机械设计基础--轮系 ppt课件

合集下载

机械设计基础课件--轮系

机械设计基础课件--轮系
解轮系(1)、求轮系中某两轴之间的传动比i。 (2)、求轮系中某轴的转速n。
认识轮系机构运动简图
认识轮系机构运动简图
认识轮系机构运动简图
认识轮系机构运动简图 B
§5-2 定轴轮系及传动比
一、传动比计算表达式
任意两轴之间的传动比定义为:

i Ⅰ
ⅠⅤ Ⅴ
传动比公式代表两个含义:
(1) 数值代表齿轮转速之比
S H 12
×
11 M
1
(2)、获得很大的传动比。
2 i12=6
1
i z2 z1
结构超大、小轮易坏
(3)实现换向传动
转向相反
转向相同
车床走刀丝杠三星轮换向机构
4)、实现多级变速。
5)运动合成
图示行星轮系中:Z1= Z2 = Z3 nH =(n1 + n3 ) / 2
2
1
3
H
6)运动分解
z1 z2
z3
z4
()3 z2 z3z4 z5 z1z2 z3 z4
iIV

-1m所有啮合对中从动轮齿
所有啮合对中主动轮齿
数之积 数之积
b
iIV

-1 所有啮合对中从动轮齿
所有啮合对中主动轮齿
数之积 数之积
b
i ⅠⅤ
Ⅰ (1)m Ⅴ
所有啮合对中从动轮齿 所有啮合对中主动轮齿
应注意解法技巧
已知:z1=24, 求:i1H? z2=52,z2′=21,
z3=78,z3′=18,
z4=21, z5=78
L
蜗杆为原动件: 右旋蜗杆→左手定则 左旋蜗杆→右手定则
V b b1
行星轮系中各轮齿数的确定

机械设计基础 第5章 轮系

机械设计基础 第5章 轮系
z’2 =100,
Z2 H Z1
Z’2
Z3
=99。 z3=99。源自101×99/100× i1H=1-iH13=1-101×99/100×100 =1/10000, iH1=10000 结论:系杆转10000圈时, 结论:系杆转10000圈时,轮1同向转1圈。 10000圈时 同向转1 100, 又若 Z1=100, z2=101, z2’=100, z3=100, =-1/100, i1H=1-iH1H=1-101/100 =-1/100, iH1=-100
所有齿轮几何轴线的位置均固定不 变的轮系,称为定轴轮系。 变的轮系,称为定轴轮系。

§5-1 轮系的类型
二、周转轮系
周转轮系:在运转过程中至少有一个齿轮几何轴线的位置并不固定, 周转轮系:在运转过程中至少有一个齿轮几何轴线的位置并不固定, 而是绕着其它定轴齿轮轴线回转的轮系,称为周转轮系。 而是绕着其它定轴齿轮轴线回转的轮系,称为周转轮系。
方向: 方向:见图 复合轮系
Z5
Z’5

§5-4 复合轮系及其传动比
复合轮系:几个基本周转轮系构成, 复合轮系:几个基本周转轮系构成,或定轴轮系与周转轮系构成 整个复合轮系不可能转化为一个定轴轮系,所以正确的做法是: 整个复合轮系不可能转化为一个定轴轮系,所以正确的做法是: 1 区分其中的基本周转轮系和定轴轮系 2 分别计算各轮系的传动比 3 各传动比联合求解
ω1 3 Z2 Z3 Z5 = i12i2′3i34i45 = (− 1) ω5 Z1Z2′ Z3′

§5-2 定轴轮系及其传动比
传动比计算
ω1 (− 1)3 Z2Z3Z4 Z5 i15 = =i i ′ i i = ω5 12 2 3 34 45 Z1Z2′ Z3′ Z4

机械设计基础第7章 轮系

机械设计基础第7章 轮系
§7-3 周转轮系传动比计算 16
a,b齿轮选择原则
1. 2.
3.
4.
已知转速的齿轮 固定的齿轮(n=0) 需要求该齿轮转速的齿轮 轮系之间有关联的齿轮(复合轮系) a,b,H轴线平行(周转轮系)
17

