerous sites established by GEOCEIVERS during 1971 and 1972. Doppler data was the primary data source for WGS 72 (Figure 38). Additional electronic satellite data was provided by the SECOR (Sequential Collation of Range) Equatorial Network completed by the U.S. Army in 1970. Optical satellite data from the Worldwide Geometric Satellite Triangulation Program was provided by the BC-4 camera system (Figure 39). Data from the Smithsonian Astrophysical Observatory was also used which included camera (Baker Nunn) and some laser ranging.Doppler satellite ground stations providing data for WGS 72 developmentWorldwide geometric satellite triangulation network, BC-4 camerasThe surface gravity field used in the Unified WGS Solution consisted of a set of 410 10° × 10° equal area mean free air gravity anomalies determined solely from terrestrial data. This gravity field includes mean anomaly values compiled directly from observed gravity data wherever the latter was available in sufficient quantity. The value for areas of sparse or no observational data were developed from geophysically compatible gravity approximations using gravity-geophysical correlation techniques. Approximately 45 percent of the 410 mean free air gravity anomaly values were determined directly from observed gravity data.The astrogeodetic data in its basic form consists of deflection of the vertical components referred to the various national geodetic datums. These deflection values were integrated into astrogeodetic geoid charts referred to these national datums. The geoid heights contributed to theUnified WGS Solution by providing additional and more detailed data for land areas. Conventional ground survey data was included in the solution to enforce a consistent adjustment of the coordinates of neighboring observation sites of the BC-4, SECOR, Doppler and Baker-Nunn systems. Also, eight geodimeter long line precise traverses were included for the purpose of controlling the scale of the solution.The Unified WGS Solution, as stated above, was a solution for geodetic positions and associated parameters of the gravitational field based on an optimum combination of available data. The WGS 72 ellipsoid parameters, datum shifts and other associated constants were derived separately. For the unified solution, a normal equation matrix was formed based on each of the mentioned data sets. Then, the individual normal equation matrices were combined and the resultant matrix solved to obtain the positions and the parameters.The value for the semimajor axis (a) of the WGS 72 Ellipsoid is 6 378 135 meters. The adoption of an a-value 10 meters smaller than that for the WGS 66 Ellipsoid was based on several calculations and indicators including a combination of satellite and surface gravity data for position and gravitational field determinations. Sets of satellite derived station coordinates and gravimetric deflection of the vertical and geoid height data were used to determine local-to-geocentric datum shifts, datum rotation parameters, a datum scale parameter and a value for the semimajor axis of the WGS Ellipsoid. Eight solutions were made with the various sets of input data, both from an investigative point of view and also because of the limited number of unknowns which could be solved for in any individual solution due to computer limitations. Selected Doppler satellite tracking and astro-geodetic datum orientation stations were included in the various solutions. Based on these results and other related studies accomplished by the Committee, an a-value of 6 378 135 meters and a flattening of 1/298.26 were adopted.In the development of local-to WGS 72 datum shifts, results from different geodetic disciplines were investigated, analyzed and compared. Those shifts adopted were based primarily on a large number of Doppler TRANET and GEOCEIVER station coordinates which were available worldwide. These coordinates had been determined using the Doppler point positioning method.A new World Geodetic System: WGS 84In the early 1980s the need for a new world geodetic system was generally recognized by the geodetic community, also within the US Department of Defense. WGS 72 no longer provided sufficient data, information, geographic coverage, or product accuracy for all then-current and anticipated applications. The means for producing a new WGS were available in the form of improved data, increased data coverage, new data types and improved techniques. GRS 80 parameters together with available Doppler, satellite