高二上学期第一次月考数学试题含答案
2024-2025学年广东省深圳市高二上学期第一次月考数学质量检测试题(含解析)

2024-2025学年广东省深圳市高二上学期第一次月考数学质量检测试题一、单选题(本大题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.)1. 如图所示,在三棱台中,截去三棱锥,则剩余部分是()A B C ABC '''-A ABC '-A. 三棱锥B. 四棱锥C. 三棱柱D. 组合体2. 棱长为的正四面体的表面积为( )1B. C. D. 3. 如图,在正四棱台中,分别为棱的中1111ABCD A B C D -,,,E F G H 1111,,,A D B C BC AD 点,则()A. 直线与直线是异面直线B. 直线与直线是异面直线HE GF HE 1BB C. 直线与直线共面D. 直线与直线共面HE 1CC HE BF 4. 底面积是,侧面积是的圆锥的体积是()π3πA. C. 2π35. 已知正方体中,E 为中点,则异面直线与 所成角的余弦值1111ABCD A B C D -11B C 1BA CE 为( )6. 如图,在正四棱台中,,则该正四棱台1111ABCD A B C D-1114,2,AB A B AA ===的体积为()A. B. C. D. 11291409112314037. 我国古代数学专著《九章算术》中有这样一个问题:“今有木长二丈,围之三尺.葛生其下,缠木七周,上与木齐.问葛长几何?”其意思为:“圆木长2丈,圆周长为3尺,葛藤从圆木的底部开始向上生长,绕圆木7周,顶部刚好与圆木平齐,问葛藤长为多少?"若1丈尺,则10=葛藤最少长( )A. 21尺B. 25尺C. 29尺D. 33尺8. 如图所示,在正方体中,E ,F 分别为,AB 上的中点,且1111ABCD A B C D -1AA P 点是正方形内的动点,若平面,则P 点的轨迹长度为EF =11ABB A 1C P ∥1CD EF ()A. B. D. 3ππ二、多选题(本大题共3小题,每小题6分,共计18分.每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的部分分,有选错的得0分.)9. 已知,是两个不同的平面,l ,m 是两条不同的直线,有如下四个命题,其中正确的αβ是()A. 若,,则B. 若,,,则αβ⊥l β⊥l α∥m β⊥l m ∥l α⊂αβ⊥C. 若,,,则 D. 若,,则αβ∥m α⊥l β⊂l m⊥m αβ= l α∥l m∥10. 在实践课上,小华将透明塑料制成了一个长方体容器,如图(1),1111ABCD A B C D -,,在容器内灌进一些水,现固定容器底面一边BC2AB BC ==15A A =()14D H DH =于地面上,再将容器倾斜,如图(2),则()A. 有水的部分始终呈三棱柱或四棱柱B. 棱与水面所在平面平行11A D C. 水面EFGH 所在四边形的面积为定值D. 当容器倾斜成如图(3)所示时,EF 的最小值为11. 半正多面体(semiregular solid )亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形构成(如图所示),则()A. 平面EABBF ⊥B. 该二十四等边体的体积为203C. 该二十四等边体外接球的表面积为6πD. PN 与平面EBFN 三、填空题(本大题共3小题,每小题5分,共计15分)12. 如下图,三角形A'B'C'是三角形 ABC 的直观图,则三角形 ABC 的面积是_______.13. 圆柱的底面半径为1,侧面积为,则该圆柱外接球的表面积为______.10π14. 球面被平面所截得的一部分叫做球冠,截得的圆叫做球冠的底,垂直于截面的直径被截得的一段叫做球冠的高.球被平面截下的一部分叫做球缺,截面叫做球缺的底面,垂直于截面的直径被截下的线段长叫做球缺的高,球缺是旋转体,可以看做是球冠和其底所在的圆面所围成的几何体.如图1,一个球面的半径为,球冠的高是,球冠的表面积公式是.R h 2πS Rh =如图2,已知是以为直径的圆上的两点,,扇形,C D AB ππ,63AOC BOD ∠∠==的面积为,则扇形绕直线旋转一周形成的几何体的表面积为__________.COD πCOD AB四、解答题(本题共5小题,共7分,解答应写出文字说明、证明过程或演算步骤.)15.如图,在正三棱柱中,,,,分别是,,,111ABC A B C -E F G H AB AC 11A B 的中点.11A C(1)求证:,,,四点共面;B C H G (2)求证:平面平面;//BCHG 1A EF 16.如图,AB 为⊙O 的直径,PA 垂直于⊙O 所在的平面,M 为圆周上任意一点,AN ⊥PM ,N 为垂足.(1)若,Q 为PB 的中点,求三棱锥的体积;2PA AM BM ===Q ABM -(2)求证:AN ⊥平面PBM ;(3)若AQ ⊥PB ,垂足为Q ,求证:NQ ⊥PB.17.我国古代数学名著《九章算术》中,称四面都为直角三角形的三棱锥为“鳖臑”.如图,在三棱锥中,平面.A BCD -AB ⊥,BCD BC CD⊥(1)证明:三棱锥为鳖臑;A BCD -(2)若为上一点,点分别为的中点.平面与平面的交线为E AD ,P Q ,BC BE DPQ ACD .l ①证明:直线平面;//PQ ACD ②判断与的位置关系,并证明你的结论.PQ l 18. 一块四棱锥木块如图所示,平面,四边形ABCD 为平行四边形,且SD ⊥ABCD ,.60BAD ∠=︒224AB BC SD ===(1)要经过点B 、D 将木料锯开,使得截面平行于侧棱,在木料表面该怎样画线?并说SA 明理由;(2)计算(1)中所得截面的面积;(3)求直线SC 与(1)中截面所在平面所成角的正弦值.19. 空间的弯曲性是几何研究的重要内容,用曲率刻画空间的弯曲性,规定:多面体顶点的曲率等于与多面体在该点的面角之和的差,其中多面体的面的内角叫做多面体的面角,2π角度用弧度制.例如:正四面体每个顶点均有3个面角,每个面角均为,故其各个顶点的曲π3率均为.如图,在直三棱柱中,点A 的曲率为,M 为的π2π3π3-⨯=111ABC A B C -2π31CC 中点,且.AB AC =(1)判断的形状,并说明理由;ABC V (2)若,求点到平面的距离;124AA AB ==B 1AB M (3)表面经过连续变形可以变为球面的多面体称为简单多面体.关于简单多面体有著名欧拉定理:设简单多面体的顶点数为D ,棱数为L ,面数为M ,则有.利用此定理2D L M -+=试证明:简单多面体的总曲率(多面体有顶点的曲率之和)是常数.2024-2025学年广东省深圳市高二上学期第一次月考数学质量检测试题一、单选题(本大题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.)1. 如图所示,在三棱台中,截去三棱锥,则剩余部分是()A B C ABC '''-A ABC '-A. 三棱锥B. 四棱锥C. 三棱柱D. 组合体【正确答案】B【分析】根据图形和棱锥的定义及结构特征,即可得出结论.【详解】三棱台中,沿平面截去三棱锥,A B C ABC '''-A BC 'A ABC '-剩余的部分是以为顶点,四边形为底面的四棱锥.A 'BCCB ''A BCC B '''-故选:B2. 棱长为的正四面体的表面积为( )1B. C. D. 【正确答案】A【分析】利用三角形的面积公式可得出正四面体的表面积.【详解】棱长为的正四面体的表面积为.1221141sin 604122S =⨯⨯⨯=⨯⨯= 故选:A.3. 如图,在正四棱台中,分别为棱的中1111ABCD A B C D -,,,E F G H 1111,,,A D B C BC AD 点,则()A. 直线与直线是异面直线B. 直线与直线是异面直线HE GF HE 1BB C. 直线与直线共面D. 直线与直线共面HE 1CC HE BF 【正确答案】C【分析】由正四棱台的结构特征,侧棱的延长线交于同一点,的延长线必过此点,,HE GF 可判断选项中的线线位置关系.【详解】延长,1111,,,AA BB CC DD 由正四棱台的性质可得侧棱的延长线交于同一点,设该交点为.1111,,,AA BB CC DD P分别为棱的中点,,,,E F G H 1111,,,A D B C BC AD 延长,则的延长线必过点,,HE GF ,HE GF P 则直线与直线相交于点;与直线相交于点;与直线相交于点HE GF P 1BB P 1CC P;与直线是异面直线.BF 故选:C.4. 底面积是,侧面积是的圆锥的体积是()π3πA. C. 2π3【正确答案】D【分析】先利用圆锥的侧面积公式求出母线长,进而求出高,再利用圆锥的体积公式求解.【详解】设圆锥的母线长为,高为,半径为, l h r 则且,故2ππS r ==底=π3πS r l ⨯⨯=侧1,3r l ==,h ∴===圆锥的体积为.∴21π13⨯⨯⨯=故选:D .5. 已知正方体中,E 为中点,则异面直线与 所成角的余弦值1111ABCD A B C D -11B C 1BA CE 为( )【正确答案】D【分析】连接,,根据异面直线所成角的定义,转化为求(或其补角),1CD 1D E1D CE ∠然后在中用余弦定理即可解得.1D CE 【详解】连接,,如图:1CD 1D E因为为正方体可得,所以(或其补角)是异面直线1111ABCD A B C D -11//CDBA 1D CE ∠与 所成角,1BA CE 设正方体的棱长为,,a1CD===,1,CE D E ======在中,,1D CE 2221111cos 2CD CE DE D CE CD CE +-∠=⋅⋅==所以异面直线与 .1BA CE故选:D.6. 如图,在正四棱台中,,则该正四棱台1111ABCD A B C D-1114,2,AB A B AA ===的体积为()A. B. C. D. 1129140911231403【正确答案】A【分析】作出截面,过点作,结合等腰梯形的性质得到高,再计算体积即可.1A 1A E AC ⊥【详解】过作出截面如图所示,过点作,垂足为,11,AC A C 1A 1A E AC ⊥E 易知为正四棱台的高,1A E 1111ABCD A B C D - 因为,1124,ABA B ==所以由勾股定理得,11AC A C==又,11CC AA ==则在等腰梯形中,,11ACCA AE =所以,143A E ===所以所求体积为.11111114112((1643339ABCD A B C D V S S A E =⨯++⋅=⨯++⨯=故选.A7. 我国古代数学专著《九章算术》中有这样一个问题:“今有木长二丈,围之三尺.葛生其下,缠木七周,上与木齐.问葛长几何?”其意思为:“圆木长2丈,圆周长为3尺,葛藤从圆木的底部开始向上生长,绕圆木7周,顶部刚好与圆木平齐,问葛藤长为多少?"若1丈尺,则10=葛藤最少长( )A. 21尺B. 25尺C. 29尺D. 33尺【正确答案】C【分析】根据题意知,圆柱的侧面展开图是矩形,且矩形的长为(尺),高为尺,则葛2120藤的最少长度为矩形的对角线长,利用勾股定理可求得结果.【详解】根据题意知,圆柱的侧面展开图是矩形,如下图所示,矩形的高(即圆木长)为尺,矩形的底边长为(尺),207321⨯=(尺).29=故选:C.8. 如图所示,在正方体中,E ,F 分别为,AB 上的中点,且1111ABCD A B C D -1AAP 点是正方形内的动点,若平面,则P 点的轨迹长度为EF =11ABB A 1C P ∥1CD EF ()A. B. D. 3ππ【正确答案】C【分析】取的中点,的中点为,连接,可得四边形11A B H 1B B G 11,,,,GH C H C G EG HF 是平行四边形,可得∥,同理可得∥.可得面面平行,进而得出P 点11EGC D 1C G 1D E 1C H CF 的轨迹.【详解】如图所示,取的中点,的中点为,连接,11A B H 1B B G 11,,,,GH C H C G EG HF则∥,,且∥,,11A B EG 11A B EG =11A B 11C D 1111A B C D =可得∥,且,可知四边形是平行四边形,则∥,EG 11C D 11EG C D =11EGC D 1C G 1D E 且平面,平面,可得∥平面,1C G ⊄1CD EF 1D E ⊄1CD EF 1C G 1CD EF 同理可得:∥平面,1C H 1CD EF 且,平面,可知平面∥平面,111C H C G C = 11,C H C G ⊂1C GH 1C GH 1CD EF 又因为P 点是正方形内的动点,平面,11ABB A 1C P ∥1CD EF 所以点在线段上,M GH由题意可知:,可得,1111,22GH A B EF A B ==GH EF ==所以P 故选:C.二、多选题(本大题共3小题,每小题6分,共计18分.每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的部分分,有选错的得0分.)9. 已知,是两个不同的平面,l ,m 是两条不同的直线,有如下四个命题,其中正确的αβ是()A. 若,,则B. 若,,,则αβ⊥l β⊥l α∥m β⊥l m ∥l α⊂αβ⊥C. 若,,,则 D. 若,,则αβ∥m α⊥l β⊂l m ⊥m αβ= l α∥l m∥【正确答案】BC【分析】根据空间中垂直关系的转化可判断ABC 的正误,根据线面平行定义可判断D 的正误.【详解】对于A ,若,,则或,故A 错误;αβ⊥l β⊥l α∥l α⊂对于B ,若,,则,而,故,故B 正确;m β⊥l m ∥l β⊥l α⊂αβ⊥对于C ,若,,则,而,故,故C 正确;αβ∥m α⊥m β⊥l β⊂l m ⊥对于D ,若,,则或异面,故D 错误,m αβ= l α∥l m ∥,l m 故选:BC10. 在实践课上,小华将透明塑料制成了一个长方体容器,如图(1),1111ABCD A B C D -,,在容器内灌进一些水,现固定容器底面一边BC2AB BC ==15A A =()14D H DH =于地面上,再将容器倾斜,如图(2),则()A. 有水的部分始终呈三棱柱或四棱柱B. 棱与水面所在平面平行11A D C. 水面EFGH 所在四边形的面积为定值D. 当容器倾斜成如图(3)所示时,EF的最小值为【正确答案】ABD【分析】由棱柱的概述判断A ;由线面平行判定定理判断B ;计算可判断C ;利用基EFGH S 本不等式可判断D.【详解】由棱柱的定义知,选项A 正确;对于选项B ,由于,,所以,且不在水面所在平面11A D BC ∥BC FG ∥11A D FG ∥11A D 内,所以棱与水面所在平面平行,选项B 正确;11A D 对于选项C ,在图(1)中,,在图(2)中,4EFGH S FG EF BC AB =⋅=⋅=,选项C 错误;4EFGH S FG EF AB BC =⋅>⋅=对于选项D ,,所以.12212V BE BF BC =⨯⨯=⋅⋅⋅△4BE BF ⋅=,当且仅当时,等号成立,22228EF BE BF BE BF =+≥⋅=2BE BF ==所以EF 的最小值为,选项D正确.故选:ABD .11. 半正多面体(semiregular solid )亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形构成(如图所示),则()A. 平面EABBF ⊥B. 该二十四等边体的体积为203C. 该二十四等边体外接球的表面积为6πD. PN 与平面EBFN【正确答案】BD【分析】A 用反证法判断;B 先补齐八个角成正方体,再计算体积判断;C 先找到球心与半径,再计算表面积判断;D 先找到直线与平面所成角,再求正弦值判断.【详解】对于A ,假设A 对,即平面,于是,BF ⊥EAB BF AB ⊥,但六边形为正六边形,,矛盾,90ABF ∠=︒ABFPQH 120ABF ∠=︒所以A 错误;对于B ,补齐八个角构成棱长为2的正方体,则该二十四等边体的体积为,3112028111323-⋅⋅⋅⋅⋅=所以B 对;对于C ,取正方形对角线交点,ACPM O即为该二十四等边体外接球的球心,其半径为,其表面积为,所以C 错误;R =24π8πR =对于D ,因为在平面内射影为,PN EBFN NS 所以与平面所成角即为,PN EBFN PNS ∠其正弦值为,所以D 对.PS PN==故选:BD .三、填空题(本大题共3小题,每小题5分,共计15分)12. 如下图,三角形A'B'C'是三角形 ABC 的直观图,则三角形 ABC 的面积是_______.【正确答案】2【分析】画出原图形可得答案.【详解】由直观图画出原图,如图,可得是等腰三角形,且,ABC V 2,2BC OA ==所以三角形的面积.ABC 12222S =⨯⨯=故答案为:2.13. 圆柱的底面半径为1,侧面积为,则该圆柱外接球的表面积为______.10π【正确答案】29π【分析】先利用侧面积求出圆柱的高,再求出球的半径可得表面积.【详解】设圆柱的高为,其外接球的半径为,h R 由圆柱的底面半径为1,侧面积为,得,解得,10π2π10πh =5h =由圆柱和球的对称性可知,球心位于圆柱上下底面中心连线的中点处,因此.R ==24π29πS R ==故29π14. 球面被平面所截得的一部分叫做球冠,截得的圆叫做球冠的底,垂直于截面的直径被截得的一段叫做球冠的高.球被平面截下的一部分叫做球缺,截面叫做球缺的底面,垂直于截面的直径被截下的线段长叫做球缺的高,球缺是旋转体,可以看做是球冠和其底所在的圆面所围成的几何体.如图1,一个球面的半径为,球冠的高是,球冠的表面积公式是.R h 2πS Rh =如图2,已知是以为直径的圆上的两点,,扇形,C D AB ππ,63AOC BOD ∠∠==的面积为,则扇形绕直线旋转一周形成的几何体的表面积为__________.COD πCOD AB【正确答案】)61π+【分析】首先求出,再根据扇形面积公式求出圆的半径,过点作交DOC ∠C CE AB ⊥于点,过点作交于点,即可求出,将扇AB E D DF AB ⊥AB F ,,,,,CE OE AE OF BF DF 形绕直线旋转一周形成的几何体为一个半径的球中上下截去两个球缺所剩余部DOC AB R 分再挖去两个圆锥,再根据所给公式分别求出表面积.【详解】因为,所以,设圆的半径为,ππ,63AOC BOD ∠∠==π2DOC ∠=R 又,解得(负值舍去),2COD 1ππ22S R =⨯⨯=扇形2R =过点作交于点,过点作交于点,C CE AB ⊥AB ED DF AB ⊥AB F 则,ππsin1,cos 66CE OC OE OC ====所以,同理可得,2AE R OE =-=-1DF OF ==将扇形绕直线旋转一周形成的几何体为一个半径的球中,上下截去两个球COD AB 2R =缺所剩余部分再挖去两个圆锥,其中上面球缺的高,上面圆锥的底面半径,高为,12h =-11r=1h ='下面球缺的高,下面圆锥的底面半径,21h =2r =21h ='则上面球冠的表面积,(112π2π228πs Rh ==⨯⨯-=-下面球冠的表面积,球的表面积,222π2π214πs Rh ==⨯⨯=24π16πS R ==球上面圆锥的侧面积,下面圆锥的侧面积111ππ122πS rl ==⨯⨯=',222ππ2S r l ==='所以几何体的表面积.())''121116π8π4π2π61πS S S S S S =--++=---++=+球故答案为.)61π+关键点点睛:本题关键是弄清楚经过旋转之后得到的几何体是如何组成,对于表面积要合理转化.四、解答题(本题共5小题,共7分,解答应写出文字说明、证明过程或演算步骤.)15. 如图,在正三棱柱中,,,,分别是,,,111ABC A B C -E F G H AB AC 11A B 的中点.11A C(1)求证:,,,四点共面;B C H G (2)求证:平面平面;//BCHG 1A EF 【正确答案】(1)证明见解析(2)证明见解析【分析】(1)证明出,得到四点共面;//GH BC (2)先得到,,证明出线面平行,面面平行.1//A E BG //GH EF 【小问1详解】∵,分别是,的中点,G H 11A B 11A C ∴是的中位线,∴,GH 111A B C △11//GH B C又在三棱柱中,,∴,111ABC A B C -11//B C BC //GH BC ∴,,,四点共面.B C H G 【小问2详解】∵在三棱柱中,,,111ABC A B C -11//A B AB 11A B AB =∴,,1//A G EB 1111122A G A B AB EB ===∴四边形是平行四边形,∴,1A EBG 1//A E BG ∵平面,平面,∴平面.1A E ⊂1A EF BG ⊂/1A EF //BG 1A EF 又,是,的中点,所以,又.E F AB AC //EF BC //GH BC 所以,//GH EF ∵平面,平面,∴平面.EF ⊂1A EF GH ⊂/1A EF //GH 1A EF 又,平面,BG GH G = ,BG GH ⊂BCHG 所以平面平面.//BCHG 1A EF 16. 如图,AB 为⊙O 的直径,PA 垂直于⊙O 所在的平面,M 为圆周上任意一点,AN ⊥PM ,N 为垂足.(1)若,Q 为PB 的中点,求三棱锥的体积;2PA AM BM ===Q ABM -(2)求证:AN ⊥平面PBM ;(3)若AQ ⊥PB ,垂足为Q ,求证:NQ ⊥PB.【正确答案】(1)23(2)证明见解析 (3)证明见解析【分析】(1)先得到,根据Q 为PB 的中点,故1433P AMB AMB V S PA -=⋅= ;1223Q ABM P AMB V V --==(2)由线线垂直,得到线面垂直,即BM ⊥平面PAM .,故BM ⊥AN ,又AN ⊥PM ,从而得到线面垂直;(3)由(1)知AN ⊥平面PBM ,故AN ⊥PB ,又AQ ⊥PB ,故PB ⊥平面ANQ ,得到答案.【小问1详解】因为AB 为⊙O 的直径,所以⊥,AM BM 又,故,2AM BM ==122AMB S AM BM =⋅= 又PA 垂直于⊙O 所在的平面,,2PA =故,11422333P AMB AMB V S PA -=⋅=⨯⨯= 因为Q 为PB 的中点,所以.11422233Q ABM P AMB V V --==⨯=【小问2详解】∵AB 为⊙O 的直径,∴AM ⊥BM .又PA ⊥平面ABM ,BM 平面ABM ,⊂∴PA ⊥BM .又∵,PA ,AM 平面PAM ,PA AM A = ⊂∴BM ⊥平面PAM .又AN 平面PAM ,∴BM ⊥AN .⊂又AN ⊥PM ,且,BM ,PM 平面PBM ,BM PM M = ⊂∴AN ⊥平面PBM .【小问3详解】由(1)知AN ⊥平面PBM ,PB ⊂平面PBM ,∴AN ⊥PB .又∵AQ ⊥PB ,AN ∩AQ =A ,AN ,AQ ⊂平面ANQ ,∴PB ⊥平面ANQ .又NQ 平面ANQ ,⊂∴PB ⊥NQ .17. 我国古代数学名著《九章算术》中,称四面都为直角三角形的三棱锥为“鳖臑”.如图,在三棱锥中,平面.A BCD -AB ⊥,BCD BC CD ⊥(1)证明:三棱锥为鳖臑;A BCD -(2)若为上一点,点分别为的中点.平面与平面的交线为E AD ,P Q ,BC BE DPQ ACD .l ①证明:直线平面;//PQ ACD ②判断与的位置关系,并证明你的结论.PQ l 【正确答案】(1)证明见解析;(2)①证明见解析;②平行,证明见解析.【分析】(1)利用线面垂直的性质及判定定理即可求解;(2)①利用三角形的中位线定理及线面平行的判定定理即可求解;②利用①的结论及线面平行的性质定理即可求解.【小问1详解】∵,BC CD ⊥∴为直角三角形,BCD △∵平面,且平面,平面,平面,AB ⊥BCD BD ⊂BCD ⊂BC BCD CD ⊂BCD∴,,,AB BC ⊥AB BD ⊥AB CD ⊥∴和为直角三角形,ABC V ABD △∵,平面,平面,BC AB B ⋂=BC ⊂ABC AB ⊂ABC ∴平面,CD ⊥ABC 又∵平面,AC ⊂ABC ∴,CD AD ⊥∴为直角三角形,ACD ∴三棱锥为鳖曘.A BCD -【小问2详解】①连接,∵点分别为的中点,CE ,P Q ,BC BE ∴,//PQ CE 且平面,平面,PQ ⊄ACD CE ⊂ACD 所以直线平面,//PQ ACD ②平行,证明:平面,平面,平面平面=,//PQ ACD PQ ⊂DPQ DPQ ⋂ACD l 所以.//PQ l 18. 一块四棱锥木块如图所示,平面,四边形ABCD 为平行四边形,且SD ⊥ABCD ,.60BAD ∠=︒224AB BC SD ===(1)要经过点B 、D 将木料锯开,使得截面平行于侧棱,在木料表面该怎样画线?并说SA 明理由;(2)计算(1)中所得截面的面积;(3)求直线SC 与(1)中截面所在平面所成角的正弦值.