例题 在图所示的差动轮系中,已知各轮的齿数为:z1 =30,z2 =25, z2’=20, z3=75。齿轮1的转速为210r/min(蓝箭头向上),齿轮3的转速为 54r/min(蓝箭头向下),求系杆转速 的大小和方向。 解:将系杆视为固定,画出转化轮系中各轮的转向,如图中红 线箭头所示(红线箭头不是齿轮真实转向,只表示假想的转 化轮系中的齿轮转向,二者不可混淆)。因1、3两轮红线箭 头相反,因此 应取符号“-”,根据公式得:
§7-3 周转轮系传动比计算 19
§7-4 复合轮系传动比计算
除了前面介绍的定轴轮系和周转轮系 以外,机械中还经常用到复合轮系。复合轮系常以两 种方式构成: ① 将定轴轮系与基本周转轮系组合; ② 由几个基本周转轮系经串联或并联而成。 由于整个复合轮系不可能转化成为一个 定轴轮系,所以不能只用一个公式来求解。计算复合 轮系时,首先必须将各个基本周转轮系和定轴轮系区 分开来,然后分别列出计算这些轮系的方程式,最后 联立解出所要求的传动比。 正确区分各个轮系的关键在于找出各个基本周转 轮系。找基本周转轮系的一般方法是:先找出行星轮, 即找出那些几何轴线绕另一齿轮的几何轴线转动的齿 轮;支持行星轮运动的那个构件就是行星架;几何轴 线与行星架的回转轴线相重合,且直接与行星轮相啮 合的定轴齿轮就是中心轮。这组行星轮、行星架、中 心轮构成一个基本周转轮系。
根据题意,齿轮1、3的转向相反,若假设n1为正,则应 将n3以负值带入上式,
解得nH =10r/min。因nH 为正号,可知nH 的转向和n1 相同。 在已知n1、nH或n3、nH的情况下,利用公式还可容易地算 出行星齿轮2的转速 。

第5章-机械设计基础-轮系1PPT课件

第5章-机械设计基础-轮系1PPT课件
H z2
ωH
z1
.
z2
z3
z1
ωH 设计:潘存云
铁锹
16
例五:图示圆锥齿轮组成的轮系中,已知:
z2 o
z1=33,z2=12, z2’=33, 求
解:判别转向: 齿轮1、3方向相反
i3H1
3 1
H H
3 H 0 H
i3H 1
i3H
r1
H
z1 z3
=-1
p z1
δ1
ωH
ωωδ2H22
设计:潘存云
2)实现分路传动,如钟表时分秒针;
3)换向传动 4)实现变速传动 5)运动合成加减法运算
图示行星轮系中:Z1= Z2 = Z3
2
作者:潘存云教授
1
3
H
i3H1
n3 n1
nH nH
z1 z3
=-1
nH =(n1 + n3 ) / 2
结论:行星架的转.速是轮1、3转速的合成。
25
§11-5 轮系的应用
结论:系杆转1000. 0圈时,轮1同向转1圈。
14
又若 Z1=100, z2=101, z2’=100, z3=100,Z2
Z’2
i1H=1-iH1H=1-101/100 =-1/100,
H
iH1=-100
设计:潘存云
结论:系杆转100圈时,轮1反向转1圈。
Z1
Z3
此例说明行星轮系中输出轴的转向,不仅与输入轴的转向有关,而且与各轮的齿数有关。本例中只将 轮3增加了一个齿,轮1就反向旋转,且传动比发生巨大变化,这是行星轮系与定轴轮系不同的地方
联立解得:i1 B
1 B
z3 (1 z5 )

机械设计基础-轮系

机械设计基础-轮系
24
§7-4 复合轮系传动比计算
除了前面介绍的定轴轮系和周转轮系以外, 机械中还经常用到复合轮系。复合轮系常以 两种方式构成: ① 将定轴轮系与基本周转轮系组合; ② 由几个基本周转轮系经串联或并联而成。
由于整个复合轮系不可能转化成为一个定 轴轮系,所以不能只用一个公式来求解。计 算复合轮系时,首先必须将各个基本周转轮 系和定轴轮系区分开来,然后分别列出计算 这些轮系的方程式,最后联立解出所要求的 传动比。
28
作业
P140 题7-10(定轴轮系) 题7-11(周转轮系) 题7-12 (周转轮系) 题7-13 (复合轮系)
iab
a b
na nb
轮a至轮b所有从动轮齿数之积 轮a至轮b所有主动轮齿数之积
当所有齿轮的轴线平行时,两轮转向的同异可用传动比的正负表 达。两轮转向相同时,传动比为“+”;两轮转向相反时,传动 比为“-”。因此,平行轴间的定轴轮系传动比计算公式为:
iab
a b
na nb
(1)m
轮a至轮b所有从动轮齿数之积 轮a至轮b所有主动轮齿数之积
剩下的齿轮3‘、4、5是一个定轴轮系。
解:对定轴轮系
i53'
5 3'
-
z
' 3
z5
3'
-
z5
z
' 3
5
(a)
对周转轮系
i1H3
1 -5 3 -5
-
z2z3 z1z 2 '
1
-
z2z3 z1z 2 '
(3
-5)
5
(b)
(a)式代入(b)式
1
-
z2z3
z1z

