机械传动基础和常用机构
机械基础 第九章 其他常用机构

1.槽轮机构的组成及工作原理 图9-16所示为一外啮合槽轮机构。它由带有圆销的主动 拨盘1、具有径向槽从动槽轮2和机架所组成。
第九章 其他常用机构
图9-16 槽轮机构
第三节 间歇运动机构
2.槽轮机构的特点及类型
类型 单圆销外 槽轮机构
双圆销外 槽轮机构
内啮合 槽轮机构
表 9-1 常用槽轮机构的类型及特点
第九章 其他常用机构
其他常用 机构
第九章 其他常用机构
图9-1 知识结构框图 变速机构 换向机构
间歇机构
有级变速机构 无级变速机构 三星轮换向机构 离合器锥齿轮换向机构
棘轮机构 槽轮机构 不完全齿轮机构
第九章 其他常用机构
第一节 变速机构
一、有级变速机构
定义: 在输入转速不变的条件下,使输出轴获得一定的转速级数。 特点是:可以实现在一定转速范围内的分级变速,具有变速 可靠、传动比准确、结构紧凑等优点,但高速回转时不够 平稳,变速时有噪声。
齿式棘轮机构结构简单、运动可靠、棘轮的转角容 易实现有级的调节。常用于低速轻载等场合。 摩擦式棘轮传递运动较平稳、无噪声,棘轮角可以 实现无级调节,但运动准确性差,不易用于运动精 度高的场合。 棘轮机构常用在各种机床、自动机、自行车、螺旋 千斤顶等各种机械中。
第九章 其他常用机构
第三节 间歇运动机构
第九章 其他常用机构
第三节 间歇运动机构
3)双动式棘轮机构 如图9-14所示,a图为模型,b、c 分别为直棘爪和钩头棘爪。
第九章 其他常用机构
图9-14 双动式棘轮机构
第三节 间歇运动机构
(2)摩擦式棘轮机构
a)
b)
图9-15 摩擦式棘轮机构
《机械常识》课件-第五章 常用机构

机构。它们一般是通过改变铰链四杆机构某些
构件的形状、相对长度或选择不同构件作为机
架等方式演化而来的。
1.曲柄滑块机构
具有一个曲柄和一个滑块的平面四杆机构称为曲
柄滑块机构。曲柄滑块机构由曲柄、滑块、连杆和机
架组成。曲柄做旋转运动,滑块做往复直线运动。
在做功行程中,
活塞3承受燃气压力
在气缸内做直线运
往复直线运动或往返摆动。
(3)圆柱凸轮机构
圆柱凸轮为一个有沟槽的圆柱体,它绕
中心轴做旋转运动。从动件在平行于凸轮轴
线的平面内做直线移动或摆动。
(4)端面圆柱凸轮机构
端面圆柱凸轮是一
端带有曲面的圆柱体,
它绕中心轴做旋转运动。
从动件在平行于凸轮轴
线的平面内移动或摆动。
2.从动件的端部形状
(1)尖端从动件
1.齿式棘轮机构的组成和工作原理
当主动件做连续往复
摆动时,棘轮做单向间歇
运动。
2.齿式棘轮机构的类型
齿式棘轮机构是通过装于定轴摆动
摇杆上的棘爪推动棘轮做一定角度间歇
转动的机构。齿式棘轮机构有外啮合式
和内啮合式两种。
(1)外啮合齿式棘轮机构
1)单动式棘轮机构
有一个驱动棘爪,只
有当摇杆朝着某一方向摆
动时才能推动棘轮转动,
而反向摆动则无法推动棘
轮转动。
2)双动式棘轮机构
有两个驱动棘爪,
当主动件做往复摆动时,
两个棘爪交替带动棘轮
朝着同一方向做间歇运
动。
3)可变向棘轮机构
棘爪可 绕销轴 翻转 ,
棘爪爪端外形两边对称,
棘轮的齿形制成矩形。使
用时,如果将棘爪翻转,
则棘轮反向转动。
机械传动与常用机构介绍