【正确答案】(1)即为要画的线,理由见解析;,ED EB (2(3【分析】(1)要使截面与平行,考虑构造线线平行,取的中点,取的对SA S C E ABCD 称中心,连接,证明即得截面;O OE //SA OE BDE (2)分别计算的三边,再利用三角形面积公式计算即得;BDE (3)利用等体积求出点到平面的距离,再由线面所成角的定义即可求得.C BDE 【小问1详解】如图,取的中点,连接,则即为要画的线.S C E ,,ED EB ,ED EB理由如下:连接与交于点,连接.BD AC O OE 因四边形ABCD 为平行四边形,则点为的中点,故,O AC //SA OE 又因平面,平面,故有平面;SA ⊄BDE OE ⊂BDE SA ∥BDE 【小问2详解】如图中,过点作于点,连接,E EF DC ⊥FBF 因平面,平面,则,SD ⊥ABCD CD ⊂ABCD SD CD ⊥故,平面,,//EF SD ⊥EF ABCD 112EF SD ==12DE SC ===因,则,12,60,22CFDC DCB BC ==∠== 2BF =因平面,则,故,BF ⊂ABCD EF FB ⊥BE ==又由余弦定理,,故得.22224224cos6012BD =+-⨯⨯=BD =又,O 为BD 中点,则,DE DB =OE BD ⊥于是截面的面积为;12BDE S =⨯= 【小问3详解】过点作平面,交平面于点,连接,C CH ⊥BDE BDE H EH则即直线与截面所成的角.CEH ∠S C BDE 由可得,,E BCD C BED V V --=1133BCD BED S EF S CH ⨯=⨯即得:,则BCD BED S EF CH S ⨯===sin CH CEH EC ∠===即直线SC 与平面BDE 思路点睛:本题主要考查运用线面平行的判定方法解决实际问题和线面所成角的求法,属于较难题.解题的思路在于充分利用平行四边形对角线性质、等腰三角形三线合一,三角形中位线性质等方法寻找线线平行;对于线面所成角问题,除了定义法作图求解外,对于不易找到点在平面的射影时,可考虑运用等体积转化求解.19. 空间的弯曲性是几何研究的重要内容,用曲率刻画空间的弯曲性,规定:多面体顶点的曲率等于与多面体在该点的面角之和的差,其中多面体的面的内角叫做多面体的面角,2π角度用弧度制.例如:正四面体每个顶点均有3个面角,每个面角均为,故其各个顶点的曲π3率均为.如图,在直三棱柱中,点A 的曲率为,M 为的π2π3π3-⨯=111ABC A B C -2π31CC 中点,且.AB AC =(1)判断的形状,并说明理由;ABC V (2)若,求点到平面的距离;124AA AB ==B 1AB M (3)表面经过连续变形可以变为球面的多面体称为简单多面体.关于简单多面体有著名欧拉定理:设简单多面体的顶点数为D ,棱数为L ,面数为M ,则有.利用此定理2D L M -+=试证明:简单多面体的总曲率(多面体有顶点的曲率之和)是常数.【正确答案】(1)为等边三角形,理由见解析ABC V (2(3)证明见解析【分析】(1)根据线面垂直的性质可得,,即可根据曲率的定义求解,1AA AC ⊥1AA AB ⊥(2)利用等体积法,结合锥体体积公式即可求解,(3)根据则多面体的棱数,顶点数,以及内角之和,即可根据曲率的定义求解.【小问1详解】因为在直三棱柱中,111ABC A B C -平面,平面,1AA ⊥ABC ,AC AB ⊂ABC 所以,,1AA AC ⊥1AA AB ⊥所以点A 的曲率为,得,π2ππ2232BAC -⨯-∠=π3BAC ∠=因为,所以为等边三角形.AB AC =ABC V【小问2详解】取中点D ,连接、,BC AD AM 因为D 为的中点,所以,BC AD BC ⊥因为平面,平面,所以,1BB ⊥ABC AD ⊂ABC 1BB AD ⊥因为,平面,所以平面;1BB BC B = 1,AA AB ⊂11ABB A AD ⊥11BB C C 所以是三棱锥的高.AD 1A BB M -设点到平面的距离为,则有,即.B 1AB M h 11B AB M A BB M V V --=11AB M BB M S h S AD =⋅在中有,同理计算得,11Rt AA B△1AB ==1AM B M BM ===.AD =所以,,112AB M S =⨯=114242BB M S =⨯⨯=所以.h ==【小问3详解】证明:设多面体有M 个面,给组成多面体的多边形编号,分别为号,1,2,,M ⋅⋅⋅设第号多边形有条边,i ()1i M ≤≤i L 则多面体共有条棱,122ML L L L ++⋅⋅⋅+=由题意,多面体共有个顶点,12222ML L L D M L M ++⋅⋅⋅+=-+=-+号多边形的内角之和为,i π2πi L -所以所有多边形的内角之和为,()12π2πM L L L M ++⋅⋅⋅+-所以多面体的总曲率为()122ππ2πM D L L L M ⎡⎤-++⋅⋅⋅+-⎣⎦.()12122π2π2π4π2M M L L L M L L L M ++⋅⋅⋅+⎛⎫⎡⎤=-+-++⋅⋅⋅+-= ⎪⎣⎦⎝⎭所以简单多面体的总曲率为.4π。
广东省部分学校2024-2025学年高二上学期第一次联考数学试卷含答案

2024—2025学年高二上学期第一次月考联考高二数学试卷(答案在最后)本试卷共5页满分150分,考试用时120分钟注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题所给的四个选项中,只有一项是符合题目要求的)1.已知()()2,1,3,1,1,1a b =-=-,若()a a b λ⊥-,则实数λ的值为()A.2- B.143-C.73D.2【答案】C 【解析】【分析】利用两个向量垂直的性质,数量积公式即求得λ的值.【详解】 向量()()2,1,3,1,1,1a b =-=-若()a a b λ⊥-,则2()(419)(213)0a a b a a b λλλ⋅-=-⋅=++-++=,73λ∴=.故选:C .2.P 是被长为1的正方体1111ABCD A B C D -的底面1111D C B A 上一点,则1PA PC ⋅的取值范围是()A.11,4⎡⎤--⎢⎥⎣⎦B.1,02⎡⎤-⎢⎥⎣⎦C.1,04⎡⎤-⎢⎥⎣⎦D.11,42⎡⎤--⎢⎥⎣⎦【答案】B 【解析】【分析】建立空间直角坐标系,写出各点坐标,同时设点P 的坐标为(),,x y z ,用坐标运算计算出1PA PC ⋅,配方后可得其最大值和最小值,即得其取值范围.【详解】如图,以点D 为坐标原点,1,,DA DC DD 所在直线分别为,,x y z 轴,建立空间直角坐标系,则 쳌䁠쳌䁠,()10,1,1C ,设(),,P x y z ,01x ≤≤,01y ≤≤,1z =,()1,,1PA x y ∴=--- ,()1,1,0PC x y =--,()()2222111111222PA PC x x y y x x y y x y ⎛⎫⎛⎫∴⋅=----=-+-=-+-- ⎪ ⎪⎝⎭⎝⎭ ,当12x y ==时,1PA PC ⋅ 取得最小值12-,当0x =或1,0y =或1时,1PA PC ⋅取得最大值0,所以1PA PC ⋅ 的取值范围是1,02⎡⎤-⎢⎥⎣⎦.故选:B.3.已知向量()4,3,2a =- ,()2,1,1b = ,则a 在向量b上的投影向量为()A.333,,22⎛⎫ ⎪⎝⎭B.333,,244⎛⎫⎪⎝⎭C.333,,422⎛⎫ ⎪⎝⎭D.()4,2,2【答案】A 【解析】【分析】根据投影向量公式计算可得答案.【详解】向量a 在向量b上的投影向量为()()()2242312333cos ,2,1,12,1,13,,222b a b a a b b b b ⋅⨯+⨯-⎛⎫⋅⋅=⋅=⋅== ⎪⎝⎭r r rr r r r r r .故选:A.4.在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1AA ,1BB 的中点,G 为棱11A B 上的一点,且()102A G λλ=<<,则点G 到平面1D EF 的距离为()A.3B.C.3 D.255【答案】D 【解析】【分析】建立空间直角坐标系,由点到平面的距离公式计算即可.【详解】以D 为坐标原点,DA 所在直线为x 轴,DC 所在直线为y 轴,1DD 所在直线为z 轴,建立如图所示的空间直角坐标系,则()2,,2G λ,()10,0,2D ,()2,0,1E ,()2,2,1F ,所以()12,0,1ED =- ,()0,2,0= EF ,()0,,1EG λ=.设平面1D EF 的法向量为(),,n x y z = ,则12020n ED x z n EF y ⎧⋅=-+=⎪⎨⋅==⎪⎩,取1x =,得()1,0,2n =r,所以点G 到平面1D EF的距离为255EG n d n ⋅=== ,故选:D .5.已知四棱锥P ABCD -,底面ABCD 为平行四边形,,M N 分别为棱,BC PD 上的点,13CM CB =,PN ND =,设AB a =,AD b=,AP c = ,则向量MN 用{},,a b c 为基底表示为()A.1132a b c++ B.1162a b c-++C.1132a b c-+D.1162a b c--+【答案】D 【解析】【分析】利用空间向量的线性运算结合图形计算即可.【详解】由条件易知()11113232MN MC CD DN BC BA DP AD BA AP AD =++=++=++-()11113262b ac b a =-+-=--+.故选:D6.在四面体OABC 中,空间的一点M 满足1146OM OA OB OC λ=++ .若,,MA MB MC共面,则λ=()A.12B.13C.512D.712【答案】D 【解析】【分析】根据给定条件,利用空间向量的共面向量定理的推论列式计算即得.【详解】在四面体OABC 中,,,OA OB OC不共面,而1146OM OA OB OC λ=++ ,则由,,MA MB MC ,得11146λ++=,所以712λ=.故选:D7.已知向量()()1,21,0,2,,a t t b t t =--=,则b a - 的最小值为()A.5B.6C.2D.3【答案】C 【解析】【分析】计算出2322b t a -=+≥ .【详解】因为()()1,21,0,2,,a t t b t t =--=,所以()()222211322t t b t t a ++=-=-++当0t =时,等号成立,故b a -.故选:C.8.“长太息掩涕兮,哀民生之多艰”,端阳初夏,粽叶飘香,端午是一大中华传统节日.小玮同学在当天包了一个具有艺术感的肉粽作纪念,将粽子整体视为一个三棱锥,肉馅可近似看作它的内切球(与其四个面均相切的球,图中作为球O ).如图:已知粽子三棱锥P ABC -中,PA PB AB AC BC ====,H 、I 、J 分别为所在棱中点,D 、E 分别为所在棱靠近P 端的三等分点,小玮同学切开后发现,沿平面CDE 或平面HIJ 切开后,截面中均恰好看不见肉馅.则肉馅与整个粽子体积的比为().A.23π9B.π18C.π27D.π54【答案】B 【解析】【分析】设1PF CF ==,易知233PA PB AB AC BC =====,且23FG =,设肉馅球半径为r ,CG x =,根据中点可知P 到CF 的距离4d r =,sin 4dPFC r PF∠==,根据三角形面积公式及内切圆半径公式可得1x =,结合余弦定理可得1cos 3PFC ∠=,进而可得3PC =,22sin 3PFC ∠=,可得内切球半径且可知三棱锥为正三棱锥,再根据球的体积公式及三棱锥公式分别求体积及比值.【详解】如图所示,取AB 中点为F ,PF DE G ⋂=,为方便计算,不妨设1PF CF ==,由PA PB AB AC BC ====,可知233PA PB AB AC BC =====,又D 、E 分别为所在棱靠近P 端的三等分点,则2233FG PF ==,且AB PF ⊥,AB CF ⊥、PF CF F = ,PF ,CF ⊂平面PCF ,即AB ⊥平面PCF ,又AB ⊂平面ABC ,则平面PCF ⊥平面ABC ,设肉馅球半径为r ,CG x =,由于H 、I 、J 分别为所在棱中点,且沿平面HIJ 切开后,截面中均恰好看不见肉馅,则P 到CF 的距离4d r =,sin 4d PFC r PF∠==,12414233GFC rS r =⋅⋅⋅=△,又2132GFC rS x ⎛⎫=++⋅ ⎪⎝⎭ ,解得:1x =,故22241119cos 223213CF FG CG PFC CF FG +-+-∠===⋅⋅⋅⋅,又2222111cos 21132P PF CF PC PC F F C P F C +-+⋅-∠==⋅=⋅⋅,解得233PC =,22sin 3PFC ∠=,所以:4sin 31rPFC ∠==,解得26r =,34381V r =π=球,由以上计算可知:P ABC -为正三棱锥,故111sin 4332ABC V S d AB AC BAC r =⋅⋅=⋅⋅⋅⋅∠⋅粽11432332627=⋅⋅⋅⋅⋅⋅=,2812627π=.故选:B.二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对得6分,部分选对的得部分分,有选错的得0分)9.如图,在棱长为2的正方体1111ABCD A B C D -中,E 为1BB 的中点,F 为11A D 的中点,如图所示建立空间直角坐标系,则下列说法正确的是()A.13DB =B.向量AE 与1AC uuu r所成角的余弦值为5C.平面AEF 的一个法向量是()4,1,2-D.点D 到平面AEF 的距离为82121【答案】BCD 【解析】【分析】先写出需要的点的坐标,然后利用空间向量分别计算每个选项即可.【详解】由题可知, 쳌䁠쳌䁠,()0,0,0D ,()2,2,1E ,()1,0,2F ,()12,2,2B ,()10,2,2C ,所以1DB ==A 错误;()0,2,1AE = ,()12,2,2AC =-,所以111·15cos ,5AE AC AE AC AE AC ==,故选项B 正确;()0,2,1AE = ,()1,0,2AF =- ,记()4,1,2n =-,则0,0AE AF n n ==,故,AE AF n n ⊥⊥,因为AE AF A ⋂=,,AE AF ⊂平面AEF ,所以()4,1,2n =-垂直于平面AEF ,故选项C 正确;쳌䁠쳌䁠,所以点D 到平面AEF的距离·21DA n d n ===,故选项D 正确;故选:BCD10.在正三棱柱111ABC A B C -中,1AB AA =,点P 满足][1([0,1,0,])1BP BC BB λμλμ=+∈∈,则下列说法正确的是()A.当1λ=时,点P 在棱1BB 上B.当1μ=时,点P 到平面ABC 的距离为定值C.当12λ=时,点P 在以11,BC B C 的中点为端点的线段上D.当11,2λμ==时,1A B ⊥平面1AB P 【答案】BCD 【解析】【分析】对于A ,由1CP BP BC BB μ==-即可判断;对于B ,由[]11,0,1B P BP BB BC λλ=-=∈ 和11//B C 平面ABC 即可判断;对于C ,分别取BC 和11B C 的中点D 和E ,由BP BD =+1BB μ 即1DP BB μ=即可判断;对于D ,先求证1A E ⊥平面11BB C C ,接着即可求证1B P ⊥平面1A EB ,进而即可求证1A B ⊥平面1AB P .【详解】对于A ,当1λ=时,[]1,0,1CP BP BC BB μμ=-=∈,又11CC BB =,所以1CP CC μ= 即1//CP CC ,又1CP CC C = ,所以1C C P 、、三点共线,故点P 在1CC 上,故A 错误;对于B ,当1μ=时,[]11,0,1B P BP BB BC λλ=-=∈,又11B C BC =,所以111B P B C λ= 即111//B P B C ,又1111B B C P B = ,所以11B C P 、、三点共线,故点P 在棱11B C 上,由三棱柱性质可得11//B C 平面ABC ,所以点P 到平面ABC 的距离为定值,故B 正确;对于C ,当12λ=时,取BC 的中点11,D B C 的中点E ,所以1//DE BB 且1DE BB =,BP BD =+[]1,0,1BB μμ∈ ,即1DP BB μ= ,所以DP E D μ= 即//DP DE,又DP DE D ⋂=,所以D E P 、、三点共线,故P 在线段DE 上,故C 正确;对于D ,当11,2λμ==时,点P 为1CC 的中点,连接1,A E BE ,由题111A B C △为正三角形,所以111A E B C ⊥,又由正三棱柱性质可知11A E BB ⊥,因为1111BB B C B = ,111BB B C ⊂、平面11BB C C ,所以1A E ⊥平面11BB C C ,又1B P ⊂平面11BB C C ,所以11A E B P ⊥,因为1111B C BB CC ==,所以11B E C P =,又111π2BB E B C P ∠=∠=,所以111BB E B C P ≌,所以111B EB C PB ∠=∠,所以1111111π2PB C B EB PB C C PB ∠+∠=∠+∠=,设BE 与1B P 相交于点O ,则1π2B OE ∠=,即1BE B P ⊥,又1A E BE E = ,1A E BE ⊂、平面1A EB ,所以1B P ⊥平面1A EB ,因为1A B ⊂平面1A EB ,所以11B P A B ⊥,由正方形性质可知11A B AB ⊥,又111AB B P B = ,11B P AB ⊂、平面1AB P ,所以1A B ⊥平面1AB P ,故D 正确.故选:BCD.【点睛】思路点睛:对于求证1A B ⊥平面1AB P ,可先由111A E B C ⊥和11A E BB ⊥得1A E ⊥平面11BB C C ,从而得11A E B P ⊥,接着求证1BE B P ⊥得1B P ⊥平面1A EB ,进而11B P A B ⊥,再结合11A B AB ⊥即可得证1A B ⊥平面1AB P .11.布达佩斯的伊帕姆维泽蒂博物馆收藏的达・芬奇方砖在正六边形上画了具有视觉效果的正方体图案,如图1,把三片这样的达・芬奇方砖拼成图2的组合,这个组合再转换成图3所示的几何体.若图3中每个正方体的棱长为1,则()A.122CG AB AA =+ B.直线CQ 与平面1111D C B A 所成角的正弦值为23C.点1C 到直线CQ 的距离是53D.异面直线CQ 与BD 所成角的余弦值为36【答案】BC 【解析】【分析】A 选项,建立空间直角坐标系,写出点的坐标,得到122AB AA CG +≠;B 选项,求出平面的法向量,利用线面角的夹角公式求出答案;C 选项,利用空间向量点到直线距离公式进行求解;D 选项,利用异面直线夹角公式进行求解.【详解】A 选项,以A 为坐标原点,1,,DA AB AA所在直线分别为,,x y z 轴,建立空间直角坐标系,则()()()()()()10,0,0,0,1,0,0,0,1,1,1,2,0,1,2,1,1,0A B A G Q C ----,()()()110,1,1,1,1,1,1,0,0B C D --,()()()10,2,2,0,1,0,0,0,1CG AB AA =-==,则()()()1220,2,00,0,20,2,2AB AA CG +=+=≠,A 错误;B 选项,平面1111DC B A 的法向量为()0,0,1m =,()()()0,1,21,1,01,2,2CQ =---=-,设直线CQ 与平面1111D C B A 所成角的大小为θ,则2sin cos ,3CQ m CQ m CQ mθ⋅===⋅,B 正确;C 选项,()10,0,1CC =,点1C 到直线CQ 的距离为3d ==,C正确;D 选项,()()()1,0,00,1,01,1,0BD =--=-- ,设异面直线CQ 与BD 所成角大小为α,则cos cos ,6CQ BD CQ BD CQ BDα⋅=====⋅ ,D 错误.故选:BC三、填空题(本大题共3小题,每小题5分,共15分)12.正三棱柱111ABC A B C -的侧棱长为2,底面边长为1,M 是BC 的中点.在直线1CC 上求一点N ,当CN 的长为______时,使1⊥MN AB .【答案】18##0.125【解析】【分析】根据正三柱性质建立空间直角坐标系,利用向量垂直的坐标表示可得结果.【详解】取11B C 的中点为1M ,连接1,MM AM ,由正三棱柱性质可得11,,AM MM BM MM AM BM ⊥⊥⊥,因此以M 为坐标原点,以1,,AM BM MM 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如下图所示:易知()11,0,0,0,,2,0,0,022A B M ⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭,设CN 的长为a ,且0a >,可得10,,2N a ⎛⎫- ⎪⎝⎭;易知11310,,,,,2222MN a AB ⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭若1⊥MN AB ,则1112022MN AB a ⋅=-⨯+= ,解得18a =,所以当CN 的长为18时,使1⊥MN AB .故答案为:1813.四棱锥P ABCD -中,PD ⊥底面ABCD ,底面ABCD 是正方形,且1PD =,3AB =,G 是ABC V 的重心,则PG 与平面PAD 所成角θ的正弦值为______.【答案】23【解析】【分析】建立空间直角坐标系,求出平面PAD 的一个法向量m 及PG,由PG 与平面PAD 所成角θ,根据sin cos ,m PG m PG m PGθ⋅==⋅ 即可求解.【详解】因为PD ⊥底面ABCD ,底面ABCD 是正方形,所以,,DA DC DP 两两垂直,以D 为坐标原点,,,DA DC DP 的方向分别为,,x y z 轴的正方向,建立如图所示空间直角坐标系,则()0,0,0D ,()0,0,1P ,()3,0,0A ,()3,3,0B ,()0,3,0C ,则重心()2,2,0G ,因而()2,2,1PG =- ,()3,0,0DA = ,()0,0,1DP = ,设平面PAD 的一个法向量为(),,m x y z =,则300m DA x m DP z ⎧⋅==⎪⎨⋅==⎪⎩ ,令1y =则()0,1,0m = ,则22sin cos ,133m PG m PG m PG θ⋅====⨯⋅ ,故答案为:23.14.坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮那,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若25m AB =,10m BC =,且等腰梯形所在平面、等腰三角形所在平面与平面ABCD 的夹角的正切值均为145,则该五面体的所有棱长之和为_______.【答案】117m【解析】【分析】先根据线面角的定义求得5tan tan EMO EGO ∠=∠=,从而依次求EO ,EG ,EB ,EF ,再把所有棱长相加即可得解.【详解】如图,过E 做EO ⊥平面ABCD ,垂足为O ,过E 分别做EG BC ⊥,EM AB ⊥,垂足分别为G ,M ,连接OG ,OM,由题意得等腰梯形所在的面、等腰三角形所在的面与底面夹角分别为EMO ∠和EGO ∠,所以tan tan EMO EGO ∠=∠=.因为EO ⊥平面ABCD ,⊂BC 平面ABCD ,所以EO BC ⊥,因为EG BC ⊥,EO ,EG ⊂平面EOG ,EO EG E = ,所以⊥BC 平面EOG ,因为OG ⊂平面EOG ,所以BC OG ⊥,同理,OM BM ⊥,又BM BG ⊥,故四边形OMBG 是矩形,所以由10BC =得5OM =,所以EO =,所以5OG =,所以在直角三角形EOG中,EG ==在直角三角形EBG 中,5BG OM ==,8EB ===,又因为55255515EF AB =--=--=,所有棱长之和为2252101548117⨯+⨯++⨯=.故答案为:117m四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)15.如图,在长方体1111ABCD A B C D -中,11,2AD AA AB ===,点E 在棱AB 上移动.(1)当点E 在棱AB 的中点时,求平面1D EC 与平面1DCD 所成的夹角的余弦值;(2)当AE 为何值时,直线1A D 与平面1D EC 所成角的正弦值最小,并求出最小值.【答案】(1)66(2)当2AE =时,直线1A D 与平面1D EC 所成角的正弦值最小,最小值为105【解析】【分析】(1)以D 为坐标原点,1,,DA DC DD 所在直线为坐标轴建立空间直角坐标系,求得平面1D EC 的一个法向量,平面1DCD 的一个法向量,利用向量法可求平面1D EC 与平面1DCD 所成的夹角的余弦值;(2)设AE m =,可求得平面1D EC 的一个法向量,直线的方向向量1DA ,利用向量法可得sin θ=,可求正弦值的最小值.