高二数学第一次月考情况分析

合集下载

广东省部分学校2024—2025学年高二上学期第一次月考联考数学试卷解析版

广东省部分学校2024—2025学年高二上学期第一次月考联考数学试卷解析版

2024—2025学年高二上学期第一次月考联考高二数学试卷解析版满分150分,考试用时120分钟注意事项:1. 答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码贴在答题卡上的指定位置.2. 选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3. 非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4. 考试结束后,请将本试卷和答题卡一并上交.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题所给的四个选项中,只有一项是符合题目要求的)1.已知()()2,1,3,1,1,1a b =−=− ,若()a a b λ⊥−,则实数λ的值为( )A .2−B .143−C .73D .2【答案】C【详解】 向量()()2,1,3,1,1,1a b =−=−若()a a b λ⊥−,则2()(419)(213)0a a b a a b λλλ⋅−−⋅++−++,73λ∴=.故选:C .2.P 是被长为1的正方体1111ABCD A B C D −的底面1111D C B A 上一点,则1PA PC ⋅的取值范围是( )A .11,4−−B .1,02−C .1,04 −D .11,42 −−【答案】B【详解】如图,以点D 为坐标原点,1,,DA DC DD 所在直线分别为,,x y z 轴,建立空间直角坐标系, 则AA (1,0,0),()10,1,1C ,设(),,P x y z ,01x ≤≤,01y ≤≤,1z =,()1,,1PA x y ∴=−−− ,()1,1,0PC x y =−− ,()()2222111111222PA PC x x y y x x y y x y ∴⋅=−−−−=−+−=−+−−,当12x y ==时, 1PA PC ⋅ 取得最小值12−,当0x =或1,0y =或1时,1PA PC ⋅取得最大值0, 所以1PA PC ⋅ 的取值范围是1,02−.故选:B.3.已知向量()4,3,2a =− ,()2,1,1b =,则a 在向量b上的投影向量为( )A .333,,22B .333,,244C .333,,422D .()4,2,2【答案】A【详解】向量a 在向量b()()2333cos ,2,1,12,1,13,,222b a b a a b b b b ⋅⋅⋅=⋅===. 故选:A.4.在棱长为2的正方体1111ABCD A B C D −中,E ,F 分别为棱1AA ,1BB 的中点,G 为棱11A B 上的一点,且()102A G λλ=<<,则点G 到平面1D EF 的距离为( ) ABCD【答案】D【详解】以D 为坐标原点,DA 所在直线为x 轴,DC 所在直线为y 轴,1DD 所在直线为z轴,建立如图所示的空间直角坐标系,则()2,,2G λ,()10,0,2D ,()2,0,1E ,()2,2,1F , 所以()12,0,1ED =− ,()0,2,0= EF ,()0,,1EG λ=.设平面1D EF 的法向量为(),,n x y z = ,则12020n ED x z n EF y ⋅=−+= ⋅== , 取1x =,得()1,0,2n =,所以点G 到平面1D EF的距离为EG n d n⋅== , 故选:D .5.已知四棱锥P ABCD −,底面ABCD 为平行四边形,,M N 分别为棱,BC PD 上的点,13CM CB =,PN ND =,设AB a=,AD b =,AP c = ,则向量MN 用{},,a b c 为基底表示为( )A .1132a b c ++B .1162a b c −++C .1132a b c −+D .1162a b c −−+【答案】D【详解】由条件易知()11113232MN MC CD DN BC BA DP AD BA AP AD =++=++=++−()11113262b ac b a b c =−+−=−−+. 故选:D6.在四面体OABC 中,空间的一点M 满足1146OM OA OB OC λ=++ .若,,MA MB MC共面,则λ=( )A .12B .13 C .512D .712【答案】D【详解】在四面体OABC 中,,,OA OB OC不共面,而1146OM OA OB OC λ=++ ,则由,,MA MB MC ,得11146λ++=,所以712λ=. 故选:D7.已知向量()()1,21,0,2,,a t t b t t =−−=,则b a − 的最小值为( ) AB CD 【答案】C【详解】因为()()1,21,0,2,,a t t b t t =−−=,所以b a −=≥当0t =时,等号成立,故b a −的最小值为.故选:C.8.“长太息掩涕兮,哀民生之多艰”,端阳初夏,粽叶飘香,端午是一大中华传统节日.小玮同学在当天包了一个具有艺术感的肉粽作纪念,将粽子整体视为一个三棱锥,肉馅可近似看作它的内切球(与其四个面均相切的球,图中作为球O ).如图:已知粽子三棱锥P ABC −中,PAPB AB AC BC ====,H 、I 、J 分别为所在棱中点,D 、E 分别为所在棱靠近P 端的三等分点,小玮同学切开后发现,沿平面CDE 或平面HIJ .