带的张紧装置
• 通过调节压在皮带松边 的张紧轮,达到张紧目 的。V带传动用张紧轮 装置时,张紧轮应安装 在带松边内侧,尽量靠 近大轮,防止因张紧造 成小轮包角过小,而且 也避免带的反向弯曲。
V带传动的使用与维护
• 安装V带前应减小两轮中心距,然后再进行调紧, 不得强行撬入。工作时,带轮轴线应相互平行, 各带轮相对应的V型槽的对称平面应重合,误差 不得超过20′。在同一平面内,以免传动时加速带 的磨损或从轮槽中脱出。
链传动的失效形式
• 链的疲劳破坏 • 链条绞链的磨损 • 链条多次冲击破断 • 链条过载拉断 • 铰链胶合 • 链轮齿廓的磨损及塑性变形
链传动布置
链传动张紧装置
• 增大两轮的中心距 • 用张紧装置张紧
齿轮传动
• 齿轮传动是利用两齿轮的 轮齿相互啮合传递动力和 运动的机械传动。
• 按齿轮轴线的相对位置分 平行轴圆柱齿轮传动、相 交轴圆锥齿轮传动和交错 轴螺旋齿轮传动。具有结 构紧凑、效率高、寿命长 等特点。
传动带的分类
• 按截面的形状分为平带、V形带(三角带)、 圆形带等
带传动特点
• 优点:(1)具有良好的弹性,能起吸振缓冲作 用,因而传动平稳,噪音小;(2)过载时,带 与带轮会出现打滑,防止其它零件损坏;(3) 结构简单,成本低,加工和维护方便;(4)、 适用于两轴中心距较大的传动。
• 缺点:(1)外廓尺寸较大,结构不够紧凑; (2)由于带的弹性滑动,不能保证准确的传动 比;(4)带的寿命较短,一般2000~3000小时; (5)摩擦损失较大,传动效率较低,一般平带 传动为0.94~0.98,V带传动为0.92~0.97
线速度较高40m/s • 带的柔性好,所用带轮的直径可以较小。
链传动
2013汽车机械基础6常用机构和机械传动

图21-8
惯性筛机构
图21-6 缝纫机踏板机构 图21-9 双曲柄机构
图21-10
车门启闭机构
☆ 两连架杆都是曲柄(整周转),主动曲柄匀速转, 从动曲柄变速转。
在双曲柄机构中,如果组成四边形的对边长度分别相等, 则根据曲柄相对位臵的不同,可得到正平行四边形机构和反 平行四边形机构。
特例:平行四边形机构
设曲柄以ω逆时针匀速旋转。 从 AB1 转 到 AB2 , 转 过 180°+θ时为工作行程,所 花时间为t1 ;此时摇杆从C1D 摆到 C2D ,平均速度为 V1, 则 有:
t1 (180 ) /
V1 C1C2 t1 C1C2 /(180 )
曲柄从AB2 继续转过180°-θ到AB1时为回程,所花时间 为t2 ,此时摇杆从C2D摆到C1D,平均速度为V2 ,那么有
特征:两连架杆等长且平行,
连杆作平动。
AB = CD BC = AD
图21-7 摄影车的升降机构
机车车轮联动机构
1)正平行双曲柄机构:
反平行双曲柄机构: 公共汽车车门启闭机构
平行四边形机构存在运动不确定位臵。
可采用两组机构错开排列 的方法予以克服。
C.双摇杆机构-连架杆均为摇杆
例: 鹤式起重机的变速机构: CD(杆3)为原动件, 悬挂重 物的E 点在连杆上→保持E点运动轨迹在近似水平线上。 (平移货物→平稳、减小能量消耗)
K 1 180 K 1
机构急回的作用: 节省空回时间,提高工作效率。
简易刨床
2、压力角和传动角
(1).压力角α
作用在从动件上的驱动力F与该力作用 点绝对速度VC之间所夹的锐角。
分析: BC是二力杆,驱动力F沿BC方向 VC沿连杆BC (⊥CD) α↓ → 有效力
机械传动常用机构