【小问1详解】以D 为坐标原点,1,,DA DC DD 所在直线为坐标轴建立如图所示的空间直角坐标系,当点E 在棱AB 的中点时,则1(0,0,1),(1,1,0),(0,2,0),(0,0,0),(1,0,0)E C D A D ,则1(1,1,1),(1,1,0),(1,0,0)ED EC DA =--=-= ,设平面1D EC 的一个法向量为(,,)n x y z = ,则1·0·0n ED x y z n EC x y ⎧=--+=⎪⎨=-+=⎪⎩ ,令1x =,则1,2y z ==,所以平面1D EC 的一个法向量为(1,1,2)n = ,又平面1DCD 的一个法向量为(1,0,0)DA = ,所以·6cos ,6·DA n DA n DA n=== ,所以平面1D EC 与平面1DCD 所成的夹角的余弦值为66;【小问2详解】设AE m =,则11(0,0,1),(1,,0),(0,2,0),(0,0,0),(1,0,1)E m C D A D ,则11(1,,1),(1,2,0),(02),(1,0,1)ED m EC m m DA =--=--≤≤=,设平面1D EC 的一个法向量为(,,)n x y z = ,则1·0·(2)0n ED x my z n EC x m y ⎧=--+=⎪⎨=-+-=⎪⎩ ,令1y =,则2,2x m z =-=,所以平面1D EC 的一个法向量为(2,1,2)n m =- ,设直线1A D 与平面1D EC 所成的角为θ,则11||sin ||||n DA n DA θ=== 令4[2,4]m t -=∈,则sin θ====当2t =时,sin θ取得最小值,最小值为105.16.如图所示,直三棱柱11ABC A B C -中,11,92,0,,CA CB BCA AA M N ︒==∠==分别是111,A B A A 的中点.(1)求BN 的长;(2)求11cos ,BA CB 的值.(3)求证:BN ⊥平面1C MN .【答案】(1(2)10(3)证明见解析【解析】【分析】(1)建立空间直角坐标系,求出相关点坐标,根据空间两点间距离公式,即得答案;(2)根据空间向量的夹角公式,即可求得答案;(3)求出1C M ,1C N ,BN 的坐标,根据空间位置关系的向量证明方法,结合线面垂直的判定定理,即可证明结论.【小问1详解】如图,建立以点O 为坐标原点,CA 、CB 、1CC 所在直线分别为x 轴、y 轴、z 轴的空间直角坐标系.依题意得(0,1,0),(1,0,1)B N ,∴222(10)(01)(10)3BN =-+-+- ;【小问2详解】依题意得,()()()()111,0,2,0,1,0,0,0,0,0,1,2A B C B ,∴1(1,1,2)BA =- ,1(0,1,2)CB = ,113BA CB =⋅ ,16BA = 15CB = 所以1111130cos ,1065BA CB BA CB BA CB ⋅===⨯⋅ ;【小问3详解】证明:()()()10,0,2,0,1,0,1,0,1C B N ,11,,222M ⎛⎫ ⎪⎝⎭.∴111,,022C M ⎛⎫= ⎪⎝⎭uuuu r ,()11,0,1C N =-uuur ,()1,1,1BN =- ,∴1111(1)10022C M BN ⋅=⨯+⨯-+⨯= ,1110(1)(1)10C N BN ⋅=⨯+⨯-+-⨯= ,∴1C M BN ⊥ ,1C N BN ⊥ ,即11,C M BN C N BN ⊥⊥,又1C M ⊂平面1C MN ,1C N ⊂平面1C MN ,111= C M C N C ,∴BN ⊥平面1C MN .17.如图,在四棱维P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,5AC CD ==(1)求直线PB 与平面PCD 所成角的正切值;(2)在PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AM AP的值;若不存在,说明理由.【答案】(1)22(2)存在点M ,使得//BM 平面PCD ,14AM AP =.【解析】【分析】(1)取AD 的中点为O ,连接,PO CO ,由面面垂直的性质定理证明⊥PO 平面ABCD ,建立空间直角坐标系求解直线PB 与平面PCD 所成角的正切值即可;(2)假设在PA 上存在点M ,使得()01PM PA λλ=≤≤ ,由线面平行,转化为平面的法向量与直线的方向向量垂直,求解参数即可.【小问1详解】取AD 的中点为O ,连接,PO CO ,因为PA PD =,所以PO AD ⊥,又平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,PO ⊂平面PAD ,所以⊥PO 平面ABCD ,又AC CD =,所以CO AD ⊥,PA PD ⊥,2AD =,所以1PO =,5AC CD ==2CO =,所以以O 为坐标原点,分别以,,OC OA OP 所在的直线为,,x y z 轴建立空间直角坐标系,䁠쳌䁠쳌 ,()2,0,0C ,()0,1,0A ,()1,1,0B ,()0,1,0D -,所以()2,0,1PC =- ,()0,1,1PD =-- ,()1,1,1PB =- ,设平面PCD 的一个法向量为 쳌h쳌 ,则00PC m PD m ⎧⋅=⎪⎨⋅=⎪⎩ ,200x z y z -=⎧⎨--=⎩,令1,x =则2,2z y ==-,所以()1,2,2m =- ,设直线PB 与平面PCD 所成角为θ,sin cos ,3m PB m PB m PBθ⋅==== ,所以cos 3θ==,所以2tan 2θ=,所以直线PB 与平面PCD所成角的正切值.【小问2详解】在PA 上存在点M ,使得()01PM PA λλ=≤≤ ,所以()0,1,1PA =- ,所以()0,,PM PA λλλ==- ,所以()0,,1M λλ-,所以()1,1,1BM λλ=--- ,因为//BM 平面PCD ,所以BM m ⊥ ,即()()121210λλ---+-=,解得34λ=,所以存在点M ,使得//BM 平面PCD ,此时14AM AP =.18.如图1,在边长为4的菱形ABCD 中,60DAB ∠=︒,点M ,N 分别是边BC ,CD 的中点,1AC BD O ⋂=,AC MN G ⋂=.沿MN 将CMN 翻折到PMN 的位置,连接PA ,PB ,PD ,得到如图2所示的五棱锥P ABMND -.(1)在翻折过程中是否总有平面PBD ⊥平面PAG ?证明你的结论;(2)若平面PMN ⊥平面MNDB ,线段PA 上是否存在一点Q ,使得平面QDN 与平面PMN 所成角的余弦值为1313?若存在,试确定点Q 的位置;若不存在,请说明理由.【答案】(1)总有平面PBD ⊥平面PAG ,证明详见解析(2)存在,Q 是PA 的靠近P 的三等分点,理由见解析.【解析】【分析】(1)通过证明BD ⊥平面PAG 来证得平面PBD ⊥平面PAG .(2)建立空间直角坐标系,利用平面QDN 与平面PMN 所成角的余弦值来列方程,从而求得Q 点的位置.【小问1详解】折叠前,因为四边形ABCD 是菱形,所以AC BD ⊥,由于,M N 分别是边BC ,CD 的中点,所以//MN BD ,所以MN AC ⊥,折叠过程中,,,,,MN GP MN GA GP GA G GP GA ⊥⊥⋂=⊂平面PAG ,所以MN ⊥平面PAG ,所以BD ⊥平面PAG ,由于BD ⊂平面PBD ,所以平面PBD ⊥平面PAG .【小问2详解】存在,理由如下:当平面PMN ⊥平面MNDB 时,由于平面PMN 平面MNDB MN =,GP ⊂平面PMN ,GP MN ⊥,所以GP ⊥平面MNDB ,由于AG ⊂平面MNDB ,所以GP AG ⊥,由此以G 为空间坐标原点建立如图所示空间直角坐标系,依题意可知())()3,3,2,0,3,2,0,0,1,0,3,2,3P D B N PB --=()A,(PA = ,设()01PQ PA λλ=≤≤,则(()(),0,,0,GQ GP PQ GP PA λ=+=+=+-= ,平面PMN 的法向量为()11,0,0n =,()(),DQ DN =-= ,设平面QDN 的法向量为()2222,,n x y z = ,则()2222222200n DQ x y z n DN y ⎧⋅=-++=⎪⎨⎪⋅=+=⎩ ,故可设()21n λλ=--+ ,设平面QDN 与平面PMN 所成角为θ,由于平面QDN 与平面PMN所成角的余弦值为13,所以121213cos 13n n n n θ⋅==⋅ ,解得13λ=,所以当Q 是PA 的靠近P 的三等分点时,平面QDN 与平面PMN 所成角的余弦值为1313.19.如图,四棱锥P ABCD -中,四边形ABCD 是菱形,PA ⊥平面,60ABCD ABC ∠= ,11,,2PA AB E F ==分别是线段BD 和PC 上的动点,且()01BE PF BD PC λλ==<≤.(1)求证://EF 平面PAB ;(2)求直线DF 与平面PBC 所成角的正弦值的最大值;(3)若直线AE 与线段BC 交于M 点,AH PM ⊥于点H ,求线段CH 长的最小值.【答案】(1)证明见解析(2)158(3)455【解析】【分析】(1)根据条件建立合适的空间直角坐标系,利用空间向量证明线面关系即可;(2)利用空间向量研究线面夹角,结合二次函数的性质计算最大值即可;(3)设BM tBC = ,利用空间向量基本定理及三点共线的充要条件得出AH,利用向量模长公式及导数研究函数的单调性计算最值即可.【小问1详解】由于四边形ABCD 是菱形,且60ABC ∠= ,取CD 中点G ,则AG CD ⊥,又PA ⊥平面ABCD ,可以A 为中心建立如图所示的空间直角坐标系,则()()()()()2,0,0,3,0,1,3,0,0,0,1,0,3,0B C D P G -,所以()()()3,1,3,3,0,2,0,1PC BD BP =-=-=- ,由()01BE PF BD PC λλ==<≤,可知,,BE BD PF PC EF EB BP PF BD BP PC λλλλ==∴=++=-++ ()42,0,1λλ=--,易知()3,0AG = 是平面PAB 的一个法向量,显然0EF AG ⋅=,且EF ⊄平面PAB ,即//EF 平面PAB ;【小问2详解】由上可知()()()1,3,13,1,33,1DP PF DF λλλλλλ+==+-=+-- ,设平面PBC 的一个法向量为(),,n x y z =r ,则2030n BP x z n PC x y z ⎧⋅=-+=⎪⎨⋅=+-=⎪⎩ ,令1x =,则32,3z y ==,31,23n ⎛⎫= ⎪ ⎪⎝⎭,设直线DF 与平面PBC 所成角为α,则2223sin cos ,4325655653n DF n DF n DF αλλλλ⋅===⋅-+⋅-+ ,易知35λ=时,()2min 165655λλ-+=,即此时sin α取得最大值158;【小问3详解】设()(]()3,0,0,12,3BM tBC t t t AM AB BM t t ==-∈⇒=+=- ,由于,,H M P 共线,不妨设()1AH xAM x AP =+- ,易知AM AP ⊥,则有()()22010AH PM AH AM AP xAM x AP ⋅=⋅-=⇒--= ,所以22114451x t t AM ==-++ ,则()()233,1CH CA AH t x tx x =+=---- ,即()()2222454454655445t CH t t x t x t t --=-+-++=-+ 记()(]()2450,1445t f t t t t --=∈-+,则()()()2228255445t t f t t t --+'=-+,易知22550t t -+>恒成立,所以()0f t '<,即()f t 单调递减,所以()()min 945155f t f CH ≥=-⇒=.。
北京市2024-2025学年高二上学期9月月考数学试题含答案

北京市2024~2025学年度第一学期9月高二数学试卷(答案在最后)2024.09本试卷共4页,120分.考试时长90分钟考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将答题卡交回.一、选择题:本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.1.复数11i +在复平面上对应的点的坐标是A.(1,1)B.(1,1)- C.(1,1)-- D.(1,1)-【答案】D 【解析】【详解】试题分析:111i i+=-,所以对应的点的坐标为(1,1)-.考点:复数的运算.2.已知角α的终边经过点()2,1P -,则cos α=()A.5B.5-C.5D.【答案】C 【解析】【分析】根据条件,利用三角函数的定义,即可求出结果.【详解】因为角α的终边经过点()2,1P -,所以cos 5α==,故选:C.3.如图,八面体的每个面都是正三角形,并且4个顶点A ,B ,C ,D 在同一平面内,若四边形ABCD 是边长为2的正方形,则这个八面体的表面积为()A.8B.16C.3D.163【答案】C 【解析】【分析】先计算出每个面的面积,再乘以8即为表面积;【详解】每个面的面积为23234⨯=,所以该图形的表面积为83.故选:C4.已知圆锥的母线长为5,底面圆的半径为3,则该圆锥的体积为()A.12πB.15πC.36πD.45π【答案】A 【解析】【分析】根据题意画出立体图像,根据已知条件求得圆锥的高,即可求得答案.【详解】设圆锥的高为h ,母线长为l ,底面半径为r 画出立体图像,如图:根据立体图形可得:2222534h l r =-=-=根据圆锥的体积计算公式:2211ππ343π312V r h ==⋅⋅=故选:A.5.在正方体1111ABCD A B C D -中,直线11A C 与直线1B C 所成角的大小为()A.30︒B.45︒C.60︒D.120︒【答案】C 【解析】【分析】作出辅助线,得到1ACB ∠或其补角为直线11A C 与直线1B C 所成角,根据1AB C △为等边三角形,故160ACB ∠=︒,得到答案.【详解】连接AC ,因为11AA CC =,11//AA CC ,所以四边形11AA C C 为平行四边形,则11//A C AC ,故1ACB ∠或其补角为直线11A C 与直线1B C 所成角,连接1AB ,则11AB AC B C ==,即1AB C △为等边三角形,故160ACB ∠=︒,直线11A C 与直线1B C 所成角大小为60︒.故选:C6.已知l ,m 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是()A.若m α⊥,αβ⊥,则//m βB.若l αβ⋂=,v/,则//m βC.若m α⊂,αβ⊥,则m β⊥D.若m α⊥,v/,则m β⊥【答案】D 【解析】【分析】根据线线,线面及面面位置关系判断各个选项即可.【详解】对于A:若,m ααβ⊥⊥,则可能m β⊂,A 错误;对于B:若,//l l m αβ⋂=,则可能m β⊂,B 错误;对于C:若,,m ααβ⊂⊥则m 可能不垂直β,C 错误;对于D:若,//m ααβ⊥,则m β⊥,D 正确.故选:D.7.已知空间中不过同一点的三条直线m ,n ,l ,则“m ,n ,l 在同一平面”是“m ,n ,l 两两相交”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】将两个条件相互推导,根据能否推导的结果判断充分必要条件.【详解】依题意,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件.故选:B【点睛】本小题主要考查充分、必要条件的判断,考查公理1和公理2的运用,属于中档题.8.在正方体1111ABCD A B C D -中,点E ,F 分别是AB ,1CC 的中点,则下列说法正确的是()A.1//A E 平面1BFDB.1A E ⊥平面ADFC.A ,E ,B ,F 四点共面D.直线EF 与底面ABCD 所成角的正切值为5【答案】B 【解析】【分析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,利用向量法能求出结果判断A ,B ;利用异面直线的判断方法判断C ;利用空间向量求线面夹角判断D .【详解】设正方体1111ABCD A B C D -中棱长为2,以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,则()12,0,2A ,()2,1,0E ,()2,2,0B ,()0,2,1F ,()10,0,2D ,()0,0,0D ,对于A :()12,2,2BD =-- ,()2,0,1BF =-,设平面1BFD 的一个法向量 =s s ,则1222020n BD x y z n BF x z ⎧⋅=--+=⎪⎨⋅=-+=⎪⎩,令1x =,则2,1z y ==,可得()1,1,2n =,且()10,1,2A E =- ,则130A E n ⋅=-≠uuu r r,所以1A E 不平行于面1BFD ,故A 错误;对于B :D=2,0,0,()0,2,1DF = ,()10,1,2A E =-,则10A E DA ⋅=,10A E DF ⋅= ,即1A E DA ⊥,1A E DF ⊥,且DA DF D = ,,DA DF ⊂平面ADF ,所以1A E ⊥平面ADF ,故B 正确;对于C :因为1A E ⊂面11ABB A ,BF ⊄面11ABB A ,且1B A E ∉,所以直线1A E 与BF 为异面直线,故C 错误;对于D :因为()2,1,1EF =- ,且底面ABCD 的法向量()0,0,1m =,则6cos ,661EF m EF m EF m⋅==⨯⋅,设直线EF 与底面ABCD 所成角为π0,2θ⎛⎫∈ ⎪⎝⎭,则6sin 6θ=,可得230cos 1sin 6θθ=-=,sin 5tan cos 5θθθ==,所以直线EF 与底面ABCD所成角的正切值为5,故D 错误.故选:B .9.四面体ABCD 的一条棱长为x ,其余棱长均为2,记四面体ABCD 的表面积为()F x ,则函数()F x 的最大值为()A.6+B.4+C.D.【答案】B 【解析】【分析】如图,设AB 为x ,由题可得表达式,即可得答案.【详解】如图,设AB 为x ,因其他棱长为2,则44BCD ACD S S ==⨯= .取AB 中点为E ,则2xAE =,又由题可得DEAB ⊥,结合2AD =,由勾股定理,DE =,则12ABD ABC S S == 则()4F x x =<<,则()4F x =.当且仅当22444x x x =-⇒=时取等号.故选:B10.已知正方体1111ABCD A B C D -的棱长为2,点M ,N 分别是棱BC ,11C D 的中点,点P 在底面1111D C B A 内,点Q 在线段1A N上,若PM =,则PQ 长度的最小值为A.21- B.2C.3515- D.355【答案】C 【解析】【详解】解:如图,取B 1C 1中点O ,则MO ⊥面A 1B 1C 1D 1,即MO ⊥OP ,∵PM 5=,则OP =1,∴点P 在以O 为圆心,1以半径的位于平面A 1B 1C 1D 1内的半圆上.可得O 到A 1N 的距离减去半径即为PQ 长度的最小值,作OH ⊥A 1N 于H ,△A 1ON 的面积为2×21132111222-⨯⨯-⨯⨯=,∴11322A N OH ⨯=,可得OH 355=,∴PQ 长度的最小值为3515-.故答案为;C .点睛:这个题目考查了立体中面面垂直的性质的应用,线面垂直的应用,以及数形结合的应用,较好的考查了学生的空间想像力.一般处理立体的小题,都会将空间中的位置关系转化为平面关系,或者建系来处理.二、填空题:本大题共5小题,每小题5分,共25分.11.已知长方体的长、宽、高分别为3,2,1,则它的体对角线长为___________.【答案】14【解析】【分析】由长方体的性质计算.=故答案为.12.如图,已知矩形ABCD 中,4=AD ,3CD =,PA ⊥平面ABCD ,并且PA =则PC =______.【答案】6【解析】【分析】连接AC ,利用勾股定理求出AC ,由线面垂直的性质得到PA AC ⊥,由勾股定理求解PC 即可.【详解】连接AC ,在矩形ABCD 中,4=AD ,3CD =,则5AC ==,因为PA ⊥平面ABCD ,AC ⊂平面ABCD ,则PA AC ⊥,在Rt PAC △中,PA =6PC ===.故答案为:6.13.在正三棱柱111ABC A B C -中,12AB AA ==,则直线1AA 与1BC 所成角的大小为__________;点A 到平面11BB C C 的距离为________.【答案】①.π4②.【解析】【分析】分析可知直线1AA 与1BC 所成角为1B BC ∠(或其补角),即可得结果;做辅助线,可证AD ⊥平面11BB C C ,即可得点A 到平面11BB C C 的距离.【详解】因为1AA ∥1BB ,可知直线1AA 与1BC 所成角为1B BC ∠(或其补角),由题意可知:11BCC B 为正方形,则1π4B BC ∠=,所以直线1AA 与1BC 所成角的大小为π4;取BC 的中点D ,连接AD ,因为ABC V 为等边三角形,则AD BC ⊥,又因为1BB ⊥平面ABC ,AD ⊂平面ABC ,则1AD BB ⊥,且1BC BB B = ,1,BC BB ⊂平面11BB C C ,可得AD ⊥平面11BB C C ,所以点A 到平面11BB C C 的距离为AD =.故答案为:π414.在边长为4的正方形ABCD 内剪去四个全等的等腰三角形(如图1中阴影部分),的正四棱锥SEFGH (如图2),则正四棱锥SEFGH 的体积为________.【答案】43【解析】【分析】连结EG ,HF ,交点为O ,求出点E 到线段AB 的距离,利用勾股定理求出EB 和SO 的长度,最后利用棱锥体积公式求出体积即可.【详解】连结EG ,HF ,交点为O ,正方形EFGH 的对角线EG =2,EO =1,则点E 到线段AB 的距离为1,EB=.SO2,故正四棱锥SEFGH 的体积为13)2×2=43.故答案为:43【点睛】本题考查了棱锥体积公式,考查了数学运算能力,考查了空间想象能力.15.如图,正方体1111ABCD A B C D -的棱长为4,E 为BC 的中点,F 为线段1CC 上的动点,过点A ,E ,F的平面截该正方体所得截面记为S ,当3CF =时,截面S 与11A D ,11C D 分别交于M ,N ,则MN =_________.【答案】3【解析】【分析】由面面平行的性质可得截面与平面11ADD A 及平面1111D C B A 的交线,后由几何知识可得答案.【详解】由图,截面S 与平面11ADD A ,平面11BB C C 相交,因平面11ADD A //平面11BB C C ,则相应交线平行.则过A 作EF 的平行线,则平行线与11A D 交点即为M ,与1DD 延长线交于H .注意到AHD EFC ,则162EC FC HD AD HD ==⇒=,又14DD =,则12HD =.又注意到1MHD AHD ,则1111433HD MD MD HD AD ==⇒=.又截面S 与平面ABCD ,平面1111D C B A 相交,则同理过M 作AE 平行线,则平行线与11C D 交点即为N .注意到1AEB NMD ,则1113823EB AB ND MD ND ==⇒=.则根据勾股定理,3MN ==.故答案为:3.三、解答题:本大题共4小题,共45分.解答应写出文字说明,演算步骤或证明过程.16.已知正三棱锥P ABC -,请从条件①,条件②,条件③中选择两个条件作为已知,使得三棱锥存在,并求出此正三棱锥的体积.①底面边长为2 2.【答案】答案见解析【解析】【分析】根据题意分析可知:不能选②③.取ABC V 的中心O ,BC 的中点为M ,若选①②:求得3OP =,进而可得体积;若选①③:求得3OP =,进而可得体积.2<,可知②③不能同时成立,故不能选②③.取ABC V 的中心O ,BC 的中点为M ,连接,,PO PM AM ,则⊥PO 平面ABC ,,AM BC PM BC ⊥⊥,若选①②:则233OA AM ==,11222ABC S BC AM =⨯⨯=⨯= ,在Rt POA △中,则3OP ==,所以正三棱锥的体积为113333ABC V S OP =⋅==△;选①③:则133OM AM ==,2PM =,11222ABC S BC AM =⨯⨯=⨯= ,在Rt POM 中,则3OP ==,所以正三棱锥的体积为113333ABC V S OP =⋅== .17.如图,在棱长为2的正方体1111ABCD A B C D -中,点E ,F 分别是棱1BB ,1DD 的中点.求证:(1)BD ∥平面1C EF ;(2)⊥EF 平面11ACC A .【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)根据平面性质可得BD EF ∥,再根据线面平行的判定定理分析证明;(2)根据题意可得AC EF ⊥,1AA EF ⊥,结合线面垂直的判定定理分析证明.【小问1详解】因为E ,F 分别为1BB ,1DD 的中点,11BB DD =,11BB DD ∥,则BE DF ∥且BE DF =,可知四边形BDFE 为平行四边形,则BD EF ∥,且EF ⊂平面1C EF ,BD ⊄平面1C EF ,所以BD ∥平面1C EF .【小问2详解】因为四边形ABCD 为正方形,则BD AC ⊥,且EF BD ∥,则AC EF ⊥,又因为1AA ⊥平面ABCD ,BD ⊂平面ABCD ,则1AA BD ⊥.且EF BD ∥,则1AA EF ⊥,且1AC AA A =∩,1,AC AA ⊂平面11ACC A ,所以⊥EF 平面11ACC A .18.如图,四棱锥P ABCD -的底面是边长为2的菱形,且60ABC ∠=︒,侧面PAB 是正三角形,M 是PD 上一动点,N 是CD 的中点.