机械设计基础----第5章轮系

机械设计基础----第5章轮系
太阳轮被固定。
图5-4c
三、周转轮系的传动比计算
一)基本思路
如图5-4 a、b所示。
周转轮系与定轴轮系的
根本区别在于周转轮系
中有一个转动着的行星
架,因此使行星轮既自
转又公转。如果能
图5-4 a、b
够设法使行星架固定不动,那么周转轮系就可转化成一个
假想的定轴轮系,并称其为周转轮系的转化轮系。
在周转轮系转化为转化轮系后,就可以对转化轮系应
2、5的转向相同)

i17=
z2 z1

z3 z 2

z4 z3

z5 z4

z6 z5

z7 z6
上例中的轮4,其齿数多少不影响传动比的大小,只
起改变转向的作用,在轮系中的这种齿轮称为惰轮(过桥
齿轮)——仅影响 i 的符号,而不影响 i 的大小。
▲自学:P74例5-1。
§5—3 周转轮系及其传动比
构件的轴线可互不平行;
3、正负号——指转化轮系中轮G、K的转向关系,图上画 箭头来确定(同定轴轮系);
4、真实转速nG、nK、nH中的已知量代入公式时要带正负 号(可假定某一转向为正,则相反的转向为负),求
得的未知量的转向也依据计算结果的正负号来确定。
例:在图示的轮系中,已知z1=z2=30,z3=90。试求当构件 1、3的转速分别为 n1=10rpm,n3=10rpm (转向如图) 时,求 nH及i1H的值。
转轮系)。
图a
图b
三、轮系的传动比(Transmission ratio)
一对齿轮的传动比:是指两轮的角速度或转速之比,即 i12=ω1 /ω2= n1 /n2 = z2 /z1。

机械设计基础完美第五章轮系PPT课件

机械设计基础完美第五章轮系PPT课件
三、偕波齿轮传动
36
第六节 几种特殊的行星传动简介
37
第六节 几种特殊的行星传动简介
• 四、活齿传动
• 随着原动机和工作机向着多样化方向的发展,对 传动装置的性能要求也日益苛刻。为了适应这一 要求,除对齿轮、蜗杆蜗轮等传统的传动装置作 大量的研究和改进外,近20多年来人们还研究出 了多种新型传动装置如谐波传动、摆线针轮传动 等。这些传动都成功地应用于许多行业的各种机 械装置中。
须相等。
20
• 3、邻接条件 • 确定齿轮齿数时,必须保证相邻两行星齿轮的齿
顶圆之间有一定间隙,如图所示,即满足以下不 等式
• 4、装配条件 • 为了保证各行星齿轮能能均匀的分布在两中心轮
之间,并且与两中心轮啮合良好而没有错位现象, 即在行星轮数目确定后齿数的选择应满足装配条 件。
21
22
第四节 混合轮系及其传动比
9
第二节 定轴轮系及其传动比 当主动轮1和最末从动轮K的轴线平行时,两轮 转向的同异可用传动比的正负表达。两轮转向相同 时,传动比为“+”;两轮转向相反时,传动比为“-”。 因此,平行二轴间的定轴轮系传动比计算公式 为:
10
第二节 定轴轮系及其传动比
11பைடு நூலகம்
第三节 周转轮系及其传动比
周转轮系中行星轮的运动不是绕固定轴线的 简单转动(包括自转和公转),所以周转轮系各 构件间的传动比就不能直接用定轴轮系的方法来 计算了。
16
第三节 周转轮系及其传动比
17
第三节 周转轮系及其传动比
18
第三节 周转轮系及其传动比
19
第三节 周转轮系及其传动比
• 齿数的确定 • 确定齿数的条件 • 在选择行星齿轮传动的齿数时应满足以下条件: • 1、传动比条件 • 齿数的选择首先应保证实现给定传动比的要求。 • 2、同心条件 • 为了保证正确的啮合,各对啮合齿轮的中心距必