laser ranging and Very Long Baseline Interferometry (VLBI) observations constituted significant new information. An outstanding new source of data had become available from satellite radar altimetry. Also available was an advanced least squares method called collocation which allowed for a consistent combination solution from different types of measurements all relative to the Earth's gravity field, i.e. geoid, gravity anomalies, deflections, dynamic Doppler, etc.WGS 84 reference frameThe new World Geodetic System was called WGS 84. It is currently the reference system being used by the Global Positioning System. It is geocentric and globally consistent within ±1 m. Current geodetic realizations of the geocentric reference system family International Terrestrial Reference System (ITRS) maintained by the IERS are geocentric, and internally consistent, at the few-cm level, while still being metre-level consistent with WGS 84.The WGS 84 originally used the GRS 80 reference ellipsoid, but has undergone some minor refinements in later editions since its initial publication. Most of these refinements are importantfor high-precision orbital calculations for satellites but have little practical effect on typicalThe very small difference in the flattening thus results in a—very theoretical—difference of 0.105 mm in the semi polar axis. For most purposes, the differing polar axes can be merged to 6 356 752.3 m, with the inverse flattening rounded to 298.257.Longitudes on WGS 84WGS 84 uses the IERS Reference Meridian as defined by the Bureau International de l'Heure,[3] which was defined by compilation of star observations in different countries. The mean of this data caused a shift of about 100 metres east away from the Prime Meridian at Greenwich, UK.[5]The longitude positions on WGS 84 agree with those on the older North American Datum1927 at roughly 85° longitude west, in the east-central United States.Updates and new standardsThe latest major revision of WGS 84 is also referred to as "Earth Gravitational Model 1996" (EGM96), first published in 1996, with revisions as recent as 2004. This model has the same reference ellipsoid as WGS 84, but has a higher-fidelity geoid (roughly 100 km resolution versus 200 km for the original WGS 84).Many of the original authors of WGS 84 contributed to a new higher fidelity model, called EGM2008[10]. This new model will have a geoid with a resolution approaching 10 km, requiring over 4.6 million terms in the spherical expansion (versus 130,317 in EGM96 and 32,757 in WGS 84).Handheld GPS receiver indicating its reference meridian is 0.084 arcminutes (or 5.3 arcseconds) east in theWGS84 datumReferences[1] "World Geodetic System website of the NGA (archived April 2012)". National Geospatial-Intelligence Agency.[2] "The EGM96 Geoid Undulation with Respect to the WGS84 Ellipsoid". NASA.[3]European Organisation for the Safety of Air Navigation and IfEN: WGS 84 Implementation Manual, p. 13.1998[4] History of the Prime Meridian -Past and Present[5] National Maritime Museum: "The Longitude of Greenwich"[6] National Imagery and Mapping Agency Technical Report TR 8350.2 Third Edition, Amendment 1, 1 Jan 2000,"Department of Defense World Geodetic System 1984"[7] NGA/NASA EGM96, N=M=360 Earth Gravitational Model[8] EGM96 15' × 15' Geoid Undulation Plot[9] /stories_tales/ak7.html[10] Earth Gravitational Model 2008 (EGM2008) - WGS 84 VersionExternal Links[1] NIMA Technical Report TR8350.2 Department of Defense World Geodetic System 1984,Its Definition and Relationships With Local Geodetic Systems, Third Edition, National Geospatial-IntelligenceAgency. This is the official publication of the standard, including addenda. Note this report actually documents the EGM 96 model (a revision of WGS 84). The original WGS 84 is documented in versions prior to 1996.[2] Main NGA (was NIMA) page on Earth gravity models[3] Technical Manual DMA TM 8358.1 - Datums, Ellipsoids, Grids, and Grid Reference Systems at the NationalGeospatial-Intelligence Agency (NGA)[4] Description of the difference between the geoid and the ellipsoid from the US NOAA National GeodeticSurvey GEOID page[5] NASA GSFC Earth gravity page[6] GeographicLib provides a utility GeoidEval (with source code) to evaluate the geoid height for the EGM84,EGM96, and EGM2008 earth gravity models. Here is an online version of GeoidEval.[7] Spatial reference EPSG Projection 4326 - WGS 84[8] GPS Coordinates (/)----All the materials are from Wikipedia, the free encyclopedia28-Mar-2013@ Beijing, China。