(1)若PC ∥平面BMN ,求证:M 是PD 的中点;(2)若平面PAB ⊥平面ABCD ,求线段PC 的长;(3)是否存在点M 、使得PC BM ⊥?若存在,求出PM MD的值;若不存在,请说明理由.【答案】(1)证明见解析(2(3)存在,1【解析】【分析】(1)根据线面平行的性质可得MN PC ∥,再结合平行线的性质分析证明;(2)根据面面垂直的性质可得PF ⊥平面ABCD ,进而可得PF CF ⊥,即可得结果;(3)做辅助线,可证AB ⊥平面PCF ,PC ⊥平面ABE ,可得EM CD ,即可得结果.【小问1详解】若PC ∥平面BMN ,且PC ⊂平面PCD ,平面PCD 平面BMN MN =,可得MN PC ∥,在PCD △中,点N 是CD 中点,所以点M 是PD 中点.【小问2详解】如图,取AB 中点F ,连接PF ,CF .因为PAB 是正三角形,则PF AB ⊥,且平面PAB ⊥平面ABCD ,平面PAB ⋂平面ABCD AB =,PF⊂平面PAB ,可得PF ⊥平面ABCD ,由CF ⊂平面ABCD ,可得PF CF ⊥,在因为侧面PAB 是正三角形,则PF =因为底面ABCD 是菱形,且60ABC ∠=︒,可知ABC V 是等边三角形,则CF AB ⊥且CF =所以PC =【小问3详解】取PC 中点E ,连接BE ,AE .因为四棱锥P ABCD -的底面是菱形,侧面PAB 是正三角形,则PB AB BC ==,BE PC ⊥.由(2)可得PF AB ⊥,CF AB ⊥,且,PF CF ⊂平面PCF ,PF CF F = ,所以AB ⊥平面PCF ,由PC ⊂平面PCF ,可得AB PC ⊥.又因为AB BE B = ,AB 、BE 在平面ABE 内,所以PC ⊥平面ABE .过E 作EM CD 交PD 于点M .因为EM CD AB ∥∥,所以点M ∈平面ABEM .所以PC ⊥平面ABEM ,因为BM ⊂平面ABEM ,所以PC BM ⊥,因为E 为PC 的中点,EM CD ,所以PM MD =,即1PM MD=.19.已知定义在R 上的函数()f x ,()g x 满足以下三个条件:①()()()()()f x y f x f y g x g y -=-;②()()()()()g x y g x f y f x g y +=+;③存在集合{},a b (){}g x x ∈R .(1)判断函数()f x 的奇偶性,并说明现由;(2)求()0f ,()0g 的值;(3)判断命题p :“()g x 是周期函数”的真假,并说明理由.【答案】(1)()f x 为偶函数,理由见解析(2)()00g =,()01f =(3)假命题,理由见解析【解析】【分析】(1)根据题意结合偶函数的定义分析判断;(2)根据题意通过赋值令0x y ==,运算求解即可;(3)利用周期函数的定义,举反例说明即可.【小问1详解】由①可得,()()()()()()f y x f y f x g y g x f x y -=-=-,故()f x 为偶函数.【小问2详解】在②中令0x y ==可得,()()()()()()()00000200g g f f g g f =+=,可得()00g =或()102f =.在①中令y x =可得,()()()220f fx g x =-,若()102f =,则()()()2221100024f g f =-≤=矛盾,故()00g =,可得()()()()2220000f f g f =-=,即()00f =或1.若()00f =时,()()()()()(0)000g x g x g x f f x g =+=+=.此时(){}{}0g x x ∈=R 与③矛盾,故()01f =.【小问3详解】假命题,例如()e e 2x x f x -+=,()e e 2x xg x --=,则()()()()()e e e e e e e e 2222e e 2x x y y x x y y x y x yf x f yg x g y f x y ------+++--+-=⋅-⋅=-,即①成立;又因为()()()()()e e e e e e e e e 22222e x x y y x x y y x y x yg x f y f x g y g x y ----+---++--+=⋅+⋅=+,即②成立;又因为()00g =,()1e e 102g --=>,即③成立;但()g x 在R 上递增,可知()g x 不是周期函数.。
四川省成都市2024-2025学年高二上学期月考(一)数学试题含答案

高二上数学月考(一)(答案在最后)一、单项选择题:本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某高校对中文系新生进行体测,利用随机数表对650名学生进行抽样,先将650名学生进行编号,001,002,…,649,650.从中抽取50个样本,下图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第6个样本编号是()32211834297864540732524206443812234356773578905642 84421253313457860736253007328623457889072368960804 32567808436789535577348994837522535578324577892345A.623B.328C.072D.457【答案】A【解析】【分析】按照随机数表提供的数据,三位一组的读数,并取001到650内的数,重复的只取一次即可【详解】从第5行第6列开始向右读取数据,第一个数为253,第二个数是313,第三个数是457,下一个数是860,不符合要求,下一个数是736,不符合要求,下一个是253,重复,第四个是007,第五个是328,第六个数是623,,故A正确.故选:A.2.某校高一共有10个班,编号1至10,某项调查要从中抽取三个班作为样本,现用抽签法抽取样本,每次抽取一个号码,共抽3次,设五班第二次被抽到的可能性为b,则()A.19b= B.29b= C.310b= D.110b=【答案】D【解析】【分析】根据题意,在抽样过程中每个个体被抽到的概率相等即可求解.【详解】因为总体中共有10个个体,所以五班第一次没被抽到,第二次被抽到的可能性为91110910b=⨯=.故选:D.3.已知向量1,22AB ⎛⎫=- ⎪ ⎪⎝⎭,122BC ⎛⎫=- ⎪ ⎪⎝⎭,则ABC ∠=()A.30°B.150°C.60°D.120°【答案】B 【解析】【分析】根据向量夹角的坐标表示求出向量夹角,进而求解几何角.【详解】因为向量13,22AB ⎛⎫=- ⎪ ⎪⎝⎭ ,31,22BC ⎛⎫=- ⎪ ⎪⎝⎭,所以13312222cos ,2AB BC AB BC AB BC⎛⎫⎛⎫⨯+-⨯- ⎪ ⎪⋅==⋅,又0,180AB BC ≤≤,所以,30AB BC =,所以,18030150BA BC =-= ,所以150ABC ∠=o .故选:B.4.已知,a b 为两条不同的直线,,αβ为两个不同的平面,则下列说法错误的是()A.若//a b ,,b a αα⊂⊄,则//a αB.若,a b αα⊥⊥,则//a bC.若,,b a b αβαβ⊥⋂=⊥,则a β⊥D.若,a b 为异面直线,,a b αβ⊂⊂,//a β,//b α,则//αβ【答案】C 【解析】【分析】根据线面平行的判定定理判断A ,根据线面垂直的性质判断B ,当a α⊄时即可判断C ,根据异面直线的定义及线面平行的性质定理判断D.【详解】对于A :若//a b ,,b a αα⊂⊄,根据线面平行的判定定理可知//a α,故A 正确;对于B :若,a b αα⊥⊥,则//a b ,故B 正确;对于C :当a α⊂时,,,b a b αβαβ⊥⋂=⊥,由面面垂直的性质定理可得a β⊥,当a α⊄时,,,b a b αβαβ⊥⋂=⊥,则//a β或a β⊂或a 与β相交,故C 错误;对于D :因为a α⊂,//b α,所以存在b α'⊂使得//b b ',又b β⊂,b β'⊄,所以//b β',又//a β且,a b 为异面直线,所以平面α内的两直线b '、a 必相交,所以//αβ,故D 正确.故选:C5.下列说法正确的是()A.互斥的事件一定是对立事件,对立事件不一定是互斥事件B.若()()1P A P B +=,则事件A 与事件B 是对立事件C.从长度为1,3,5,7,9的5条线段中任取3条,则这三条线段能构成一个三角形的概率为25D.事件A 与事件B 中至少有一个发生的概率不一定比A 与B 中恰有一个发生的概率大【答案】D 【解析】【分析】根据互斥事件、对立事件和古典概型及其计算逐一判定即可.【详解】对于A ,由互斥事件和对立事件的关系可判断,对立事件一定是互斥事件,互斥事件不一定是对立事件,故A 错误;对于B ,由()()1P A P B +=,并不能得出A 与B 是对立事件,举例说明:现从a ,b ,c ,d 四个小球中选取一个小球,已知选中每个小球的概率是相同的,设事件A 表示选中a 球或b 球,则1()2P A =,事件B 表示选中b 球或c 球,则1()2P B =,所以()()1P A P B +=,但A ,B 不是对立事件,故B 错误;对于C ,该试验的样本空间可表示为:{(1,3,5),(1,3,7),(1,3,9),(1,5,7),(1,5,9),(1,7,9),(3,5,7),(3,5,9),(3,7,9)(5,7,9)}Ω=,共有10个样本点,其中能构成三角形的样本点有(3,5,7),(3,7,9),(5,7,9),共3个,故所求概率310P =,故C 错误;对于D ,若A ,B 是互斥事件,事件A ,B 中至少有一个发生的概率等于A ,B 中恰有一个发生的概率,故D 正确.故选:D.6.一组数据:53,57,45,61,79,49,x ,若这组数据的第80百分位数与第60百分位数的差为3,则x =().A.58或64B.58C.59或64D.59【答案】A 【解析】【分析】先对数据从小到大排序,分57x ≤,79x ≥,5779x <<三种情况,舍去不合要求的情况,列出方程,求出答案,【详解】将已知的6个数从小到大排序为45,49,53,57,61,79.若57x ≤,则这组数据的第80百分位数与第60百分位数分别为61和57,他们的差为4,不符合条件;若79x ≥,则这组数据的第80百分位数与第60百分位数分别为79和61,它们的差为18,不符合条件;若5779x <<,则这组数据的第80百分位数与第60百分位数分别为x 和61(或61和x ),则613x -=,解得58x =或64x =故选:A7.如图,四边形ABCD 为正方形,ED ⊥平面,,2ABCD FB ED AB ED FB ==∥,记三棱锥,,E ACD F ABC F ACE ---的体积分别为123,,V V V ,则()A.322V V =B.31V V =C.3123V V V =-D.3123V V =【答案】D 【解析】【分析】结合线面垂直的性质,确定相应三棱锥的高,求出123,,V V V 的值,结合选项,即可判断出答案.【详解】连接BD 交AC 于O ,连接,OE OF ,设22AB ED FB ===,由于ED ⊥平面,ABCD FB ED ∥,则FB ⊥平面ABCD ,则1211141112222,22133233323ACD ABC V S ED V S FB =⨯⨯=⨯⨯⨯⨯==⨯⨯=⨯⨯⨯⨯= ;ED ⊥平面,ABCD AC Ì平面ABCD ,故ED AC ⊥,又四边形ABCD 为正方形,则AC BD ⊥,而,,ED BD D ED BD =⊂ 平面BDEF ,故AC ⊥平面BDEF ,OF ⊂平面BDEF ,故AC OF ⊥,又ED ⊥平面ABCD ,FB ⊥平面ABCD ,BD ⊂平面ABCD ,故,ED BD FB BD ⊥⊥,222222,26,3,BD OD OB OE OD ED OF OB BF =∴===+==+=而()223EF BD ED FB =+-=,所以222EF OF OE +=,即得OE OF ⊥,而,,OE AC O OE AC =⊂ 平面ACE ,故OF ⊥平面ACE ,又22222AC AE CE ===+=,故(2231131323233434F ACE V V ACE S OF AC OF =-=⋅=⨯⋅=⨯= ,故323131231,2,,233V V V V V V V V V ≠≠≠-=,故ABC 错误,D 正确,故选:D8.已知平面向量a ,b ,e ,且1e = ,2a = .已知向量b 与e所成的角为60°,且b te b e -≥- 对任意实数t 恒成立,则12a e ab ++-的最小值为()A.31+ B.23C.35 D.25【答案】B【解析】【分析】b te b e -≥-对任意实数t 恒成立,两边平方,转化为二次函数的恒成立问题,用判别式来解,算出||2b =r ,借助2a =,得到122a e a e +=+ ,12a e a b ++- 的最小值转化为11222a e a b++- 的最小值,最后用绝对值的三角不等式来解即可【详解】根据题意,1cos 602b e b e b ⋅=⋅︒=,b te b e -≥- ,两边平方22222||2||2b t e tb e b e b e +-⋅≥+-⋅ ,整理得到210t b t b --+≥ ,对任意实数t 恒成立,则()2Δ||410b b =--+≤ ,解得2(2)0b -≤ ,则||2b =r .由于2a =,如上图,122a e a e +=+ ,则111112(2)()22222a e a b a e a b a e a b ++-=++-≥+--222843e b e b b e =+=++⋅12a e ab ++- 的最小值为23当且仅当12,,2e b a -终点在同一直线上时取等号.故选:B .二、多项选择题.本题共3个小题,每小题6分,共18分.在每个小题给出的选项中,有多项符合题目要求,部分选对的得部分,有选错的得0分.9.某保险公司为客户定制了5个险种:甲,一年期短期;乙,两全保险;丙,理财类保险;丁,定期寿险;戊,重大疾病保险.各种保险按相关约定进行参保与理赔.该保险公司对5个险种参保客户进行抽样调查,得到如图所示的统计图表.则()A.丁险种参保人数超过五成B.41岁以上参保人数超过总参保人数的五成C.18-29周岁人群参保的总费用最少D.人均参保费用不超过5000元【答案】ACD 【解析】【分析】根据统计图表逐个选项进行验证即可.【详解】由参保险种比例图可知,丁险种参保人数比例10.020.040.10.30.54----=,故A 正确;由参保人数比例图可知,41岁以上参保人数超过总参保人数的45%不到五成,B 错误;由不同年龄段人均参保费用图可知,1829~周岁人群人均参保费用最少()3000,4000,但是这类人所占比例为15%,54周岁以上参保人数最少比例为10%,54周岁以上人群人均参保费用6000,所以18-29周岁人群参保的总费用最少,故C 正确.由不同年龄段人均参保费用图可知,人均参保费用不超过5000元,故D 正确;故选:ACD .10.在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下:甲地:中位数为2,极差为5;乙地:总体平均数为2,众数为2;丙地:总体平均数为1,总体方差大于0;丁地:总体平均数为2,总体方差为3.则甲、乙、丙、丁四地中,一定没有发生大规模群体感染的有()A.甲地B.乙地C.丙地D.丁地【答案】AD 【解析】【分析】假设最多一天疑似病例超过7人,根据极差可判断AD ;根据平均数可算出10天疑似病例总人数,可判断BC .【详解】解:假设甲地最多一天疑似病例超过7人,甲地中位数为2,说明有一天疑似病例小于2,极差会超过5,∴甲地每天疑似病例不会超过7,∴选A .根据乙、丙两地疑似病例平均数可算出10天疑似病例总人数,可推断最多一天疑似病例可能超过7人,由此不能断定一定没有发生大规模群体感染,∴不选BC ;假设丁地最多一天疑似病例超过7人,丁地总体平均数为2,说明极差会超过3,∴丁地每天疑似病例不会超过7,∴选D .故选:AD .11.勒洛四面体是一个非常神奇的“四面体”,它能像球一样来回滚动.勒洛四面体是以正四面体的四个顶点为球心,以正四面体的棱长为半径的四个球的相交部分围成的几何体.如图所示,设正四面体ABCD 的棱长为2,则下列说法正确的是()A.勒洛四面体能够容纳的最大球的半径为22-B.勒洛四面体被平面ABC 截得的截面面积是(2π-C.勒洛四面体表面上交线AC 的长度为2π3D.勒洛四面体表面上任意两点间的距离可能大于2【答案】ABD 【解析】【分析】A 选项:求出正四面体ABCD 的外接球半径,进而得到勒洛四面体的内切球半径,得到答案;B 选项,作出截面图形,求出截面面积;C 选项,根据对称性得到交线AC 所在圆的圆心和半径,求出长度;D 选项,作出正四面体对棱中点连线,在C 选项的基础上求出长度.【详解】A 选项,先求解出正四面体ABCD 的外接球,如图所示:取CD 的中点G ,连接,BG AG ,过点A 作AF BG ⊥于点F ,则F 为等边ABC V 的中心,外接球球心为O ,连接OB ,则,OA OB 为外接球半径,设OA OB R ==,由正四面体的棱长为2,则1CG DG ==,BG AG ==133FG BG ==,233BF BG ==3AF ===,3OF AF R R =-=-,由勾股定理得:222OF BF OB +=,即22233R R ⎛⎫⎛-+= ⎪ ⎪ ⎪⎝⎭⎝⎭,解得:2R =,此时我们再次完整的抽取部分勒洛四面体,如图所示:图中取正四面体ABCD 中心为O ,连接BO 交平面ACD 于点E ,交 AD 于点F ,其中 AD 与ABD △共面,其中BO 即为正四面体外接球半径2R =,设勒洛四面体内切球半径为r ,则22r OF BF BO ==-=-,故A 正确;B 选项,勒洛四面体截面面积的最大值为经过正四面体某三个顶点的截面,如图所示:面积为(2221π333322222344⎛⎫⨯⨯⨯-⨯+⨯= ⎪ ⎪⎭⎝,B 正确;C 选项,由对称性可知:勒洛四面体表面上交线AC 所在圆的圆心为BD 的中点M ,故3MA MC ==2AC =,由余弦定理得:2221cos 23233AM MC AC AMC AM MC +-∠===⋅⨯⨯,故1arccos3AMC ∠=3AC 133,C 错误;D 选项,将正四面体对棱所在的弧中点连接,此时连线长度最大,如图所示:连接GH ,交AB 于中点S ,交CD 于中点T ,连接AT ,则22312ST AT AS =-=-=则由C 选项的分析知:3TG SH ==,所以323322GH =+=,故勒洛四面体表面上两点间的距离可能大于2,D 正确.故选:ABD.【点睛】结论点睛:勒洛四面体考试中经常考查,下面是一些它的性质:①勒洛四面体上两点间的最大距离比四面体的棱长大,是对棱弧中点连线,最大长度为232a a ⎫->⎪⎪⎭,②表面6个弧长之和不是6个圆心角为60︒的扇形弧长之和,其圆心角为1arccos 3,半径为32a .三、填空题:本题共3个小题,每小题5分,共15分.12.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为3:4:7,现在用分层抽样的方法抽出容量为n 的样本,样本中的A 型号产品有15件,那么样本容量n 为________.【答案】70【解析】【分析】利用分层抽样的定义得到方程,求出70n =.【详解】由题意得315347n=++,解得70n =.故答案为:7013.平面四边形ABCD 中,AB =AD =CD =1,BD =BD ⊥CD ,将其沿对角线BD 折成四面体A ′﹣BCD ,使平面A ′BD ⊥平面BCD ,若四面体A ′﹣BCD 顶点在同一个球面上,则该球的表面积_____.【答案】3π【解析】【分析】根据BD ⊥CD ,BA ⊥AC ,BC 的中点就是球心,求出球的半径,即可得到球的表面积.【详解】因为平面A′BD ⊥平面BCD ,BD ⊥CD ,所以CD ⊥平面ABD ,∴CD ⊥BA ,又BA ⊥AD ,∴BA ⊥面ADC ,所以BA ⊥AC ,所以△BCD 和△ABC 都是直角三角形,由题意,四面体A ﹣BCD 顶点在同一个球面上,所以BC 的中点就是球心,所以BC =2所以球的表面积为:242π⋅=3π.故答案为:3π.【点睛】本题主要考查面面垂直的性质定理和球的外接问题,还考查空间想象和运算求解的能力,属于中档题.14.若一组样本数据12,,n x x x 的平均数为10,另一组样本数据1224,24,,24n x x x +++ 的方差为8,则两组样本数据合并为一组样本数据后的方差是__________.【答案】54【解析】【分析】计算出1n ii x =∑、21nii x=∑的值,再利用平均数和方差公式可求得合并后的新数据的方差.【详解】由题意可知,数据12,n x x x 的平均数为10,所以12)101(n x x x x n =+++= ,则110ni i x n ==∑,所以数据1224,24,,24n x x x +++ 的平均数为121(242424)210424n x x x x n'=++++++=⨯+= ,方差为()(()222221111444[24241010n n n i i i i i i s x x x x n n n n n ===⎤⎡⎤=+-+=-=-⨯⨯⎦⎣⎦∑∑∑2144008n i i x n ==-=∑,所以21102nii xn ==∑,将两组数据合并后,得到新数据1212,24,24,,24,n n x x x x x x +++ ,,则其平均数为11114)4)11113]4)[(2(3(222n i nn n i i i i i i i x x x x x n n n ====''=+=⨯+=⨯++∑∑∑∑()13104172=⨯⨯+=,方差为()()2222111111172417(586458)22n n n ni i i i i i i i s x x x x n n n ====⎡⎤=-++-=-+⎢⎥⎣⎦'∑∑∑∑1(51028610458)542n n n n=⨯-⨯+=.故答案为:54.四、解答题:本题共5个小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.袋中有形状、大小都相同的4个小球,标号分别为1,2,3,4.(1)从袋中一次随机摸出2个球,求标号和为奇数的概率;(2)从袋中每次摸出一球,有放回地摸两次.甲、乙约定:若摸出的两个球标号和为奇数,则甲胜,反之,则乙胜.你认为此游戏是否公平?说明你的理由.【答案】(1)23(2)是公平的,理由见解析【解析】【分析】(1)利用列举法写出样本空间及事件的样本点,结合古典概型的计算公式即可求解;(2)利用列举法写出样本空间及事件的样本点,结合古典概型的计算公式及概率进行比较即可求解.【小问1详解】试验的样本空间{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}Ω=,共6个样本点,设标号和为奇数为事件B ,则B 包含的样本点为(1,2),(1,4),(2,3),(3,4),共4个,所以42().63P B ==【小问2详解】试验的样本空间Ω{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}=,共有16个,设标号和为奇数为事件C ,事件C 包含的样本点为(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3),共8个,故所求概率为81()162P C ==,即甲胜的概率为12,则乙胜的概率为12,所以甲、乙获胜的概率是公平的.16.(1)请利用已经学过的方差公式:()2211ni i s x xn ==-∑来证明方差第二公式22211n i i s x x n ==-∑;(2)如果事件A 与B 相互独立,那么A 与B 相互独立吗?请给予证明.【答案】(1)证明见解析;(2)独立,证明见解析【解析】【分析】(1)根据题意,对方差公式恒等变形,分析可得结论;(2)根据相互独立事件的定义,只需证明()()()P AB P A P B =即可.【详解】(1)()()()()2222212111n i n i s x xx x x x x x n n =⎡⎤=-=-+-++-⎢⎥⎣⎦∑ ()()2222121212n n x x x x x x x nx n ⎡⎤=+++-+++⎢⎥⎣⎦ ()22221212n x x x x nx nx n ⎡⎤=+++-⨯+⎢⎥⎣⎦ ()222121n x x x nx n ⎡⎤=+++-⎢⎥⎣⎦ 2211n i i x x n ==-∑;(2)因为事件A 与B 相互独立,所以()()()P AB P A P B =,因为()()()P AB P AB P A +=,所以()()()()()()P AB P A P AB P A P A P B =-=-()()()()()1P A P B P A P B =-=,所以事件A 与B 相互独立.17.如图,四棱锥P ABCD -的侧面PAD 是边长为2的正三角形,底面ABCD 为矩形,且平面PAD ⊥平面ABCD ,M ,N 分别为AB ,AD 的中点,二面角D PN C --的正切值为2.