构件的分类:(功能性分类) 相对固定构件——称为机架 (fixed link, frame) 活动构件(moving link) 原动件(driving link) 从动件(driven link, follower) 连接件(link)
一、基本概念
3、机器
具有以下三个特征的实物组合体称为机器。 1.都是人为的各种实物的组合。 2.组成机器的各种实物间具有确 定的相对运动。 3.可代替或减轻人的劳动,完成 有用的机械功或转换机械能。
转动副的表示方法
移动副。如组成运动副 的两个构件只能沿某一 轴线相对移动,这种运 动副称为移动副,如右 图所示。
移动副的表示方法
(2)高副 两构件通过点或线接触组成的运动副称为高 副。如轴与滚动轴承、凸轮机构和齿轮啮合 等。车轮与钢轨、凸轮与从动件、轮齿与轮 齿分别在接触处组成高副。组成平面高副二 构件间的相对运动是沿接触处切线t-t方向的 相对移动和在平面内的相对转动。 除上述平面运动副之外,机械中还经常见到 球面副和螺旋副。这些运动副两构件间的相 对运动是空间运动,故属于空间运动副。
2、构件的自由度 构件相对参考系具有的独立运动参数数目称为构件 的自由度。 构件通过运动副连接,相对运动受限制, 自由度将减少。
每个平面运动构件,有3个自由度。 低副(转动副和移动副):引入2个约束,减少2个 自由度 高副: 减少1个自由度。
平面机构的自由度
1、单个自由构件的自由度为 3 如图所示,作平面运动的刚体在空间的位置需要三 个独立的参数(x,y, θ)才能唯一确定。
机械传动常用机构
平面连杆机构 凸轮机构 螺旋机构
机械传动概述
机械传动是指采用各种机构、传动装置和零件来传递运动和动力的传动方 式。 其它:电气传动 液压传动 气动传动等 一、基本概念
中职学校《机械基础》常用机械传动机构.

振动筛
5.2 平面连杆机构
5.2.6 曲柄摇杆机构及其运动特性 1.不等长双曲柄机构 2.平行双曲柄机构 两曲柄等长且平行,主、从曲柄转速相等。 运动不确定:多组错列
5.2 平面连杆机构
5.2.6 曲柄摇杆机构及其运动特性 1.不等长双曲柄机构 2.平行双曲柄机构 3. 反向双曲柄机构 两曲柄等长但不平行,主、从曲柄转速相等。 运动不确定
5.2 平面连杆机构
铰链四杆机构的类型:根据连架杆的不同 分为。
铰链四杆机构
曲柄摇杆机构
双曲柄机构
双摇杆机构
一个曲柄
二个曲柄
无曲柄
5.2 平面连杆机构
5.2.5 曲柄摇杆机构及其运动特性 1.曲柄摇杆机构 两个连架杆中,具有一个曲柄和一摇杆的铰 链四杆机构。 示例运动分析: 鄂式破碎机的曲柄连杆机构:主动件,曲柄 。 缝纫机踏板机构:主动件,摇杆(踏板)。
《机械基础》
常用机械传动机构
长武县职教中心职教中心 尚东军
常用机械传动机构
本章主要内容:工件加工精度,包括加工尺寸精度和加工表面质量。( 位置精度通常由夹具保证)。 1. 机械加工精度的概念; 2. 获得加工精度的方法; 3. 影响加工精度的因素; 4. 经济精度与经济表面粗糙度。 重点: 1. 影响加工精度的因素; 2. 获得加工精度的方法。 难点: 影响加工精度的因素。
5.1机器和机械传动概述
5.1.1 机器与机构 1. 机器 2. 机构 机构 是由构件组合而成的。与机器相比,构件 具有机器的前两个特征: (1)人工实物组合(构件); (2)各运动实体(构件)具有确定的运动关系。 机械 机器与机构的统称。
5.1机器和机械传动概述
5.1.1 机器与机构 1. 机器 2. 机构 3. 构件与零件 (1)构件 组成机构的组合,构件是运动的最 小单元。 (2)零件 组成构件,也机械加工制造的最小 单元。同一构件的零件之间没有相对运动关系。 (3)构件的分类 固定构件 机架 运动构件 运动构件相对于机架有确定的运动 关系。运动构件可分为主动件与从动件。 如:内燃机曲柄滑块机构的主动件是活塞, 从动件是曲柄。 机械----机器----机构----构件----零件
机械基础第九章课件其它常用机构