机械设计基础第六章.pptx

机械设计基础第六章.pptx

机构运 动简图
投影方向
如何表示一对圆锥齿轮的转向?
投影
机构 运动 简图
向方影投
线速度方 向
表示齿轮 回转方向
齿轮回转方 向
用线速度 方向表示 齿轮回转 方向
线速度方 向
如何表示蜗杆蜗轮传动的转向?
右旋蜗杆
蜗杆回转方向
蜗杆上一点 线速度方向
机构运 动简图
蜗轮回转方向
表示蜗杆、蜗轮 回转方向
蜗杆旋向影响蜗轮的回转方向
随机架转动
相当于系杆
把这种由定轴轮系和周转轮
H
系或者由两个以上的周转轮
系组成的,不能直接用反转
法转化为定轴轮系的轮系,
称为混合轮系
H
系杆回转方向
复合轮系传动比的计算
在计算混合轮系传动比时,既不能将整个轮系作为定轴轮 系来处理,也不能对整个机构采用转化机构的办法。
计算混合轮系传动比的正确方法是: (1) 首先将各个基本轮系正确地区分开来 (2) 分别列出计算各基本轮系传动比的方程式。
3 H
特别当 1 0 时
i3H
3 H
1
z1 z3
当 3 0时
i1H
1 H
1
z3 z1
z3 z1
F 34 24 2 2
轮3固定 :
差动轮系:F=2
F 33 23 2 1
行星轮系:F=1
三、混合轮系的传动比
系杆
什么是混合轮系?
为了把一个周转轮系 转化为定轴轮系,通 常采用反转法。
' 4
5
i12
i23
i34
i45
1 2 3 2 3 4
4 5
1 5
i 15
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ppt课件
4
轮系相对转向表达
方法之一——用正负号表示相对 转向(这种方法只适用于表示轴线 平行的两轮的相对转向) 外啮合——转向相反——“-”; 内啮合——转动相同——“+”或 不加符号。
显然,若一个轮系全部由圆柱齿 轮组成,则输入、输出轮的相对 转向可以通过外啮合的次数来判
定,设外啮合的次数为m,则当m 为奇数时,两轮转向相反;m为偶
11
差动轮系和行星轮系
图a所示的周转轮系,它的两个 中心轮都能转动,该机构的活动构 件n=4,PL =4,PH =2,机构的自由 度F=3×4-2×4-2=2,即需要两 个原动件。这种周转轮系称为差动 轮系。
而图b所示的周转轮系,只有一个 中心轮能转动,该机构的活动构件 nF==33×,3P-L =23×,3P-H =22=,1,机即构只的需自一由个度 原动件。这种周转轮系称为行星轮 系。

z6 z5'

z7 z6'

z2 z3z4 z5z6 z7 z1z2' z3' z4 z5' z6'

z2 z3z5z6 z7 z1z2' z3' z5' z6'
ppt课件
7
§7-2 定轴轮系传动比计算
设轮a为起始主动轮,轮b为最末从动轮,则定轴轮系始末两轮 传动比数值计算的一般公式为:
iab
a b
结果表示:
iab =
wa wb
从动齿轮齿数连乘积
=±? 主动齿轮齿数连乘积(输入、输出轴平行)
画箭头表示方向(输入、输出轴不平行)
ppt课件
9
例:z1=18, z2=36, z2’=20, z3=80,z3’ =20, z4=18, z5=30, z5’=15, z6=30, z6’=2(右旋), z7=60, n1=1440r/min,其转向如图。求传动比 i15、 i25、i17和蜗轮的转速和转向。
其中,1、7二轮轴线不平行,由画箭头判断n7为逆时针方向。
ppt课件
10
§7-3 周转轮系传动比计算
一、周转轮系的构成
在周转轮系中,轴线位置 变动的齿轮,即既作自转 又作公转的齿轮,称为行 星轮;支持行星轮的构件 称为系杆(或行星架或转 臂);轴线位置固定的齿 轮则称为中心轮(或太阳 轮)。
ppt课件