(1)求四棱锥P ABCD -的体积;(2)证明:DM PC⊥(3)求直线PM 与平面PNC 所成角的正弦值.【答案】(1)3(2)证明见解析(3)35【解析】【分析】(1)先证明DNC ∠为二面角D PN C --的平面角,可得底面ABCD 为正方形,利用锥体的体积公式计算即可;(2)利用线面垂直的判定定理证明DM ⊥平面PNC ,即可证明DM PC ⊥;(3)由DM⊥平面PNC 可得MPO ∠为直线PM 与平面PNC 所成的角,计算其正弦值即可.【小问1详解】解:∵PAD △是边长为2的正三角形,N 为AD 中点,∴PN AD ^,PN =又∵平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =∴PN ^平面ABCD又NC ⊂平面ABCD ,∴PN NC ⊥∴DNC ∠为二面角D PN C --的平面角,∴tan 2DC DNC DN∠==又1DN =,∴2DC =∴底面ABCD 为正方形.∴四棱P ABCD -的体积12233V =⨯⨯=.【小问2详解】证明:由(1)知,PN ^平面ABCD ,DM ⊂平面ABCD ,∴PN DM⊥在正方形ABCD 中,易知DAM CDN ≌△△∴ADM DCN ∠=∠而90ADM MDC ∠+∠=︒,∴90DCN MDC ∠+∠=︒∴DM CN ⊥∵PN CN N = ,∴DM ⊥平面PNC∵PC ⊂平面PNC ,∴DM PC ⊥.【小问3详解】设DM CN O ⋂=,连接PO ,MN .∵DM⊥平面PNC .∴MPO ∠为直线PM 与平面PNC 所成的角∵2,1AD AM ==,∴DM =5DO ==∴55MO ==又MN =PM ==∴35sin 5MO MPO PM ∠===∴直线PM 与平面PNC 所成角的正弦值为35.18.某市根据居民的月用电量实行三档阶梯电价,为了深入了解该市第二档居民用户的用电情况,该市统计局用比例分配的分层随机抽样方法,从该市所辖A ,B ,C 三个区域的第二档居民用户中按2:2:1的比例分配抽取了100户后,统计其去年一年的月均用电量(单位:kW h ⋅),进行适当分组后(每组为左闭右开的区间),频率分布直方图如下图所示.(1)求m 的值;(2)若去年小明家的月均用电量为234kW h ⋅,小明估计自己家的月均用电量超出了该市第二档用户中85%的用户,请判断小明的估计是否正确?(3)通过进一步计算抽样的样本数据,得到A 区样本数据的均值为213,方差为24.2;B 区样本数据的均值为223,方差为12.3;C 区样本数据的均值为233,方差为38.5,试估计该市去年第二档居民用户月均用电量的方差.(需先推导总样本方差计算公式,再利用数据计算)【答案】(1)0.016m =(2)不正确(3)78.26【解析】【分析】(1)利用频率和为1列式即可得解;(2)求出85%分位数后判断即可;(3)利用方差公式推导总样本方差计算公式,从而得解.【小问1详解】根据频率和为1,可知()0.0090.0220.0250.028101m ++++⨯=,可得0.016m =.【小问2详解】由题意,需要确定月均用电量的85%分位数,因为()0.0280.0220.025100.75++⨯=,()0.0280.0220.0250.016100.91+++⨯=,所以85%分位数位于[)230,240内,从而85%分位数为0.850.7523010236.252340.910.75-+⨯=>-.所以小明的估计不正确.【小问3详解】由题意,A 区的样本数为1000.440⨯=,样本记为1x ,2x ,L ,40x ,平均数记为x ;B 区的样本数1000.440⨯=,样本记为1y ,2y ,L ,40y ,平均数记为y ;C 区样本数为1000.220⨯=,样本记为1z ,2z ,L ,20z ,平均数记为z .记抽取的样本均值为ω,0.42130.42230.2233221ω=⨯+⨯+⨯=.设该市第二档用户的月均用电量方差为2s ,则根据方差定义,总体样本方差为()()()40402022221111100i j k i i i s x y z ωωω===⎡⎤=-+-+-⎢⎥⎣⎦∑∑∑()()()4040202221111100i j k i i i x x x y y y z z z ωωω===⎡⎤=-+-+-+-+-+-⎢⎥⎣⎦∑∑∑因为()4010ii x x =-=∑,所以()()()()404011220iii i x x x x x x ωω==--=--=∑∑,同理()()()()404011220jji i yyy y yy ωω==--=--=∑∑,()()()()202011220kki i zz z z zz ωω==--=--=∑∑,因此()()()()4040404022222111111100100i j i i i i s x x x y y y ωω====⎡⎤⎡⎤=-+-+-+-⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑∑()()202022111100k i i z z z ω==⎡⎤+-+-⎢⎥⎣⎦∑∑,代入数据得()()222114024.2402132214012.340223221100100s ⎡⎤⎡⎤⎣⎦⎦=⨯+⨯-+⨯-⎣+⨯()212038.32023322178.26100⎡⎤+⨯+⨯-=⎣⎦.19.在世界杯小组赛阶段,每个小组内的四支球队进行循环比赛,共打6场,每场比赛中,胜、平、负分别积3,1,0分.每个小组积分的前两名球队出线,进入淘汰赛.若出现积分相同的情况,则需要通过净胜球数等规则决出前两名,每个小组前两名球队出线,进入淘汰赛.假定积分相同的球队,通过净胜球数等规则出线的概率相同(例如:若B ,C ,D 三支积分相同的球队同时争夺第二名,则每个球队夺得第二名的概率相同).已知某小组内的A ,B ,C ,D 四支球队实力相当,且每支球队在每场比赛中胜、平、负的概率都是13,每场比赛的结果相互独立.(1)求A 球队在小组赛的3场比赛中只积3分的概率;(2)已知在已结束的小组赛的3场比赛中,A 球队胜2场,负1场,求A 球队最终小组出线的概率.【答案】(1)427(2)7981【解析】【分析】(1)分类讨论只积3分的可能情况,结合独立事件概率乘法公式运算求解;(2)由题意,若A 球队参与的3场比赛中胜2场,负1场,根据获胜的三队通过净胜球数等规则决出前两名,分情况讨论结合独立事件概率乘法公式运算求解.【小问1详解】A 球队在小组赛的3场比赛中只积3分,有两种情况.第一种情况:A 球队在3场比赛中都是平局,其概率为111133327⨯⨯=.第二种情况:A球队在3场比赛中胜1场,负2场,其概率为11113 3339⨯⨯⨯=.故所求概率为114 27927+=.【小问2详解】不妨假设A球队参与的3场比赛的结果为A与B比赛,B胜;A与C比赛,A胜;A与D比赛,A胜.此情况下,A积6分,B积3分,C,D各积0分.在剩下的3场比赛中:若C与D比赛平局,则C,D每队最多只能加4分,此时C,D的积分都低于A的积分,A可以出线;若B与C比赛平局,后面2场比赛的结果无论如何,都有两队的积分低于A,A可以出线;若B与D比赛平局,同理可得A可以出线.故当剩下的3场比赛中有平局时,A一定可以出线.若剩下的3场比赛中没有平局,则当B,C,D各赢1场比赛时,A可以出线.当B,C,D中有一支队伍胜2场时,若C胜2场,B胜1场,A,B,C争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=;若D胜2场,B胜1场,A,B,D争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=.其他情况A均可以出线.综上,A球队最终小组出线的概率为1179 1818181⎛⎫-+=⎪⎝⎭.【点睛】关键点点睛:解题的关键在于分类讨论获胜的三队通过净胜球数等规则决出前两名,讨论要恰当划分,做到不重不漏,从而即可顺利得解.。
四川省南充2024-2025学年高二上学期10月月考数学试题含答案

南充高中高2023级上期第一次月考数学试卷(答案在最后)考试时间:120分钟满分:150分注意事项:1.答题前,务必将自己的姓名、班级、考号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,将答案书写在答题卡相应位置上,写在本试卷上无效.4.考试结束后将答题卡交回.一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的4个选项中,只有一项是符合题目要求的)1.“2sin 2θ=”是“π4θ=”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【答案】C 【解析】【分析】判断“sin 2θ=”和“π4θ=”之间的逻辑推理关系,即可得答案.【详解】当2sin 2θ=时,π2π,Z 4k k θ=+∈或3π2π,Z 4k k θ=+∈,推不出π4θ=;当π4θ=时,必有2sin 2θ=,故“sin 2θ=”是“π4θ=”的必要不充分条件,故选:C2.设l ,m 是两条不同的直线,α,β,γ是三个不同的平面,下列说法正确的是()A.若//l α,//m α,则//l mB.若//l α,//l β,则//αβC.若l α⊥,m α⊥,则//l mD.若αγ⊥,βγ⊥,则//αβ【答案】C【分析】根据直线与直线的位置关系、直线与平面的位置关系和平面与平面的位置关系依次判断选项即可.【详解】对选项A ,若//l α,//m α,则l 与m 的位置关系是平行,相交和异面,故A 错误.对选项B ,若//l α,//l β,则α与β的位置关系是平行和相交,故B 错误.对选项C ,若l α⊥,m α⊥,则根据线面垂直的性质得l 与m 的位置关系是平行,故C 正确.对选项D ,若αγ⊥,βγ⊥,则α与β的位置关系是平行和相交,故D 错误.故选:C3.若sin 2αα-+=,则tan(π)α-=()A. B.C.3D.3-【答案】C 【解析】【分析】由sin 2αα-+=两边同时平方,从而利用sin tan cos =aa a可以实现角α的弦切互化,【详解】由sin 2αα-+=两边同时平方,可得22sin cos 3cos 4αααα-+=,∴222222sin cos 3cos tan 34sin cos tan 1ααααααααα-+-+==++,解得tan 3α=-.()tan tan 3παα∴-=-=.故选:C.4.如图,在正方体1111ABCD A B C D -中,,M N 分别为11,DB A C 的中点,则直线1A M 和BN 夹角的余弦值为()A.23B.33C.23D.13【解析】【分析】以1,,DA DC DD 所在直线为,,x y z 轴,建立空间直角坐标系,根据向量夹角的余弦公式求解即可.【详解】分别以1,,DA DC DD 所在直线为,,x y z轴,建立如图所示空间直角坐标系,设正方体1111ABCD A B C D -的棱长为2,则()1(2,0,2),(1,1,0),(2,2,0),1,1,2A M B N ,所以()1(1,1,2),1,1,2MA BN =-=--设向量1MA 与BN的夹角为θ,则1142cos 63MA BN MA BNθ⋅===⋅,所以直线1A M 和BN 夹角的余弦值为23,故选:C .5.在三棱锥S ABC -中,()()20SC SA BS SC SA ++⋅-=,则ABC V 是()A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形【答案】C 【解析】【分析】由向量的线性运算得到2,SC SA BS BC BA SC SA BC BA ++=+-=- ,从而说明22BC BA = ,即可求解.【详解】()()22,SC SA BS SC SA SB SC SB SA SB BC BA SC SA AC BC BA ++=+-=-+-=+-==- ,()()()()2220SC SA SB SC SA BC BA BC BA BC BA ∴+-⋅-=+⋅-=-= ,BC BA ∴=,即BC BA =,所以ABC V 是等腰三角形.故选:C6.杭州亚运会的三个吉祥物分别取名“琮琮”“宸宸”“莲莲”,如图,现将三张分别印有“琮踪”“宸宸”“莲莲”图案的卡片(卡片的形状、大小和质地完全相同)放入盒子中.若从盒子中依次有放回地取出两张卡片,则一张为“琮琮”,一张为“宸宸”的概率是()A.38B.29C.59D.34【答案】B 【解析】【分析】记印有“琮琮”“宸宸”“莲莲”图案的卡片分别为,,A B C ,用列举法即可求解.【详解】记印有“琮琮”“宸宸”“莲莲”图案的卡片分别为,,A B C ,(),x y 代表依次摸出的卡片,{},,,x y A B C ∈,则基本事件分别为:()()()()()()()()(),,,,,,,,,,,,,,,,,A A A B A C B A B B B C C A C B C C ,其中一张为“琮琮”,一张为“宸宸”的共有两种情况:()(),,,A B B A ,所以从盒子中依次有放回地取出两张卡片,则一张为“琮琮”,一张为“宸宸”的概率是29.故选:B.7.已知函数()3f x x =,若正实数a ,b 满足()()490f a f b +-=,则11a b+的最小值为()A.1B.3C.6D.9【答案】A 【解析】【分析】根据函数的奇偶性可得49a b +=,再结合基本不等式“1”的代换可得解.【详解】由已知()3f x x =,定义域为R ,且()()()33f x x x f x -=-=-=-,则()f x 是R 上的奇函数,且函数()3f x x =在R 上单调递增,又()()490f a f b +-=,即()()()499f a f b f b =--=-,则49a b =-,即49a b +=,且0a >,0b >,所以()1111114144415999a b a b a b a b a b b a b a ⎛⎫⎛⎫⎛⎫+=++=+++=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭又44a b b a +≥=,即()11141554199a b a b b a ⎛⎫+=++≥+= ⎪⎝⎭,当且仅当4a b b a =,即32a =,3b =时,等号成立,即11a b+的最小值为1.故选:A.8.已知正三棱锥P ABC -的六条棱长均为6,S 是ABC V 及其内部的点构成的集合.设集合{}5T Q S PQ =∈=,则集合T 所表示的曲线长度为()A.5πB.2πC.3D.π【答案】B 【解析】【分析】求出以P 为球心,5为半径的球与底面ABC 的截面圆的半径后即可求解.【详解】设顶点P 在底面上的投影为O ,连接BO ,则O 为三角形ABC 的中心,且23632BO =⨯⨯=,故PO ==因为5PQ =,故1OQ =,故S 的轨迹为以O 为圆心,1为半径的圆,集合T 所表示的曲线长度为2π故选:B二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的4个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部份分分,有选错的得0分.)9.函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则()A.2ω=B.π6ϕ=C.()f x 的图象关于点π,012⎛⎫⎪⎝⎭对称D.()f x 在区间5ππ,4⎛⎫⎪⎝⎭上单调递增【答案】ACD 【解析】【分析】根据三角函数的图象,先求得ω,然后求得ϕ,根据三角函数的对称性、单调性确定正确答案.【详解】()()5ππ2ππ,π,2,sin 22632T T f x x ωϕω=-=∴==∴==+,π2sin π133f ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,由于πππ2π7π,22636ϕϕ-<<<+<,所以2πππ,326ϕϕ+==-,所以A 选项正确,B 选项错误.()ππππsin 2,2π,,66122k f x x x k x k ⎛⎫=--==+∈ ⎪⎝⎭Z ,当0k =时,得π12x =,所以()f x 关于π,012⎛⎫⎪⎝⎭对称,C 选项正确,11111πππππ2π22π,ππ,26263k x k k x k k -+<-<+-+<<+∈Z ,当11k =时,得()f x 在54π,π63⎛⎫ ⎪⎝⎭上递增,则()f x 在区间5ππ,4⎛⎫⎪⎝⎭上单调递增,所以D 选项正确.故选:ACD10.对于随机事件A 和事件B ,()0.3P A =,()0.4P B =,则下列说法正确的是()A.若A 与B 互斥,则()0.3P AB =B.若A 与B 互斥,则()0.7P A B ⋃=C.若A 与B 相互独立,则()0.12P AB =D.若A 与B 相互独立,则()0.7P A B ⋃=【答案】BC 【解析】【分析】根据互斥事件、相互独立事件的概率公式计算可得.【详解】对于A :若A 与B 互斥,则()0P AB =,故A 错误;对于B :若A 与B 互斥,则()()()0.7P A B P A P B =+= ,故B 正确;对于C :若A 与B 相互独立,则()()()0.12P AB P A P B ==,故C 正确;对于D :若A 与B 相互独立,则()()()()0.30.40.30.40.58P A B P A P B P AB ⋃=+-=+-⨯=,故D 错误.故选:BC11.如图,边长为1的正方形ABCD 所在平面与正方形ABEF 在平面互相垂直,动点,M N 分别在正方形对角线AC 和BF 上移动,且(0CM BN a a ==<<,则下列结论中正确的有()A.(a ∃∈,使12MN CE=B.线段MN 存在最小值,最小值为23C.直线MN 与平面ABEF 所成的角恒为45°D.(a ∀∈,都存在过MN 且与平面BEC 平行的平面【分析】利用向量的线性运算可得()1MN a BC aBE =-+,结合向量的模的计算可判断B 的正误,结合向量夹角的计算可判断C 的正误,结合共面向量可判断D 的正误.【详解】因为四边形ABCD 正方形,故CB AB ⊥,而平面ABCD ⊥平面ABEF ,平面ABCD 平面ABEF AB =,CB ⊂平面ABCD ,故CB ⊥平面ABEF ,而BE ⊂平面ABEF ,故CB BE ⊥.设MC AC λ=,则= BN BF λ,其中()0,1λ=,由题设可得MN MC CB BN AC CB BF λλ=++=++,()()()1BC BA CB BA BE BC BE λλλλ=-+++=-+,对于A ,当12λ=即2a =时,111222MN BC BE CE =-+= ,故A 正确;对于B ,()22222111221222MN λλλλλ⎛⎫=-+=-+=-+ ⎪⎝⎭ ,故22MN ≥,当且仅当12λ=即2a =时等号成立,故min 22MN =,故B 错误;对于C ,由B 的分析可得()1MN BC BE λλ=-+,而平面ABEF 的法向量为BC 且()211MN BC BC λλ⋅=-=-,故cos ,MN BC =,此值不是常数,故直线MN 与平面ABEF 所成的角不恒为定值,故C 错误;对于D ,由B 的分析可得()1MN BC BE λλ=-+ ,故,,MN BC BE为共面向量,而MN ⊄平面BCE ,故//MN 平面BCE ,故D 正确;故选:AD三、填空题(本题共3小题,每小题5分,共15分.)12.复数2i12iz +=-的共轭复数z =______.【分析】根据复数的除法运算及共轭复数的概念可求解.【详解】因为2i 12i z +=-()()()()2i 12i 12i 12i ++=-+5i i 5==,所以z =i -.故答案为:i-13.已知向量()2,1,1a =- ,()1,,1b x = ,()1,2,1c =-- ,当a b ⊥ 时,向量b 在向量c上的投影向量为________.(用坐标表示)【答案】()1,2,1-【解析】【分析】先根据向量垂直得到方程,求出3x =,再利用投影向量公式求出答案.【详解】因为a b ⊥ ,所以210a b x ⋅=-+=,所以3x =.因为()1,3,1b = ,所以b 在c 上的投影向量为()1,2,1||||b c cc c c ⋅⋅=-=-.故答案为:()1,2,1-14.已知在ABC V 中,满足)34AB AC AB ACAB AC AB AC++=+,点M 为线段AB 上的一个动点,若MA MC ⋅ 取最小值3-时,则BC 边的中线长为______.【答案】1112【解析】【分析】设)34,,AB AC AB AC AD AN AE ABAC AB AC+===+,根据题意可推得||3,||4AD AN == ,2π3ADE ∠=,进一步根据MA MC ⋅ 取最小值3-时,求得对应的AC =AB =,由此即可得解.【详解】设)34,,AB AC AB AC AD AN AE ABAC AB AC+===+,则//,//AD EN AN DE ,四边形ADEN为平行四边形,||||3||3,||4,||4||||AB AD AD AN AE AC AN =====,22343712πcos 23423ADE ADE +-∴∠==-⇒∠=⨯⨯,又四边形ADEN 为平行四边形,3πBAC ∴∠=,设,,0,0MA AD AC AN λμλμ==≤≥,()()296MA MC MA MA AC AD AD AN λλμλλμ⋅=⋅+=⋅+=+,由题意2963λλμ+≥-即29630λλμ++≥恒成立,且存在,R λμ∈使得29630λλμ++=成立,其次29630λλμ++=当且仅当2296303Δ361080λλλμμμ⎧⎧=-++=⎪⇔⎨⎨=-=⎩⎪=⎩,此时AC ==AB ==所以BC边的中线长为122AB AC +===.故答案为:2.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.如图,四边形ABCD 为矩形,且2AD =,1AB =,PA ⊥平面ABCD ,1PA =,E 为BC 的中点.(1)求证:PE DE ⊥;(2)求四棱锥P ABCD -的外接球体积.【答案】(1)证明见解析(2【解析】【分析】(1)连接AE ,由线面垂直得到PA DE ⊥,再由线面垂直的判定定理得到DE ⊥平面PAE ,即可证明;(2)由底面为矩形利用长方体的性质可得四棱锥外接球的半径,再由体积公式计算体积.【小问1详解】连结,AE E 为BC 的中点,1EC CD ==,∴DCE △为等腰直角三角形,则45DEC ∠=︒,同理可得45AEB ∠=︒,∴90AED ∠=︒,∴DE AE ⊥,又PA ⊥平面ABCD ,且DE ⊂平面ABCD ,∴PA DE ⊥,又∵AE PA A = ,,AE PA ⊂平面PAE ,∴DE ⊥平面PAE ,又PE ⊂平面PAE ,∴DE PE ⊥.【小问2详解】∵PA ⊥平面ABCD ,且四边形ABCD 为矩形,∴P ABCD -的外接球直径2R =∴2R =,故:3344ππ332V R ⎛⎫=== ⎪ ⎪⎝⎭,∴四棱锥P ABCD -.16.ABC V 的内角,,A B C 的对边分别为,,a b c ,已知cos cos a B b A b c -=+.(1)求角A 的值;(2)若a ABC = ,求,b c .【答案】(1)2π3(2)2,2【解析】【分析】(1)由正弦定理及三角恒等变换化简即可得解;(2)由三角形面积公式及余弦定理求解即可.【小问1详解】cos cos a B b A b c -=+ ,由正弦定理可得:sin cos sin cos sin sin A B B A B C -=+,sin sin()sin cos cos sin C A B A B A B =+=+ ,sin cos sin cos sin sin cos cos sin A B B A B A B A B ∴-=++,即2sin cos sin B A B -=,sin 0B ≠ ,1cos 2A ∴=-,(0,π)A ∈ ,2π3A ∴=.【小问2详解】由题意,1sin 24ABC S bc A bc ===△,所以4bc =,由222222cos a b c bc A b c bc =+-=++,得()2216b c a bc +=+=,所以4b c +=,解得:2b c ==.17.全国执业医师证考试分实践技能考试与医学综合笔试两部分,每部分考试成绩只记“合格”与“不合格”,两部分考试都“合格”者,则执业医师考试“合格”,并颁发执业医师证书.甲、乙、丙三人在医学综合笔试中“合格”的概率依次为45,34,23,在实践技能考试中“合格”的概率依次为12,23,23,所有考试是否合格互不影响.(1)求甲没有获得执业医师证书的概率;(2)这三人进行实践技能考试与医学综合理论考试两项考试后,求恰有两人获得执业医师证书的概率.【答案】(1)35(2)13【解析】【分析】(1)先根据对立事件的概率公式结合独立事件概率乘积公式计算;(2)先应用对立事件的概率公式及独立事件概率乘积公式应用互斥事件求和计算;【小问1详解】记甲,乙,丙三人在医学综合笔试中合格依次为事件1A ,1B ,1C ,在实践考试中合格依次为2A ,2B ,2C ,设甲没有获得执业医师证书的概率为P124131()1525P P A A =-=-⨯=.