机械基础
1、常用类型: (2)塔齿轮变速机构
1-主动轴 2-导向键 3-中间齿轮支架 4-中间齿轮 5-拨叉 6-滑移齿轮 7-塔齿轮 8-从动轴 9、10-离合器 11-丝杠 12-光杠齿轮 13光杠
原理:主动轴上滑移齿轮通过中间轮与从动轴上塔齿 轮中任意一个齿轮啮合。 特点:机构的传动比与塔齿轮的齿数成正比;传动比 成等差数列;常用于车床进给箱。
机械基础
2、常用类型: (2)锥轮—端面盘式无级变速机构
1-锥轮 3-弹簧 5-齿轮 7-链条
2-端面盘 4-齿条 6-支架 8-电动机
特点:传动平稳,噪音低,结构紧凑,变速范围大。
机械基础
2、常用类型: (3)分离锥轮式无级变速机构
1-电动机 2、4-锥轮 3-杠杆 6-支架 5-从动轴 7-螺杆
时,才能推动棘轮转动。
机械基础
2、齿式棘轮机构的常见类型及特点 (1)外啮合式 双动式棘轮机构:有两个驱动棘爪,当主动件作往复摆动时,有两
个棘爪交替带动棘轮沿同一方向作间歇运动。
直头棘爪
钩头棘爪
机械基础
2、齿式棘轮机构的常见类型及特点 (1)外啮合式 可变向式棘轮机构:可改变棘轮的运动方向。
机械基础
机械基础
2、有级变速机构的特点: 可以实现一定转速范围内的分级变速; 变速可靠; 传动比准确; 结构紧凑; 高速时不够平稳,变速有噪音。
机械基础
二、无级变速机构 1、原理:依靠摩擦力来传递转矩,适当地改变主从动 件的转动半径,可使输出轴的转速在一定范 围内无级变化。 2、常用类型: (1)滚子平盘式无级变速机构 特点:结构简单,磨损严重。
机械基础
3、齿式棘轮机构转角的调节 (2)利用覆盖罩: 转动覆盖罩,遮挡部分棘齿,当摇杆带动 棘爪摆动时,棘爪在罩上滑动,没有推动相应的 齿,从而起到调节转角的作用。
机械设计常用机构

机械设计常用机构机械设计是一门综合性的学科,涉及到各种各样的机构和装置。
在机械设计中,机构是非常重要的一部分,它负责传递和转换力、运动和能量,从而实现机械装置的各项功能。
在机械设计中,常用的机构有很多种。
这些机构可以根据其功能、结构和运动特性进行分类和归纳。
下面,我将对一些常用的机构进行介绍。
一、连杆机构连杆机构是机械设计中最基本也是最常用的一种机构。
它由杆件和关节组成,通过杆件的连接和关节的运动,实现力和运动的传递。
连杆机构广泛应用于各种机械装置中,如汽车发动机的连杆机构、拉杆机构等。
二、齿轮机构齿轮机构是一种通过齿轮的相互啮合来传递运动和力的机构。
齿轮机构具有传动比恒定、传递力矩大、传递效率高等特点,广泛应用于各种传动装置中,如汽车变速器、机床传动等。
三、减速机构减速机构主要通过齿轮、皮带等传动元件将输入的高速运动转换为输出的低速运动。
减速机构在机械设计中非常常见,用于满足不同场合的运动速度要求。
四、滑块机构滑块机构是一种通过滑块在导轨上做直线运动来实现运动转换和力传递的机构。
滑块机构广泛应用于各种机械装置中,如工具机的进给机构、压力机的传动机构等。
五、摆线机构摆线机构是一种通过连杆和摆线来实现直线运动的机构。
它通过摆线的特殊形状和连杆的运动,将旋转运动转换为直线运动,广泛应用于各种机械装置中,如剪切机的摆线滑块机构、织机上纬缸的摆线机构等。
六、万向节机构万向节机构是一种通过球面和容器来实现输动与变动传动的机构。
它具有结构简单、运动灵活等优点,广泛应用于汽车、船舶和航空等领域。
以上介绍的只是机械设计中的一小部分常用机构,还有很多其他的机构在实际设计中也扮演着重要的角色。
在进行机械设计时,我们需要根据具体的应用要求和设计目标选择合适的机构,合理地组合和运用这些机构,以实现设计的目的。
总结起来,机械设计中常用的机构有连杆机构、齿轮机构、减速机构、滑块机构、摆线机构和万向节机构等。
这些机构在机械装置中起着重要的作用,通过它们的运动和力传递,实现了各种功能和要求。