na nb

轮a至轮b所有从动轮齿数之积 轮a至轮b所有主动轮齿数之积
当起始主动轮a和最末从动轮b的轴线平行时,两轮转向的同异可 用传动比的正负表达。两轮转向相同时,传动比为“+”;两轮 转向相反时,传动比为“-”。因此,平行二轴间的定轴轮系传 动比计算公式为:
iab

a b

na nb
(1)m
定轴轮系 周转轮系
每个齿轮的几何轴线 都是固定的,这种轮 系称为定轴轮系。
至少有一个齿轮的几 何轴线绕另一齿轮的 几何轴线转动的轮系, 称为周转轮系。
ppt课件
3
二、轮系传动比及其表达
轮系中输入与输出轴的角速度之比称为轮系 的传动比,用iab 表示.
iab=ωa/ωb=na/nb
下标a、b为输入、输出轴的代号。计算轮系 传动比不仅要确定其数值,而且要确定两轴 的相对转动方向,这样才能完整表达输入、 输出轴的关系。
第7章 轮系设计
轮系的分类
定轴轮系传动比计算
周转轮系传动比计算
复合轮系传动比计算
ppt课件
1
§7-1 轮系概述
由一系列齿轮组成的传动系统称为轮系。
在机械中,为了获得大的传动比或者为了将输入轴的
一种转速变换为输出轴的多种转速等原因,常采用一 系列互相啮合的齿轮将输入轴和输出轴连接起来。
ppt课件
2
一、 轮系分类
以右图所示轮系为例。
令z1、z2、z2’ ……表示各轮的齿 数, n1、n2、n2’……表示各轮的转 速。因同一轴上的齿轮转速相同,
故n2=n2’,n3=n3’,n5=n5’ , n6=n6’ 。
i17 i12 i2' 3 i3' 4 i45 i5' 知,轴线固定的互
ppt课件
12
二、转化轮系
ppt课件
13
三、周转轮系传动比计算
既然转化轮系是一个定轴轮系,就可应用求解 定轴轮系传动比的方法,求出其中任意两个齿轮 的传动比来。根据传动比定义,转化轮系中齿轮 1与齿轮3的传动比为:
注意: i13是两轮真实的传动比;而i13H 是假想的 转化轮系中两轮的传动比。转化轮系是定轴轮系, 且其起始主动轮1与最末从动轮3轴线平行,故 由定轴轮系传动比计算公式可得:
解:首先按图所示规则,从轮2开始,顺次标出各啮合齿轮的转动方向。由 图可见,1、7二轮的轴线不平行,1、5二轮转向相反,2、5二轮转向相 同,故由公式得:
i15

n1 n5

(1)3
z2 z3z5 z1z2' z3'

36 80 30 18 20 20

12
i25

n2 n5

相啮合的一对齿轮的转速比等于 其齿数反比。
因此,若设与轮1固联的轴为输入 轴,与轮7固联的轴为输出轴,则 输入、输出轴的传动比数值如下:
n1 n2' n3' n4 n5' n6' n1
n2 n3 n4 n5 n6 n7 n7

z2 z1

z3 z2'

z4 z3'

z5 z4
轮a至轮b所有从动轮齿数之积 轮a至轮b所有主动轮齿数之积
m —— 为全平行轴轮系齿轮a至齿轮b之间外啮合次数。
ppt课件
8
定轴轮系的传动比
大小:iab
=
wa wb
=
从a到b所有从动齿轮齿数连乘积 从a到b所有主动齿轮齿数连乘积
转向:画箭头法(适合任何定轴轮系)
(- 1)m 法(只适合所有齿轮轴线都平行的情况)
数时,两轮转向相同。
ppt课件
5
轮系相对转向表达
方法之二——对各对齿轮标 注箭头
标注箭头的规则是:相 互啮合的齿轮,啮合点的线 速度相同。
画箭头的方法是一种普 遍适用的方法,无论轮系中 各轮轴线的相对位置如何, 采用这种方法都可以确定两 轮的相对转向。
ppt课件
6
§7-2 定轴轮系传动比计算 惰轮
(1)2
z3 z5 z2' z3'

80 30 20 20

6
i17

n1 n7

z2 z3z5z6 z7
z1
z
' 2
z3'
z5'
z6
'

36 80 30 30 60 18 20 20 15 2
720
n7
n1 i17
1440 720
2(r / min)
相关文档
最新文档