【小问2详解】甲、乙、丙获得执业医师证书依次为12A A ,12B B ,12C C ,并且1A 与2A ,1B 与2B ,1C 与2C 相互独立,则()12412525P A A =⨯=,()12321432P B B =⨯=,()12224339P C C =⨯=,由于事件12A A ,12B B ,12C C 彼此相互独立,“恰有两人获得执业医师证书”即为事件:()()()()()()()()()121212121212121212A A B B C C A A B B C C A A B B C C ++,概率为212142141(1)(1)(1)52952952934P =⨯⨯-+⨯-⨯+-⨯⨯=.18.为深入学习贯彻习近平总书记关于禁毒工作重要指示精神,切实落实国家禁毒委员会《关于加强新时代全民禁毒宣传教育工作的指导意见》,巩固青少年毒品预防教育成果,大力推进防范青少年滥用涉麻精药品等成瘾性物质宣传教育活动,进一步增强青少年学生识毒防毒拒毒意识和能力,某市每年定期组织同学们进行禁毒知识竞赛活动,为了解同学们对禁毒知识的掌握情况,现从所有答卷中随机抽取100份作为样本,将样本的成绩(满分100分,成绩均为不低于40分的整数)分成六段:40,50,50,60,…,90,100得到如图所示的频率分布直方图.(1)求频率分布直方图中a 的值;(2)求样本成绩的第75百分位数;(3)已知落在50,60的平均成绩是56,方差是7,落在60,70的平均成绩为65,方差是4,求两组成绩的总平均数z 和总方差2s .【答案】(1)0.030(2)84(3)平均数为62;方差为23【解析】【分析】(1)根据频率之和为1即可求解,(2)根据百分位数的计算公式即可求解,(3)根据平均数的计算公式可求得两组成绩的总平均数;再由样本方差计算总体方差公式可求得两组成绩的总方差,即可求解.【小问1详解】由每组小矩形的面积之和为1得,0.050.10.2100.250.11a +++++=,解得0.030a =.【小问2详解】成绩落在[)40,80内的频率为0.050.10.20.30.65+++=,落在[)40,90内的频率为0.050.10.20.30.250.9++++=,显然第75百分位数[)80,90m ∈,由()0.65800.0250.75m +-⨯=,解得84m =,所以第75百分位数为84;【小问3详解】由频率分布直方图知,成绩在[)50,60的市民人数为1000.110⨯=,成绩在[)60,70的市民人数为1000.220⨯=,所以10562065621020z ⨯+⨯==+;由样本方差计算总体方差公式,得总方差为()(){}222110756622046562231020s ⎡⎤⎡⎤=+-++-=⎣⎦⎣⎦+.19.如图,三棱柱111ABC A B C -中,2AB =,且ABC V 与1ABA △均为等腰直角三角形,1π2ACB AA B ∠=∠=.(1)若1A BC 为等边三角形,证明:平面1AAB ⊥平面ABC ;(2)若二面角1A AB C --的平面角为π3,求以下各值:①求点1B 到平面1A CB 的距离;②求平面11B A C 与平面1A CB 所成角的余弦值.【答案】(1)证明见解析(2)①2217,②277【解析】【分析】(1)根据等腰直角三角形及等边三角形的性质可得各边长,再根据勾股定理证明线线垂直,根据线线垂直可证线面垂直,进而可证面面垂直;(2)根据二面角的定义可值1CEA 为等边三角形,①利用等体积转化法可得点到平面距离;②根据二面角的定义可得两平面夹角.【小问1详解】设AB 的中点为E ,连接CE ,1A E ,如图所示,因为ABC V 与1ABA △均为等腰直角三角形,1π2ACB A AB ∠=∠=,故1cos 452BC A B AB ==⋅︒=CE AB ⊥,且112CE AB ==,1112A E AB ==,因为1A BC 为等边三角形,故12==AC BC ,故22211A C CE A E =+,即1CE A E ⊥,又AB ,1A E ⊂平面1AA B ,1A E AB E ⋂=,故CE ⊥平面1AA B ,且CE ⊂平面ABC ,故平面1AA B ⊥平面ABC ;【小问2详解】①由(1)知,CE AB ⊥,1A E AB ⊥,且平面1AA B ⋂平面ABC AB =,故1CEA ∠即二面角1A AB C --的平面角,即1π3CEA ∠=,故1CEA 为等边三角形,则111CA CE A E ===,因为CE AB ⊥,1A E AB ⊥,1A E CE E ⋂=,且CE ,1A E ⊂平面1CEA ,所以AB ⊥平面1CEA ,设线段1A E 中点为F ,则1CF A E ⊥,AB CF ⊥,又AB ,1A E ⊂平面11ABB A ,1AB A E E = ,CF ∴⊥平面11ABB A ,又在三角形1CEA中易知:2CF =,∴11111112133226C A BB A BB V CF S -=⋅=⨯⨯⨯⨯= ,又在三角形1A BC 中,由11AC =,1BC A B ==则22211113cos 24BC A B A CA BC BC AB +-∠==⋅,1sin 4A BC ∠=,则11117sin 24A BC S AB BC A BC =⋅⋅∠= ,设点1B 到平面1A CB 的距离为d ,又由1111113C A BB B A BC A BC V V S d --==⋅⋅△,可得7d =,即求点1B 到平面1A CB 的距离为2217;②由①知,AB ⊥平面1CEA ,而11//AB A B ,故11A B ⊥平面1CEA ,且1A C ⊂平面1CEA ,故111A B AC ⊥,则2211115B C A B AC =+=,设1AC 和1B C 的中点分别为M ,N ,连接MN ,BN ,BM,则11//MN A B ,11112MN A B ==,1MN AC ⊥,又因为12BC A B ==1BM A C ⊥,且MN ⊂平面11A B C ,BM ⊂平面1A BC ,故BMN ∠即二面角11B A C B --的平面角,且222211722BM BC CM BC A C ⎛⎫=-=-= ⎪⎝⎭,因为112BB AA BC ===,故1BN B C ⊥,则222211322BN BC CN BC B C ⎛⎫=-=-= ⎪⎝⎭,所以222731744cos 277212BM MN BN BMN BM MN +-+-∠==⋅⨯⨯,故平面11B A C 与平面1A CB 所成角的余弦值为277.。
2024-2025学年吉林省长春市高二上学期第一次月考数学检测试题(含解析)

2024-2025学年吉林省长春市高二上学期第一次月考数学检测试题一、单选题(本大题共8小题)1.在空间直角坐标系中,已知点,点则( )Oxyz ()1,3,5P ()1,3,5Q --A .点和点关于轴对称B .点和点关于轴对称P Q x P Q y C .点和点关于轴对称D .点和点关于原点中心对称P Q z P Q 2.向量,若,则( )()()2,1,3,1,2,9a x b y ==- a ∥b A .B .1x y ==11,22x y ==-C .D .13,62x y ==-12,63x y =-=3.直三棱柱中,若,则( )111ABC A B C -1,,CA a CB b CC c === 1A B =A .B .a b c +-r r ra b c -+r r rC .D .a b c -++ a b c -+- 4.下列可使非零向量构成空间的一组基底的条件是( ),,a b c A .两两垂直B .,,a b c b cλ= C .D .a mb nc =+a b c ++=5.已知,则直线恒过定点( )2b a c =+0ax by c ++=A .B .(1,2)-(1,2)C .D .(1,2)-(1,2)--6.已知:,:,则两圆的位1C 2222416160x y x y +++-=2C 22228840x y x y ++--=置关系为( )A .相切B .外离C .相交D .内含7.已知点为椭圆上任意一点,直线过的圆心且P 22:11612x y C +=l 22:430M x y x +-+= 与交于两点,则的取值范围是( )M ,A B PA PB ⋅A .B .C .D .[]3,35[]2,34[]2,36[]4,368.已知圆和圆交于两点,点在圆221:2470C x y x y +---=222:(3)(1)12C x y +++=P 上运动,点在圆上运动,则下列说法正确的是( )1C Q 2C A .圆和圆关于直线对称1C 2C 8650x y +-=B .圆和圆的公共弦长为1C 2CC .的取值范围为PQ0,5⎡+⎣D .若为直线上的动点,则的最小值为M 80-+=x y PM MQ+-二、多选题(本大题共3小题)9.已知向量,,则下列正确的是( )()1,2,0a =-()2,4,0b =-A .B .//a ba b⊥ C .D .在方向上的投影向量为2b a = a b ()1,2,0-10.布达佩斯的伊帕姆维泽蒂博物馆收藏的达·芬奇方砖在正六边形上画了具有视觉效果的正方体图案,如图,把三片这样的达·芬奇方砖拼成组合,把这个组合再转换成空间几何体.若图中每个正方体的棱长为1,则下列结论正确的是( )A .B .点到直线的距离是122CQ AB AD AA =--+1C CQ C .D .异面直线与所成角的正切值为43CQ = CQ BD 11.已知实数满足方程,则下列说法正确的是( ),x y 22410x y x +-+=A .的最大值为B .的最大值为y x -2-22x y +7+C .的最大值为D .的最小值为y x x y+2三、填空题(本大题共3小题)12.O 为空间任意一点,若,若ABCP 四点共面,则3148OP OA OB tOC=++ t =.13.已知点和点,是动点,且直线与的斜率之积等于,则()2,0A -()2,0B P AP BP 34-动点的轨迹方程为.P 14.已知点为圆上位于第一象限内的点,过点作圆P 221:(5)4C x y -+=P 的两条切线,切点分别为,直线222:2C x y ax +-220(25)a a a +-+=<<,PM PN M N 、分别交轴于两点,则 , .,PM PN x (1,0),(4,0)A B ||||PA PB =||MN =四、解答题(本大题共5小题)15.分别求满足下列各条件的椭圆的标准方程.(1)已知椭圆的离心率为,短轴长为23e =(2)椭圆与有相同的焦点,且经过点,求椭圆的标准方程.C 2212x y +=31,2M ⎛⎫⎪⎝⎭C 16.已知圆心为的圆经过点,且圆心在直线上.C ()()1,4,3,6A B C 340x y -=(1)求圆的方程;C (2)已知直线过点且直线截圆所得的弦长为2,求直线的一般式方程.l ()1,1l C l 17.如图,四边形与四边形均为等腰梯形,ABCD ADEF,,,,,平面,//BC AD //EF AD 4=AD AB =2BC EF ==AF =FB ⊥ABCD 为上一点,且,连接、、M AD FM AD ⊥BD BE BM(1)证明:平面;⊥BC BFM (2)求平面与平面的夹角的余弦值.ABF DBE18.已知圆与圆内切.()222:0O x y r r +=>22:220E x y x y +--=(1)求的值.r (2)直线与圆交于两点,若,求的值;:1l y kx =+O ,M N 7OM ON ⋅=-k (3)过点作倾斜角互补的两条直线分别与圆相交,所得的弦为和,若E O AB CD ,求实数的最大值.AB CDλ=λ19.已知两个非零向量,,在空间任取一点,作,,则叫a bO OA a = OB b = AOB ∠做向量,的夹角,记作.定义与的“向量积”为:是一个向量,它与向a b ,a ba b a b ⨯ 量,都垂直,它的模.如图,在四棱锥中,底面a b sin ,a b a b a b ⨯=⋅ P ABCD -为矩形,底面,,为上一点,.ABCD PD ⊥ABCD 4DP DA ==E AD AD BP ⨯=(1)求的长;AB (2)若为的中点,求二面角的余弦值;E AD P EB A --(3)若为上一点,且满足,求.M PB AD BP EM λ⨯=λ答案1.【正确答案】B【详解】由题得点与点的横坐标与竖坐标互为相反数,纵坐标相同,P Q 所以点和点关于轴对称,P Q y 故选:B.2.【正确答案】C【分析】利用空间向量平行列出关于的方程组,解之即可求得的值.,x y ,x y 【详解】因为,所以,由题意可得,a b ∥a b λ=()()()2,1,31,2,9,2,9x y y λλλλ=-=-所以则.2,12,39,x y λλλ=⎧⎪=-⎨⎪=⎩131632x y λ⎧=⎪⎪⎪=⎨⎪⎪=-⎪⎩故选C.【思路导引】根据题目条件列出关于的方程组,解方程组即可得到答案.a∥b ,x y 3.【正确答案】D【详解】.()11111A A B B a b B A B cCC C CB =+=-+=-+--+ 故选:D .4.【正确答案】A【详解】由基底定义可知只有非零向量不共面时才能构成空间中的一组基底.,,a b c对于A ,因为非零向量两两垂直,所以非零向量不共面,可构成空间的一,,a b c ,,a b c 组基底,故A 正确;对于B ,,则共线,由向量特性可知空间中任意两个向量是共面的,所以b c λ=,b c 与共面,故B 错误;a,b c 对于C ,由共面定理可知非零向量共面,故C 错误;,,a b c 对于D ,即,故由共面定理可知非零向量共面,故D 错误.0a b c ++= a b c =--,,a b c 故选:A.5.【正确答案】A【分析】由题意可得,可得定点坐标.(1)(2)0a x b y -++=【详解】因为,所以,2b a c =+2c b a =-由,可得,所以,0ax by c ++=(2)0ax by b a ++-=(1)(2)0a x b y -++=当时,所以对为任意实数均成立,1,2x y ==-(11)(22)0a b -+-+=,a b 故直线过定点.(1,2)-故选A.6.【正确答案】C 【详解】因为可化为22221:22416160,2880C x y x y x y x y +++-=+++-= ,则,半径,()()221425x y +++=()11,4C --15r =因为可化为,22222:228840,4420C x y x y x y x y ++--=++--= ()()222210x y ++-=则,半径()22,2C -2r =则,因为.1C =122155r r r r -=<<+=+故选:C.7.【正确答案】A【详解】,即,22:430M x y x +-+= ()2221x y -+=则圆心,半径为.(2,0)M 1椭圆方程,,22:11612x y C +=2216,12a b ==则,22216124,2c a b c =-=-==则圆心为椭圆的焦点,(2,0)M 由题意的圆的直径,且AB 2AB = 如图,连接,由题意知为中点,则,PM M AB MA MB =-可得()()()()PA PB PM MA PM MB PM MB PM MB ⋅=+⋅+=-+ .2221PM MB PM =-=- 点为椭圆上任意一点,P 22:11612x y C +=则,,min 2PM a c =-= max 6PM a c =+= 由,26PM ≤≤ 得.21PA PB PM ⋅=- []3,35∈故选:A.8.【正确答案】D【详解】对于A ,和圆,221:2470C x y x y +---=222:(3)(1)12C x y +++=圆心和半径分别是,()()12121,2,3,1,C C R R --==则两圆心中点为,11,2⎛⎫- ⎪⎝⎭若圆和圆关于直线对称,则直线是的中垂线,1C 2C 8650x y +-=12C C 但两圆心中点不在直线上,故A 错误;11,2⎛⎫- ⎪⎝⎭8650x y +-=对于B ,到直线的距离,1C 8650x y ++=81255102d ++==故公共弦长为,B错误;=对于C ,圆心距为,当点和重合时,的值最小,5=P QPQ当四点共线时,的值最大为12,,,P Q C CPQ 5+故的取值范围为,C 错误;PQ0,5⎡+⎣对于D ,如图,设关于直线对称点为,1C 80-+=x y (),A m n则解得即关于直线对称点为,21,11280,22n mm n -⎧=-⎪⎪-⎨++⎪-+=⎪⎩6,9,m n =-⎧⎨=⎩1C 80-+=x y ()6,9A -连接交直线于点,此时最小,2AC M PM MQ +122PM MQ MC MC C A +≥+-=-==即的最小值为,D 正确.PM MQ+故选:D.9.【正确答案】ACD【详解】ABC 选项,由题意得,故且,AC 正确,B 错误;2b a= //a b2b a= D 选项,在,Da b ()01,2,=-正确.故选:ACD10.【正确答案】ABC 【详解】依题意得,12CQ CB BQ AD BA =+=-+()11222AD AA AB AB AD AA =-+-=--+ 故A 正确;如图,以为坐标原点,建立空间直角坐标系,1A 111(0,1,0),(1,1,0),(1,0,0),(0,1,1),(1,1,1),(1,1,1),B C D Q C E -------,(1,1,1),(0,1,1),(1,0,1)G B D -----对于BC ,,1(1,2,1),(1,2,2)QC CQ =--=-所以,设,3CQ==173QC CQ m CQ ⋅==- 则点到直线的距离BC 正确;1C CQd ==对于D ,因为,(1,2,2),(1,1,0)CQ BD ---==所以cos ,CQ BD 〈〉==tan ,CQ BD 〈〉= 所以异面直线与所成角的正切值为D 错误.CQ BD 故选:ABC .11.【正确答案】ABD【详解】根据题意,方程,即,22410x y x +-+=22(2)3x y -+=表示圆心为,半径为(2,0)对于A ,设,即,y x z -=0x y z -+=直线与圆有公共点,0x y z -+=22(2)3x y -+=所以≤22z ≤≤则的最大值为,故A 正确;z y x =-2-对于B ,设,其几何意义为圆上的点到原点的距离,t =22(2)3x y -+=所以的最大值为,t 2故的最大值为B 正确;22x y +22(27t ==+对于C ,设,则,直线与圆有公共点,yk x =0kx y -=0kx y -=22(2)3x y -+=则,解得的最大值为C 错误;≤k ≤≤yx 对于D ,设,作出图象为正方形,作出圆,如图,m x y=+22(2)3x y -+=由图象可知,正方形与圆有公共点A 时,有最小值m 2即的最小值为,故D 正确;x y+2故选:ABD12.【正确答案】/0.12518【详解】空间向量共面的基本定理的推论:,且、、不共OP xOA yOB zOC =++ A B C 线,若、、、四点共面,则,A B C P 1x y z ++=因为为空间任意一点,若,且、、、四点共面,O 3148OP OA OB tOC=++ A B C P所以,,解得.31148t ++=18t =故答案为.1813.【正确答案】221(2)43x y x +=≠±【详解】设动点的坐标为,又,,P (,)x y ()2,0A -()2,0B 所以的斜率,的斜率,AP (2)2AP y k x x =≠-+BP (2)2BP yk x x =≠-由题意可得,3(2)224y y x x x ⨯=-≠±+-化简,得点的轨迹方程为.P 221(2)43x y x +=≠±故221(2)43x y x +=≠±14.【正确答案】 2,【详解】圆的标准方程为,圆心,2C 22()2(2)x a y a a -+=->()2,0C a 则为的角平分线,所以.2PC APB ∠22AC PA BC PB=设,则,()00,P x y ()22054x y -+=所以,则,2PAPB===222AC BC =即,解得,则,()124a a -=-3a =222:(3)1C x y -+=所以点与重合,N ()4,0B 此时,可得,221,30C M MAC =∠=52M ⎛ ⎝.故;215.【正确答案】(1)或;22114480x y +=22114480y x +=(2).22143x y +=【详解】(1)由题得,222212328c a a b b a b c c ⎧=⎪=⎧⎪⎪⎪=⇒=⎨⎨⎪⎪=+=⎩⎪⎪⎩所以椭圆的标准方程为或.22114480x y +=22114480y x +=(2)椭圆满足,故该椭圆焦点坐标为,2212x y +=1c ==()1,0±因为椭圆与有相同的焦点,且经过点,C 2212x y +=31,2M ⎛⎫ ⎪⎝⎭所以可设椭圆方程为,且,解得,C 22221x y a b +=22222231211ab a b ⎧⎛⎫⎪ ⎪⎪⎝⎭+=⎨⎪⎪=+⎩4241740a a -+=故,解得(舍去)或,故.()()224140aa --=214a =24a =2213b a =-=所以椭圆的标准方程为.C 22143x y +=16.【正确答案】(1)()()224310x y -+-=(2)或10x -=512170x y +-=【详解】(1)由题意,则的中点为,且,()()1,4,3,6A B AB (2,5)64131AB k -==-故线段中垂线的斜率为,AB 1-则中垂线的方程为,即,5(2)y x -=--70x y +-=联立,解得,即圆心,34070x y x y -=⎧⎨+-=⎩43x y =⎧⎨=⎩()4,3C 则半径r CA ===故圆的方程为.C ()()224310x y -+-=(2)当直线斜率不存在时,直线的方程为,l 1x =圆心到直线的距离为,由半径,(4,3)C 3r =则直线截圆所得的弦长,满足题意;l C 2=当直线斜率存在时,设直线方程为,l l 1(x 1)y k -=-化为一般式得,10kx y k -+-=由直线截圆所得的弦长,半径.l C 2r =1则圆心到直线的距离,又圆心,3d ==(4,3)由点到直线的距离公式得,3d 解得,故直线方程为,512k =-l 51(1)12y x -=--化为一般式方程为.512170x y +-=综上所述,直线的方程为或.l 10x -=512170x y +-=17.【正确答案】(1)证明见详解;【分析】(1)根据线面垂直的性质,结合线面垂直的判定定理、平行线的性质进行证明即可;(2)作,垂足为,根据平行四边形和矩形的判定定理,结合(1)的结论,EN AD ⊥N 利用勾股定理,因此可以以,,所在的直线分别为轴、轴、轴建立空BM BC BF x y z 间直角坐标系,利用空间向量夹角公式进行求解即可.【详解】(1)因为平面,又平面,FB ⊥ABCD AD ⊂ABCD 所以.又,且,FB AD ⊥FM AD ⊥FB FM F ⋂=所以平面.因为,所以平面.AD ⊥BFM //BC AD ⊥BC BFM (2)作,垂足为.则.又,EN AD ⊥N //FM EN //EF AD 所以四边形是平行四边形,又,FMNE EN AD ⊥所以四边形是矩形,又四边形为等腰梯形,且,,FMNE ADEF 4=AD 2EF =所以.1AM =由(1)知平面,所以.又,AD ⊥BFM BM AD⊥AB =所以.在中,1BM =Rt AFMFM ==在中,.Rt FMB 3FB ==所以由上可知,能以,,所在的直线分别为轴、轴、轴建立如图所示空间BM BC BF x y z 直角坐标系.则,,,,,所以,,(1,1,0)A --(0,0,0)B (0,0,3)F (1,3,0)D -(0,2,3)E (1,1,0)AB =,,,设平面的法向量为,(0,0,3)BF = (1,3,0)BD =- (0,2,3)BE =ABF ()111,,m x y z = 由,得可取.00m AB m BF ⎧⋅=⎪⎨⋅=⎪⎩ 1110,0,x y z +=⎧⎨=⎩(1,1,0)m =- 设平面的法向量为,BDE ()222,,n x y z =由,得,可取.00n BD n BE ⎧⋅=⎪⎨⋅=⎪⎩ 222230,230,x y y z -+=⎧⎨-+=⎩(9,3,2)n = 因此,.cos ,m n m n m n ⋅===依题意可知,平面与平面的夹角的余弦值为ABFDBE 18.【正确答案】(1)r =(2);1k =±(3)max λ=【详解】(1)由题意得,,O (0,0)()()2222220112x y x y x y +--=⇒-+-=故圆心,圆E 的半径为()1,1E 因为,故在圆E 上,()()2201012-+-=O (0,0)所以圆O 的半径,且r >OE r ==r =(2)由(1)知,联立,22:8O x y +=()2222812701x y k x kx y kx ⎧+=⇒++-=⎨=+⎩设,则恒成立,()()1122,,,M x y N x y ()22Δ42810k k =++>且,12122227,11k x x x x k k +=-=-++所以,()2222121212222721811111k k k y y k x x k x x k k k -=+++=--+=+++所以,解得.221212222718681711O k k x x y O y k k k M N ⋅=---+=-+==+++-1k =±(3)如图,因为直线和直线倾斜角互补,AB CD所以当直线斜率不存在时,此时直线的斜率也不存在,AB CD 此时,,AB CD=1AB CDλ==当直线的斜率为0时,直线的斜率为0,不满足倾斜角互补,AB CD 当直线斜率存在且不为0时,设直线 即,AB ():11AB y k x -=-10kx y k --+=圆心O 到直线的距离为AB d故AB ===由直线方程得直线的方程为即,AB CD ()11y k x -=--10kx y k +--=同理得CD =则,AB CD λ====当,,0k>AB CDλ====因为对勾函数在上单调递减,在上单调递增,()1f x x x =+(0,1)(1,+∞)所以时,,0x >()())[)1,2,f x f ∞∞⎡∈+=+⎣所以时,故,0k >[)17212,k k ∞⎛⎫+-∈+ ⎪⎝⎭4411,1372k k ⎛⎤+∈ ⎥⎛⎫⎝⎦+- ⎪⎝⎭所以,λ⎛= ⎝当,0k <AB CDλ====由上知时,故,0k <()[)17216,k k ∞⎡⎤⎛⎫-+-+∈+ ⎪⎢⎥⎝⎭⎣⎦()431,14172k k ⎡⎫-∈⎪⎢⎡⎤⎛⎫⎣⎭-+-+ ⎪⎢⎥⎝⎭⎣⎦所以.λ⎫=⎪⎪⎭综上,max λ=19.【正确答案】(1)2(2)13-(3)10【分析】(1)首先说明为直线与所成的角,即,设PBC ∠AD PB ,AD BP PBC=∠,根据所给定义得到方程,解得即可;()0AB x x =>(2)在平面内过点作交的延长线于点,连接,为二ABCD D DF BE ⊥BE F PF PFD ∠面角的平面角,由锐角三角函数求出,设二面角的平面P EB D --cos PFD ∠P EB A --角为,则,利用诱导公式计算可得;θπPFD θ=-∠(3)依题意可得平面,在平面内过点作,垂足为,即EM ⊥PBC PDC D DN PC ⊥N 可证明平面,在平面内过点作交于点,在上取点DN ⊥PBC PBC N //MN BC PB M DA,使得,连接,即可得到四边形为平行四边形,求出,即E DE MN =EM DEMN DN可得解.【详解】(1)因为底面为矩形,底面,ABCD PD ⊥ABCD 所以,,又底面,所以,//AD BC BC DC ⊥BC ⊂ABCD PD BC ⊥又,平面,所以平面,PD DC D = ,PD DC ⊂PDC BC ⊥PDC 又平面,所以,PC ⊂PDC BC PC ⊥所以为直线与所成的角,即,PBC ∠AD PB ,AD BP PBC=∠设,则,()0AB x x =>PC ==PB ==在中Rt PBC s n i PCPBC PB ∠==又,解得(负值已舍去),AD BP ⨯==2x =所以;2AB =(2)在平面内过点作交的延长线于点,连接,ABCD D DF BE ⊥BE F PF 因为底面,底面,所以,又,PD ⊥ABCD BF ⊂ABCD PD BF ⊥DF PD D = 平面,所以平面,又平面,所以,,DF PD ⊂PDF BF ⊥PDF PF ⊂PDF BF PF ⊥所以为二面角的平面角,PFD ∠P EB D --因为为的中点,E AD所以π2sin4DF ==PF ==所以,1cos 3DF PFD PF ∠===设二面角的平面角为,则,P EB A --θπPFD θ=-∠所以,()1cos cos πcos 3PFD PFD θ=-∠=-∠=-即二面角的余弦值为;P EB A --13-(3)依题意,,又,()AD BP AD⨯⊥ ()AD BP BP⨯⊥ AD BP EM λ⨯= 所以,,又,所以,EM AD ⊥EM BP ⊥//AD BC EM BC ⊥又,平面,所以平面,PB BC B = ,PB BC ⊂PBC EM ⊥PBC 在平面内过点作,垂足为,PDC D DN PC ⊥N 由平面,平面,所以,BC ⊥PDC DN ⊂PDC BC DN ⊥又,平面,所以平面,PC BC C = ,PC BC ⊂PBC DN ⊥PBC 在平面内过点作交于点,在上取点,使得,连接PBC N //MN BC PB M DA E DE MN =,EM 所以且,所以四边形为平行四边形,//DE MN DE MN =DEMN 所以,又,即EM DN =DN ==EM=所以.10AD BP EMλ⨯===【关键点拨】本题关键是理解并应用所给定义,第三问关键是转化为求.DN。
福建师大附中2024-2025学年高二上学期10月月考数学试题(解析版)

福建师大附中2024-2025学年第一学期高二第一次月考数学试卷一、单选题(每小题5分,共40分)1. 若角α的终边上一点的坐标为(11)−,,则cos α=( )A. 1−B.C.D. 1【答案】C 【解析】【分析】根据任意角三角函数的定义即可求解.【详解】∵角α的终边上一点的坐标为(11)−,,它与原点的距离r=,∴cos x r α==, 故选:C.2. 下列函数中,在区间()1,2上为增函数的是 A. 1y x=B. y x =C. 21y x =−+D. 243y x x =−+【答案】B 【解析】【分析】根据基本初等函数的单调性判断出各选项中函数在区间()1,2上的单调性,可得出正确选项. 【详解】对于A 选项,函数1y x=在区间()1,2上为减函数; 对于B 选项,当()1,2x ∈时,y x =,则函数y x =在区间()1,2上为增函数;对于C 选项,函数21y x =−+在区间()1,2上为减函数; 对于D 选项,二次函数243y x x =−+在区间()1,2上为减函数. 故选B.【点睛】本题考查基本初等函数在区间上的单调性的判断,熟悉一次、二次、反比例函数的单调性是解题的关键,考查推理能力,属于基础题.3. 为了解甲、乙两个班级学生的物理学习情况,从两个班学生的物理成绩(均为整数)中各随机抽查20个,得到如图所示的数据图(用频率分布直方图估计总体平均数时,每个区间的值均取该区间的中点值),关于甲、乙两个班级的物理成绩,下列结论正确的是( )A. 甲班众数小于乙班众数B. 乙班成绩的75百分位数为79C. 甲班的中位数为74D. 甲班平均数大于乙班平均数估计值【答案】D 【解析】【分析】根据已知数据图,判断A ;根据频率分布直方图计算乙班成绩的75百分位数,判断B ;求出甲班的中位数,判断C ;求出两个班级的平均分,即可判断D.【详解】由甲、乙两个班级学生的物理成绩的数据图可知甲班众数为79, 由频率分布直方图无法准确得出乙班众数,A 错误; 对于乙班物理成绩的频率分布直方图,前三个矩形的面积之和为(0.0200.0250.030)100.75++×=, 故乙班成绩的75百分位数为80,由甲班物理成绩数据图可知,小于79分的数据有9个,79分的数据有6个, 故甲班的中位数为79,C 错误; 甲班平均数57258596768269279687882899874.820x ×++++×+×+×++×++=甲,乙班平均数估计值为10550.02650.025750.03+850.02950.00571.57= 4.8x =×+×+××+×=<乙(), 即甲班平均数大于乙班平均数估计值,D 正确, 故选:D 4.的直三棱柱111ABC A B C −中,ABC 为等边三角形,且ABC的外接圆半径为 ) A. 12π B. 8π C. 6π D. 3π【答案】A为【解析】【分析】由棱柱体积求得棱柱的高,然后求得外接球的半径,得表面积.【详解】设ABC 的边长为a ,由ABC可得2πsin3a =,故a =则ABC的面积2S.可得11S AA AA ⋅==1AA =, 设三棱柱外接球的半径为R,则2221723233AA R =+=+=, 故该三棱柱外接球的表面积为24π12πR =. 故选:A .5. 已知函数()()()sin 20f x x ϕπϕ=+−<<,将()f x 的图象向左平移3π个单位长度后所得的函数图象关于y 轴对称,则关于函数()f x ,下列命题正确的是 A. 函数()f x 在区间,63ππ−上有最小值 B. 函数()f x 的一条对称轴为12x π=C. 函数()f x 在区间,63ππ−上单调递增 D. 函数()f x 的一个对称点为,03π【答案】C 【解析】【分析】根据平移关系求出函数的解析式,结合函数的奇偶性求出φ的值,利用三角函数的性质进行判断即可.【详解】将()f x 的图象向左平移3π个单位长度后得到2[2]233y sin x sin x ππϕϕ=++=++()(),此时函数为偶函数, 则232k k Z ππϕπ+=+∈,, 即06k k Z πϕππϕ=−+∈− ,,<<,∴当0k =时,6,πϕ=−则26f x sin x π=−()(),当63x ππ−<<时22233262x x πππππ−−−,<<,<<, 则此时函数()f x 在区间,63ππ − 上单调递增,且()f x 在区间,63ππ−上没有最小值, 故C 正确, 故选C .【点睛】本题主要考查三角函数性质判断,结合三角函数的平移关系求出函数的解析式是解决本题的关键.6. 如图,在三棱锥P ABC −中,PA ⊥平面ABC ,AC BC ⊥,AC =6BC =,D ,E ,F ,G 分别为PB ,AB ,AC ,PC 的中点,Q 为DE 上一点,AQ GQ ⊥,当AQG 的面积取得最小值时,三棱锥Q AEF −外接球的表面积为( )A. 24πB. 28πC. 32πD. 36π【答案】B 【解析】【分析】连接GF ,GD ,根据中位线性质得到线线平行关系,再利用线面垂直的性质得到线线垂直,设EQ x =,DQ y =,根据222AQ GQ AG +=得到()2221697x y x y +++=++,得到12AQG S AQ GQ =⋅= ,再根据基本不等式即可求出最值,再转化为长方体外接球问题即可.【详解】连接GF ,GD ,因为D ,E ,F ,G 分别为PB ,AB ,AC ,PC 的中点,的所以2//,11,//,2GF GF PA PA DE PA PA DE ==,1//,2GD BC GD BC =,1//,2EF BC EF BC =,则//GF DE ,因为PA ⊥平面ABC , 所以GF ⊥平面ABC ,DE ⊥平面ABC ,AE ⊂ 平面ABC ,所以DE AE ⊥,所以DE GD ⊥,AF ⊂ 平面ABC ,所以GF AF ⊥.设EQ x =,DQ y =,则AQ ,GQ ,AG ==,因为AQ GQ ⊥,所以222AQ GQ AG +=,即()2221697x y x y +++=++, 整理得9xy =,所以12AQGS AQ GQ =⋅= 由基本不等式得2216924216y x xy +≥=,当且仅当43y x =,即x =y =所以当AQC S 取得最小值时,EQ =,DQ =. 因为AF EF ⊥,QE ⊥平面AEF ,所以可将三棱锥Q AEF −补形为如图所示的长方体,则三棱锥Q AEF −的外接球即该长方体的外接球,易知该长方体外接球的直径为AQ =,故三棱锥Q AEF −,故三棱锥Q AEF −外接球的表面积为4π728π×=,故选:B .【点睛】方法点睛:求解有关三棱锥外接球的问题时,常见方法有两种:一种是补形,解题时要认真分析图形,看能否把三棱锥补形成一个正方体(长方体),若能,则正方体(长方体)的顶点均在外接球的球面上,正方体(长方体)的体对角线为外接球的直径;另一种是直接法,三棱锥中过任意两个面的外接圆圆心的垂线的交点即三棱锥外接球的球心.7. 、,外接球表面积为20π,则正四棱台侧棱与底面所成角的正切值为( ) A. 1 B. 3 C. 1或3 D.12或32【答案】C 【解析】【分析】在正四棱台1111ABCD A B C D −中,取截面11AAC C ,设正方形ABCD 、1111D C B A 的中心分别为O 、1O ,分析可知球心在直线1OO 上,对球心的位置进行分类讨论,求出1OO 的长,利用线面角的定义可求得结果.【详解】在正四棱台1111ABCD A B C D −中,设其上底面为正方形ABCD ,下底面为正方形1111D C B A ,设正方形ABCD 、1111D C B A 的中心分别为O 、1O ,由正四棱台的几何性质可知,1OO ⊥平面1111D C B A ,取截面11AAC C , 则正四棱台的外接球球心E 在直线1O O 上,分以下两种情况讨论: ①E 在AC 、11A C 的同侧,如下图所示:设球E 的半径为R ,则24π20πR =,可得R =由圆的几何性质可知EO AC ⊥,111EO A C ⊥,且2AC ==,11114A C B =,所以,2OE =,11EO ,所以,11211OO EO EO =−=−=, 过点A 在平面11AAC C 内作11AF AC ⊥, 因为11//AC A C ,11AF A C ⊥,111OO A C ⊥,1//AF OO ∴,则四边形1AOO F 为矩形,且11AF OO ==,11O FAO ==,111211A F AO O F =−=−=, 因为1//AF OO ,则AF ⊥平面1111D C B A ,则1AA 与平面1111D C B A 所成角为1AA F ∠, 且11tan 1AFAA F A F∠==; ②若球心E 在线段1OO 上,如下图所示:设球E 的半径为R ,则24π20πR =,可得R =由圆的几何性质可知EO AC ⊥,111EO A C ⊥,且2AC ==,11114A C B =,所以,2OE =,11EO ,所以,11213OO EO EO =+=+=, 过点A 在平面11AAC C 内作11AF A C ⊥,因为11//AC A C ,11AF A C ⊥,111OO A C ⊥,1//AF OO ∴,则四边形1AOO F 为矩形,且13AF OO ==,11O FAO ==,111211A F AO O F =−=−=, 因为1//AF OO ,则AF ⊥平面1111D C B A ,则1AA 与平面1111D C B A 所成角为1AA F ∠, 且11tan 3AFAA F A F∠==. 综上所述,正四棱台侧棱与底面所成角的正切值为1或3. 故选:C.【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin hlθ=(l 为斜线段长),进而可求得线面角; (3)建立空间直角坐标系,利用向量法求解,设a为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=.8. 在ΔΔΔΔΔΔΔΔ中,BC CA CA AB ⋅=⋅ ,2BA BC += ,且233B ππ≤≤,则BA BC ⋅的取值范围是A [2,1)− B. 2,13C. 22,3 −D. 22,3−【答案】D 【解析】【分析】由BC CA CA AB ⋅=⋅,可以得到()0CA BC BA ⋅+= ,利用平面向量加法的几何意义,可以构造平行四边形BCDA ,根据()0CA BC BA ⋅+=,可知平行四边形BCDA 是菱形,这样在Rt BOA ∆中,可以求出菱形的边长,求出BA BC ⋅的表达式,利用233B ππ≤≤,构造函数,最后求出BA BC ⋅的取值范围.【详解】()0()0BC CA CA AB CA BC AB CA BC BA ⋅=⋅⇒⋅−=⇒⋅+=,以,BC BA 为邻边作平行四.边形BCDA ,如下图:所以BC BA BD += ,因此0CA BD CA BD ⋅=⇒⊥,所以平行四边形BCDA 是菱形,设CA BD O ∩=,2BA BC +=,所以=21BD BO ⇒=,在Rt BOA ∆中, 1cos cos 2BO ABO AB ABC AB ∠=⇒=∠ 212cos ()cos 1cos cos 2ABCy ABC ABC AB A C C B B ∠==⋅∠=⋅∠+∠ , 设211cos [,]3322x ABC ABC x ππ=∠≤∠≤∴∈− , 所以当11[,]22x ∈− 时,'22201(1)x y y x x =⇒=>++,21x y x =+是增函数,故2[2,]3y ∈−,因此本题选D.【点睛】本题考查了平面加法的几何意义、以及平面向量数量积的取值范围问题,利用菱形的性质、余弦的升幂公式、构造函数是解题的关键.二、多选题(每小题6分,共18分)9. 一组样本数据12,,,n x x x …的平均数为()0x x ≠,标准差为s .另一组样本数据122,,,n n n x x x ++…,的平均数为3x ,标准差为s .两组数据合成一组新数据1212,,,,,,n n n x x x x x +⋅⋅⋅⋅⋅⋅,新数据的平均数为y ,标准差为s ′,则( ) A. 2y x > B. 2y x = C. s s ′> D. s s ′=【答案】BC 【解析】【分析】由平均数与标准差的定义求解判断. 【详解】由题意322nx n xyx n+⋅=, 222222121()()()nn k k ns x x x x x x x nx ==−+−++−=−∑,同理222222211(3)9nnkkk n k n ns xn x xnx=+=+=−⋅=−∑∑ 两式相加得22221210nk k ns x nx ==−∑,22222221122(2)8nnkk k k ns x n x x nx ==′=−⋅=−∑∑,所以2222ns ns ′>,s s ′>. 故选:BC .10. 在棱长为2的正方体1111ABCD A B C D −中,点E ,F 分别为棱BC 与11D C 的中点,则下列选项正确的有( )A. 1//A B 平面1AECB. EF 与1BC 所成的角为30°C. ⊥EF 平面1B ACD. 平面1AEC 截正方体1111ABCD A B C D −的截面面积为 【答案】ABD 【解析】【分析】设点M 为棱11A D 的中点,得到四边形1AEC M 为平行四边形,利用线面平行的判定定理,证得1//A B 平面1AEC ,可判定A 正确;再得到四边形1AEC M 为菱形,求得截面的面积,可判定D 正确;设1CC 的中点为N ,证得1//EN BC ,得到NEF ∠为EF 与1BC 所成的角,利用余弦定理求得cos NEF ∠,可判定B 正确;假设⊥EF 平面1B AC 正确,得到1EF B C ⊥,结合11FC B C ⊥,证得1B C ⊥平面1EFC ,得到11B C EC ⊥,进而判定C 错误.【详解】如图1所示,设点M 为棱11A D 的中点,则1MC AE ,平行且相等,所以四边形1AEC M 为平行四边形,又1//A B ME ,1⊄A B 平面1AEC ,ME ⊂平面1AEC ,所以1//A B 平面1AEC ,故A 正确; 由上可知,四边形1AEC M 为平面1AEC 截正方体1111ABCD A B C D −的截面,易得11AE EC C M MA ====,故四边形1AEC M 为菱形,又其对角线EM =,1AC =12××,故D 正确; 设1CC 的中点为N ,连接,EN FN ,因为,E N 分别为BC 与1CC 的中点,所以1//EN BC ,故NEF ∠为EF 与1BC 所成的角,又EN FN ==,EF =由余弦定理可得222cos 2EN EF NF NEF EN EF +−∠==⋅ 所以EF 与1BC 所成的角为30°,故B 正确;如图2所示,假设⊥EF 平面1B AC 正确,则1EF B C ⊥,又11FC B C ⊥,1EF FC F ∩=,所以1B C ⊥平面1EFC ,得11B C EC ⊥. 在正方形11B C CB 中,11B C EC ⊥,显然不成立,所以假设错误, 即⊥EF 平面1B AC 错误,故C 错误. 故选:ABD .11. 已知,a b 均为正数且11a b a b+=+,下列不等式正确的有( )A. 23+≥B.2+≥C. 3a +≥D.23a b a+≥ 【答案】BCD 【解析】【分析】由已知条件可得1ab =,然后逐个分析判断即可 【详解】由11a b a b+=+,得a b a b ab ++=,所以()()0ab a b a b +−+=,()(1)0a b ab +−= 因为,a b 均为正数,所以1ab =,对于A ,2≥===,即ab 时取等号,所以A 错误,对于B 2+≥=,即1a b ==时取等号,所以B 正确,对于C ,因为1ab =,所以1a b=,所以13a b +=+≥=,=,即1a b ==时取等号,所以C 正确,对于D ,因为1ab =,所以22223a a ba b b b a ab++==++≥,当且仅当2a b =,即1a b ==时取等号,所以D 正确,故选:BCD三、填空题(每小题5分,共15分)12. 已知1x >−,则41x x ++的最小值为___________. 【答案】3 【解析】【分析】由1x >−可得10x +>,将41x x ++整理为4111++−+x x ,再利用基本不等式即可求解. 【详解】因为1x >−,所以10x +>,所以441111x x x x +=++−++13≥−=, 当且仅当411x x +=+,即1x =时取等号, 所以41x x ++的最小值为3, 故答案为:3【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 13. 已知函数222log ,1()32,1x a x f x x ax a x + =++<, ①若a =1,f (x )的最小值是_____;②若f (x )恰好有2个零点,则实数a 的取值范围是_____. 【答案】 ①. ﹣14 ②. 1(1,][0,)2−−+∞ 【解析】【分析】(1)对分段函数的两段函数分别求最小值,然后比较可得; (2)结合函数性质与解方程()0f x =,可得结论.【详解】(1)由题意22log 1,1()32,1x x f x x x x +≥ =++< , 1x ≥时,2()log 1f x x =+单调递增,min ()(1)1f x f ==, 1x <时,2231()32()24f x x x x =++=+−,min 31()()24f x f =−=−, 所以32x =−时,min 1()4f x =−;(2)若0a =,则22log ,1(),1x x f x x x ≥ = <,恰有两个零点0和1,满足题意,若0a >,则1x ≥时,2()log 0f x x a a =+≥>无零点, 但1x <时,22()32f x x ax a =++有两个零点a −和2a −,满足题意,当0a <时,则1x ≥时,2()log f x x a =+是增函数,min ()0f x a =<,有一个零点, 1x <时,由22()320f x x ax a =++=得x a =−或2x a =−,因为()f x 只有两个零点,所以121a a −< −≥,解得112a −<≤−, 综上,a 的取值范围是1(1,][0,)2−−+∞ .【点睛】本题考查求分段函数的最值,由分段函数的零点个数求参数取值范围.解题时需分类讨论,按分段函数的定义分类讨论.14. 如图所示,在△ABC 中,AB =AC =2,AD DC = ,2DE EB =,AE 的延长线交BC 边于点F ,若45AF BC ⋅=− ,则AE AC ⋅= ____.【答案】229【解析】【分析】过点D 做DG AF ,可得16EF AF =,15BF BC =,4155AF AB AC =+ 由45AF BC ⋅=− 可得2cos 3BAC ∠=,可得541()655AE ACAB AC AC ⋅=+⋅ ,代入可得答案. 【详解】解:如图,过点D 做DG AF ,易得:13EF BE DG BD ==,13EF DG =,12DG CD AF AC ==,故12DG AF =,可得:16EF AF =, 同理:12BF BE FG ED ==,11FG AD GC CD ==,可得15BF BC =, 1141()5555AF AB BF AB BC AB AC AB AB AC =+=+=+−=+ ,由45AF BC ⋅=− ,可得22411424()()555555AB AC AC AB AC AB AB AC +⋅−=−+⋅=− , 可得:14244422cos 5555BAC ×−×+××∠=−,可得:2cos 3BAC ∠=, 255412122122()2246655353369AE AC AF AC AB AC AC AB AC AC ⋅=⋅=+⋅=⋅+=×××+×= ,故答案为:229. 【点睛】本题主要考查平面向量的线性运算和平面向量的数量积,由题意作出DG AF 是解题的关键.四、解答题(共77分)15. 如图1,在平面四边形PBCD 中,已知BC PB ⊥,PD CD ⊥,6PB =,2BC =,2DP CD =,DA PB ⊥于点A .将PAD △沿AD 折起使得PA ⊥平面ABCD ,如图2,设MD PD λ=(01λ≤≤).(1)若23λ=,求证:PB //平面MAC ; (2)若直线AM 与平面PCD,求λ的值. 【答案】(1)证明见解析 (2)12λ= 【解析】【分析】(1)利用线面平行的判定定理即可证明;(2)利用空间向量的坐标表示,表示出线面夹角的余弦值即可求解. 【小问1详解】在平面四边形PBCD 中,BC PB ⊥,6PB =,2BC =,所以CP =tan BPC ∠= 又PD CD ⊥,2DP CD =,所以CD =,PD =,1tan 2DPC ∠=, 所以()1123tan tan 111123BPD BPC DPC +∠=∠+∠==−×,所以45BPD ∠=°. 所以在Rt PAD △中,易得4PA AD ==. 因为DA PB ⊥,BC PB ⊥,所以//AD BC .在四棱锥P ABCD −中,连接BD ,设BD AC F ∩=,连接MF ,因为23λ=,所以2DMMP =, 又2AD DFBC FB==,所以MF PB ∥. 因为MF ⊂平面MAC ,PB ⊄平面MAC ,所以PB ∥平面MAC .【小问2详解】由题意易知AB ,AD ,AP 两两垂直,故可建立如图所示的空间直角坐标系,则()0,0,0A ,()2,2,0C ,()0,4,0D ,()0,0,4P , 则()2,2,0CD =− ,()0,4,4PD =−.设平面PCD 法向量为(),,n x y z =,则00n CD n PD ⋅= ⋅=,即220440x y y z −+= −= , 令1x =,得11y z == ,即()1,1,1n = . 由MD PD λ=,得()0,4,4MD λλ=− , 故()0,44,4M λλ−,()0,44,4AM λλ=−.由直线AM 与平面PCD,的得cos ,AM n AM n AM n⋅==,解得12λ=. 16. 如图,直三棱柱111ABC A B C −的体积为1,AB BC ⊥,2AB =,1BC =.(1)求证:11BC A C ;(2)求二面角11B A C B −−的余弦值. 【答案】(1)证明见解析 (2【解析】【分析】(1)法一:由线面垂直证明即可;法二:用空间直角坐标系证明即可;(2)法一:过O 作1OH A C ⊥于H ,连接BH ,由已知得出BHO ∠为二面角11B A C B −−的平面角,求解即可;法二:建立空间直角坐标系求解. 【小问1详解】直三棱柱111ABC A B C −的体积为:111121122V AB BC AA AA =×⋅⋅=×××=, 则11AA BC ==,四边形11BCC B 为正方形,法一:在直棱柱111ABC A B C −中,1BB ⊥面ABC ,11AB A B ∥, 又AB ⊂平面ABC ,则1AB BB ⊥,因为AB BC ⊥,1AB BB ⊥,1BB BC B = ,1,BB BC ⊂平面11BCC B , 所以AB ⊥平面11BCC B ,又1BC⊂平面11BCC B , 所以1AB BC ⊥,因为11AB A B ∥,所以11A B ⊥1BC , 在正方形11BCC B 中,有11BC B C ⊥,因为11BC B C ⊥,11A B ⊥1B C ,1111A B B C B = ,111,A B B C ⊂平面11A CB , 所以1⊥BC 平面11A CB ,又1A C ⊂平面11A CB , 所以11BC A C .法二:直棱柱111ABC A B C −,1BB ⊥平面ABC ,又AB BC ⊥,以B 为原点,BC ,BA ,1BB 所在直线为x 轴,y 轴, z 轴,建立空间直角坐标系, 则()0,0,0B ,()10,0,1B ,()1,0,0C ,1(0,2,1)A ,1(1,0,1)C ,1(1,0,1)BC =,1(1,2,1)A C =−− ,11110(2)1(1)0BC A C ⋅=×+×−+×−=,所以11BC A C .【小问2详解】由(1)得11BC A C ,设11B C BC O = ,在11A B C 中,过O 作1OH A C ⊥于H ,连接BH ,因为1OH A C ⊥,11BC A C ,1,OH BC ⊂平面BHO ,且1OH BC O ∩=, 所以1A C ⊥平面BHO ,又BH ⊂平面BHO ,所以1AC BH ⊥,所以BHO ∠为二面角11B A C B −−的平面角, 因为11Rt Rt COH CA B ∽△△,111CA CO OH A B =,得OH = 又在Rt BOH中,BO =BH =,cos OH BHO BH ∠=, 所以二面角11B A C B −−法二:()0,0,0B ,()10,0,1B ,()C ,1(0,2,1)A ,1(1,0,1)C ,(1,0,0)BC =,1(0,2,1)BA = ,设平面1BCA 的法向量:1111(,,)n x y z = , 则111111020n BC x n BA y z ⋅== ⋅+ ,取11y =,得1(0,1,2)n =− ,1(1,0,1)B C=−,11(0,2,0)B A = ,设面11B CA 的法向量2222(,,)n x y z = , 则21222112020n B C x z n B A y ⋅=−= ⋅== ,取21x =,得2(1,0,1)n = , 设二面角11B A C B −−的大小为θ,则:121212|||cos ||cos ,|||||n n n n n n θ⋅=<>==因为θ为锐角,所以二面角11B A C B −−17. 如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD=BAD =90°. (Ⅰ)求证:AD ⊥BC ;(Ⅱ)求异面直线BC 与MD 所成角的余弦值; (Ⅲ)求直线CD 与平面ABD 所成角的正弦值.【答案】(Ⅰ)证明见解析;. 【解析】【详解】分析:(Ⅰ)由面面垂直的性质定理可得AD ⊥平面ABC ,则AD ⊥BC .(Ⅱ)取棱AC 的中点N ,连接MN ,ND .由几何关系可知∠DMN (或其补角)为异面直线BC 与MD 所成的角.计算可得12MNcos DMN DM∠==.则异面直线BC 与MD(Ⅲ)连接CM .由题意可知CM ⊥平面ABD .则∠CDM 为直线CD 与平面ABD所成的角.计算可得CMsin CDM CD∠=.即直线CD 与平面ABD. 详解:(Ⅰ)证明:由平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,AD ⊥AB ,可得AD ⊥平面ABC ,故AD ⊥BC .(Ⅱ)取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,故MN ∥BC .所以∠DMN (或其补角)为异面直线BC 与MD 所成的角.在Rt △DAM 中,AM =1,故DMAD ⊥平面ABC ,故AD ⊥AC . 在Rt △DAN 中,AN =1,故DN.在等腰三角形DMN 中,MN =1,可得12cos MN DMN DM ∠==. 所以,异面直线BC 与MD(Ⅲ)连接CM .因为△ABC 为等边三角形,M 为边AB 的中点,故CM ⊥AB ,CMABC ⊥平面ABD ,而CM ⊂平面ABC ,故CM ⊥平面ABD .所以,∠CDM 为直线CD 与平面ABD 所成的角.Rt △CAD 中,CD=4.在Rt △CMD中,sin CM CDM CD ∠=. 所以,直线CD 与平面ABD点睛:本小题主要考查异面直线所成的角、直线与平面所成的角、平面与平面垂直等基础知识.考查空间想象能力、运算求解能力和推理论证能力.18. 棱柱1111ABCD A B C D −的所有棱长都等于4,60ABC ∠=°,平面11AA C C ⊥平面ABCD ,160A AC ∠=°.(1)证明:1DB AA ⊥;(2)求二面角1D AA B −−的平面角的余弦值;(3)在直线1CC 上是否存在点P ,使//BP 平面11DA C ?若存在,求出点P 的位置.【答案】(1)证明见解析;(2)35;(3)点P 在1C C 的延长线上且使1C C CP =. 【解析】【分析】(1)建立空间直角坐标系,结合10AA BD ⋅=,即可证得1DB AA ⊥;在(2)分别求得平面1AA D 和平面1AA B 的一个法向量,解向量的夹角公式,即可求解;(3)设1CP CC λ= ,求得BP 的坐标和平面11DA C 的法向量,结合30n BP ⋅= ,求得1λ=−,即可得到结论.【详解】由题意,连接BD 交AC 于O ,则BD AC ⊥,连接1A O ,在1AAO 中,14AA =,2AO =,160AAO ∠=°,∴2221112cos 60AO AA AO AA AO =+−=°⋅22211AO A O AA +=, ∴1A O AO ⊥,由于平面11AA C C ⊥平面ABCD ,所以1A O ⊥底面ABCD ,所以以OB 、OC 、1OA 所在直线为x 轴、y 轴、z 轴建立如图所示空间直角坐标系,则()0,2,0A −,()B ,()0,2,0C,()D −,(10,0,A , (1)由于()BD =−,(10,2,AA =,()2,0AB = , 则10AA BD ⋅= ,∴1BD AA ⊥.(2)设平面1AA D 的法向量()2,,n x y z = ,则21200n AA n AD ⋅= ⋅=,即0y y += + ,取1x =,可得()21n =− , 同理,可得平面1AA B的法向量()11,n = , 所以1212123cos 5n n n n n n ⋅⋅==− , 又由图可知成钝角,所以二面角1D A A B −−的平面角的余弦值是35. (3)假设在直线1CC 上存在点P ,使//BP 平面11DA C ,设1CP CC λ= ,(),,P x y z ,则()(,2,0,2,x y z λ−=,得(0,22,)P λ+,(22,)BP λ−+, 设3n ⊥ 平面11DA C ,则31131n A C n DA ⊥ ⊥ ,设()3333,,n x y z = ,得到333200y = +=,不妨取()31,0,1n =− ,又因为//BP 平面11DA C ,则30n BP ⋅= 即0−=得1λ=−.即点P 在1C C 的延长线上且使1C C CP =.【点睛】本题主要考查了空间向量在线面位置关系的判定与证明中的应用,以及直线与平面所成角的求解,其中解答中熟记空间向量与线面位置关系的关系,以及线面角的求解方法是解答的关键,着重考查推理与运算能力.19. 已知非空集合A 是由一些函数组成,满足如下性质:①对任意()f x A ∈,()f x 均存在反函数1()f x −,且1()f x A −∈;②对任意()f x A ∈,方程()f x x =均有解;③对任意()f x 、()g x A ∈,若函数()g x 为定义在R 上的一次函数,则(())f g x A ∈.(1)若1()()2x f x =,()23g x x =−,均在集合A 中,求证:函数12()log (23)h x x A =−∈; (2)若函数2()1x a f x x +=+(1x ≥)在集合A 中,求实数a 的取值范围; (3)若集合A 中的函数均为定义在R 上的一次函数,求证:存在一个实数0x ,使得对一切()f x A ∈,均有00()f x x =.【答案】(1)见详解;(2)[]1,3a ∈;(3)见详解; 【解析】【分析】(1)由1()()2x f x A =∈,根据性质①可得112()log f x x A −=∈,且存在00x >,使得 1002log x x =,由()23g x x A =−∈,且为一次函数,根据性质③即可证明.(2)由性质②,方程()211x a x x x +=≥+,即a x =在[)1,x ∈+∞上有解,可得1a ≥,变形21()1211x a a f x x x x ++==++−++,[)()1,x ∈+∞.与2的关系分类讨论,利用基本不等式的性质即可求解.(3)任取()1f x ax b =+,()2f x cx d A =+∈,由性质①,0a c ≠,不妨设,1a c ≠,(若1a =,则0b =,()1f x x =), 由性质③函数()()()()12g x f f x acx ad b A ==++∈, 由性质①:()()1x bc d h x A ac −−+=∈,由性质③:()()()()()1()acx bd b bc d ad b bc d h g x x A ac ac−++−++−+===∈ 由性质②方程:()()ad b bc d x x ac+−++=,可得ad b bc d +=+,即11b d a c =−−,即可得证. 【详解】(1)由1()()2x f x A =∈,根据性质①可得112()log f x x A −=∈,且存在00x >,使得 1002log x x =,由()23g x x A =−∈,且为一次函数,根据性质③可得:()()112()log (23)hx x f g x A −=−=∈.(2)由性质②,方程()211x a x x x +=≥+,即a x =在[)1,x ∈+∞上有解,1a ∴≥, 由22111()12111x a x a a f x x x x x +−+++===++−+++[)()1,x ∈+∞,2>,3a >时,112a −>,且()112a f f − =, ∴此时()f x 没有反函数,即不满足性质①.2≤,13a ≤≤时,函数()f x 在[)1,+∞上单调递增,∴此时()f x 有反函数,即满足性质①.综上:[]1,3a ∈.(3)任取()1f x ax b =+,()2f x cx d A =+∈,由性质①,0a c ≠,不妨设,1a c ≠,(若1a =,则0b =,()1f x x =),由性质③函数()()()()12g x f f x acx ad b A ==++∈, 由性质①:()()1x bc d h x A ac −−+=∈,由性质③:()()()()()1()acx bd b bc d ad b bc d h g x x A ac ac−++−++−+===∈ 由性质②方程:()()ad b bc d x x ac+−++=, ∴ad b bc d +=+,即11b d ac =−−, ()1f x x =,可得ax b x +=,1b x a =−, ()2f x x =,可得cx d x +=,1d x c =−, 由此可知:对于任意两个函数()1f x ,()2f x ,存在相同的0x 满足:()()10020f x x f x =,∴存在一个实数0x ,使得对一切()f x A ∈,均有00()f x x =.质,难度较大.。
高二上学期数学第一次月考练习题及答案

高二上学期数学第一次月考练习题及答案学校:___________班级:___________姓名:___________学号:___________一、单选题1. 直线10x y -+=的倾斜角为( )A .30°B .45°C .120°D .135° 2. 已知在空间直角坐标系中,A(1,-2,4),B(-2,3,0),C(2,-2,-5).则AC AB •是( ) A. 12 B. 23 C. 18 D. 333. 已知()()()1,1,1,3,,3,1,2,-===c y b x a ,且c a ⊥,c b //则=-b a 2( )A. ()121,,B. ()121,,-C. ()171--,,D. ()172,,4. 直线()()12120a x a y ---+=恒过一定点, 则此定点为( )A.(2,3)B.(2,4)C.(4,2) D(3,2 )三、填空题5. 直线0142=-+y x 的一个方向向量为______.6. 已知过点(-1,3),且与直线02143=-+y x 垂直的直线方程为__________.四、解答题7. 如图,在长方体1111ABCD A BC D -中12AAAD ==,点M 为AB 的中点,点N 是1BB 上靠近1B 的三等分点,1BD 与1B D 交于点O .(1)求证://OM 平面11BCC B ;(2)若1CO B D ⊥,求点N 到平面COM 的距离.参考答案1. B2. D3. C4.C5.满足21-=x y 的坐标均成立。
6..03134=+-y x7.【小问1详解】解:连接11,AD BC ,由O 和M 分别为线段1,BD AB 的中点,所以1//OM AD又由11AB D C =且11//AB D C ,所以四边形11ABC D 是平行四边形 所以11//AD BC ,可得1//OM BC因为OM ⊄平面11BCC B ,1BC ⊂平面11BCC B ,所以//OM 平面11BCC B .【小问2详解】解:连接11,BC C N ,由221122BC BC CC =+=因为O 为1B D 的中点,且1CO B D ⊥,所以122CD BC == 以D 为原点,1,,DA DC DD 所在直线分别为,,x y z 轴建立空间直角坐标系D xyz - 如图所示,则4(0,22,0),2,0),2,1),2,22,3C M O N ⎛⎫⎪⎝⎭ 所以()()1,2,1,2,2,0CO CM =-=-.设平面COM 的法向量为()111,,m x y z =,则1111120220m CO x y z m CM x y ⎧⋅=+=⎪⎨⋅==⎪⎩ 令11x =,则112,1y z ==,所以()1,2,1m =. 因为42,0,3CN ⎛⎫= ⎪⎝⎭,所以点N 到平面COM 的距离为53CN md m ⋅==.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大名一中高二第一次月考数学试题
(2018.9)
注意:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,时间120分钟.
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
第Ⅰ卷
一、选择题(本大题共l2小题,每小题5分,共60分。
在每小题给出的四个选项中只有一项是符合题目要求的。
)
1. 已知数列3,5,7,,21,n ⋅⋅⋅,9则73是它的( ) A.第30项
B.第31项
C.第32项
D.第33项
2. 一个各项为正数的等比数列,其每一项都等于它前面的相邻两项之和,则公比q =( ) A .
2
3
B. 5
C.
2
1
5- D.
2
1
5+ 3. 已知三角形三边比为5:7:8,则最大角与最小角的和为( ) A . 90
B. 120
C. 135
D. 150
4. 已知锐角三角形ABC 的面积为23,4=BC ,3=CA ,则角C 的大小为( )
A. 75
B. 60
C. 45
D. 30
5. 设等差数列{}n a 的前n 项和为n S ,若6726a a =+,则9S 的值为( )
A .27
B .36
C .45
D .54
6. 在△ABC 中,若C A B sin sin cos 2=,则△ABC 一定是( ) A.等腰直角三角形
B.等腰三角形
C.直角三角形
D.等边三角形
7. “远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几碗灯?”源自明代数学家吴敬所著的《九章算术比类大全》,通过计算得到答案是( ) A. 2
B. 3
C. 4
D. 5
8. 在△ABC 中,若 30=A ,6=a ,4=b ,那么满足条件的△ABC (
)
A . 有一个 B. 有两个 C. 不存在 D. 不能确定
9. 设等差数列{}n a 的前n 项和为n S ,若2=m S ,102=m S ,则=m S 3( ) A . 14
B. 24
C. 32
D. 42
10. 数列()⎪⎭
⎪⎬⎫
⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+n
n 872的最大项为第k 项,则k =(
) A. 5或6 B. 5 C. 6
D. 4或5
11. 在坡度一定的山坡A 处测得山顶上一建筑物CD 的顶端C 对于山坡的斜度为15°,向山顶前进100米到达B 后,又测得C 对于山坡的斜度为45°,若CD =50米,山坡对于地平面的坡角为θ,则cos θ=(
)
A .23+1
B .23-1
C.3-1
D .3+1
12. 已知数列{}n a ,若112,21n n a a a n +=+=-,则2017a =( ) A .2018
B .2018
C .2018
D . 2019
第Ⅱ卷
二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卡的相应位置)
13. 若数列{}n a 的前n 项和2
1n S n n =++,则n a =________________.
14. 已知△ABC 中,2=a ,3=b , 60=B ,则角C = .
15.某观测站在城A 南偏西20°方向的C 处,由城A 出发的一条公路,走向是南偏东40°,在C 处测得公路距C 处31千米的B 处有一人正沿公路向城A 走去,走了20千米后到达D 处,此时C 、D 间的距离为21千米,问这人还要走 千米可到达城A.
16. 已知n S 是等差数列{}n a 的前n 项和,且576S S S >>,给属下列五个命题:①0<d ;②011>S ;③使得n S 0>最大的n 值是12;④数列{}n S 中最大项为12S ;⑤76a a >,其中正确的命题的序号是 .
三、解答题:(本大题共6小题,共70分.解答时应写出相应的文字说明,证明过
程或演算步骤)
17. (本题满分10分)在等差数列{}n a 中,831=+a a ,且4a 为2a 和9a 的等比中项,求数列{{}n a 的首项、公差及前n 项和.
18. (本题满分12分)在ABC ∆中, 4,13a c ==,sin 4sin A B =. (1)求b 边的长; (2)求角C 的大小。
19. (本题满分12分)如图在△ABC 中,D 是边AC 上的点,且AD AB =,BD AB 32=
,
BD BC 2=.
(1)求BDA ∠cos 的值; (2)求C sin 的值.
20. (本题满分12分)n S 为数列{}n a 的前n 项和,已知0n a >,
2243n n n a a S +=+.
(1)求{}n a 的通项公式; (2)设1
1
n n n b a a +=,求数列{}n b 的前n 项和.
21. (本题满分12分)在ABC ∆中, cos (cos 3sin )cos 0C A A B +-=. (1)求角B 的大小; (2)若3,1b c ==,求ABC ∆的面积.
22. (本题满分12分)设数列{}n a 满足2
1*123333()3
n n n
a a a a n N -++++=
∈. (1)求数列{}n a 的通项公式;
(2)设n n
n
b a =,求数列{}n b 的前n 项和n S .
参考答案
CDBCDB BBCACC
13.⎪⎩
⎪⎨⎧≥=2213n n n 14. 75 15. 15 16. ①②③⑤
17. 设该数列的公差为d ,前n 项和为S n .由已知可得 2a 1+2d =8,(a 1+3d )2=(a 1+d )(a 1+8d ), 所以a 1+d =4,d (d -3a 1)=0,
解得a 1=4,d =0或a 1=1,d =3,即数列{a n }的首项为4,公差为0,或首项为1,公差为3.所以数列的前n 项和S n =4n 或S n =3n 2-n
2. 18. (1)依正弦定理
sin sin a b
A B
=有sin sin b A a B =…………………………3分 又4,a =sin 4sin A B =,∴1b = …………………………6分
(2)依余弦定理有222161131
cos 22412
a b c C ab +-+-===⨯⨯……………………9分
又0︒<C <180︒,∴60C ︒= …………………………12分 19. (1)
33;(2)6
6
20. (1)由2243n n n a a S +=+,可知2
111243n n n a a S ++++=+,
可得221112()4n n n n n a a a a a +++-+-=,即22
11112()()()n n n n n n n n a a a a a a a a +++++=-=-+,
由于0n a >,可得12n n a a +-=,
又2
111243a a a +=+,解得11a =-(舍去),13a =,
所以{}n a 是首项为3,公差为2的等差数列,通项公式为21n a n =+. (2)由21n a n =+可知,
111(21)(23)n n n b a a n n +=
=++111()22123
n n =-++. 设数列{}n b 的前n 项和为n T ,则
12n n T b b b =+++…1111111()()()235572123n n ⎡⎤=
-+-++-⎢⎥++⎣⎦
…3(23)n n =+. 21. (1
)由已知得cos()cos cos cos 0A B A B A B -++-=
即sin sin cos 0A B A B -=
因为sin 0A ≠
,所以sin 0tan B B B -=⇒=因为0B π<< 所以3
B π
=
(2)因为2222cos b a c ac B =+-⋅
所以231a a =+-,即220a a --=⇒2a =
所以11sin 212222
ABC S ac B ∆=
=⋅⋅⋅=
22. (1)∵2
11233333
n n n
a a a a -++++=
,① ∴113
a =
. 2212311
333(2)3
n n n a a a a n -+-+++
+=
≥,② ①-②,得1
113(2)333
n n n n a n --=
-=≥, 化简得1
(2)3
n n a n =≥. 显然113a =
也满足上式,故*
1()3
n n a n N =∈. (2)由(1)得3n
n b n =, 于是23
1323333n n S n =⨯+⨯+⨯+
+,③ 234131323333n n S n +=⨯+⨯+⨯+
+,④
③-④得23
1233333n n n S n +-=+++
++,
即1
1332313
n n n S n ++--=--,
∴1213
344
n n n S +-=+.。