则肉馅与整个粽子体积的比为( ).A B C D 【答案】B 【详解】如图所示,取AB 中点为F ,PF DE G ∩=, 为方便计算,不妨设1PFCF ==, 由PA PB AB AC BC ====,可知PA PB AB AC BC =====又D 、E 分别为所在棱靠近P 端的三等分点, 则2233FG PF ==, 且AB PF ⊥,AB CF ⊥、PF CF F = ,PF ,CF ⊂平面PCF , 即AB ⊥平面PCF ,又AB ⊂平面ABC ,则平面PCF ⊥平面ABC , 设肉馅球半径为r ,CG x =,由于H 、I 、J 分别为所在棱中点,且沿平面HIJ 切开后,截面中均恰好看不见肉馅, 则P 到CF 的距离4d r =,sin 4d PFC r PF∠==,12414233GFC rS r =⋅⋅⋅=△,又2132GFC rS x =++⋅ ,解得:1x =,故22241119cos 223213CF FG CGPFCCF FG+−+−∠===⋅⋅⋅⋅, 又2222111cos 21132P PF CF PC PC F F C P F C +−+⋅−∠==⋅=⋅⋅,解得PC =,sin PFC ∠所以:4sin 1r PFC ∠==,解得r =343V r =π球, 由以上计算可知:P ABC −为正三棱锥,故111sin 4332ABC V S d AB AC BAC r =⋅⋅=⋅⋅⋅⋅∠⋅粽11432=⋅.故选:B.二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对得6分,部分选对的得部分分,有选错的得0分)9.如图,在棱长为2的正方体1111ABCD A B C D −中,E 为1BB 的中点,F 为11A D 的中点,如图所示建立空间直角坐标系,则下列说法正确的是( )A .13DB =B .向量AE 与1ACC .平面AEF 的一个法向量是()4,1,2−D .点D 到平面AEF【答案】BCD【详解】由题可知,AA (2,0,0),()0,0,0D ,()2,2,1E ,()1,0,2F ,()12,2,2B ,()10,2,2C ,所以1DB =A 错误;()0,2,1AE = ,()12,2,2AC =−,所以111·cos ,AE AC AE AC AE AC ==B 正确; ()0,2,1AE = ,()1,0,2AF =− ,记()4,1,2n =−, 则0,0AE AF n n == ,故,AE AF n n ⊥⊥,因为AE AF A ∩=,,AE AF ⊂平面AEF ,所以()4,1,2n =−垂直于平面AEF ,故选项C 正确;DDAA �����⃗=(2,0,0),所以点D 到平面AEF的距离·DA n d n==,故选项D 正确;故选:BCD10.在正三棱柱111ABC A B C −中,1AB AA =,点P 满足][1([0,1,0,])1BP BC BB λµλµ=+∈∈,则下列说法正确的是( )A .当1λ=时,点P 在棱1BB 上B .当1µ=时,点P 到平面ABC 的距离为定值 C .当12λ=时,点P 在以11,BC B C 的中点为端点的线段上 D .当11,2λµ==时,1A B ⊥平面1AB P 【答案】BCD【详解】对于A ,当1λ=时,[]1,0,1CP BP BC BB µµ=−=∈ , 又11CC BB =,所以1CP CC µ= 即1//CP CC ,又1CP CC C = ,所以1C C P 、、三点共线,故点P 在1CC 上,故A 错误;对于B ,当1µ=时,[]11,0,1B P BP BB BC λλ=−=∈, 又11B C BC =,所以111B P B C λ= 即111//B P B C ,又1111B B C P B = ,所以11B C P 、、三点共线,故点P 在棱11B C 上,由三棱柱性质可得11//B C 平面ABC ,所以点P 到平面ABC 的距离为定值,故B 正确; 对于C ,当12λ=时,取BC 的中点11,D B C 的中点E , 所以1//DE BB 且1DE BB =,BP BD =+ []1,0,1BB µµ∈ ,即1DP BB µ= , 所以DP E D µ= 即//DP DE,又DP DE D ∩=,所以D E P 、、三点共线,故P 在线段DE 上,故C 正确;对于D ,当11,2λµ==时,点P 为1CC 的中点,连接1,A E BE , 由题111A B C △为正三角形,所以111A E B C ⊥,又由正三棱柱性质可知11A E BB ⊥,因为1111BB B C B = ,111BB B C ⊂、平面11BB C C ,所以1A E ⊥平面11BB C C , 又1B P ⊂平面11BB C C ,所以11A E B P ⊥,因为1111B C BB CC ==,所以11B E C P =,又111π2BB E B C P ∠=∠=, 所以111BB E B C P ≌,所以111B EB C PB ∠=∠, 所以1111111π2PB C B EB PB C C PB ∠+∠=∠+∠=, 设BE 与1B P 相交于点O ,则1π2B OE ∠=,即1BE B P ⊥,又1A E BE E = ,1A E BE ⊂、平面1A EB , 所以1B P ⊥平面1A EB ,因为1A B ⊂平面1A EB , 所以11B P A B ⊥,由正方形性质可知11A B AB ⊥, 又111AB B P B = ,11B P AB ⊂、平面1AB P , 所以1A B ⊥平面1AB P ,故D 正确. 故选:BCD.11.布达佩斯的伊帕姆维泽蒂博物馆收藏的达・芬奇方砖在正六边形上画了具有视觉效果的正方体图案,如图1,把三片这样的达・芬奇方砖拼成图2的组合,这个组合再转换成图3所示的几何体.若图3中每个正方体的棱长为1,则( )A .122CG AB AA =+B .直线CQ 与平面1111DC B A 所成角的正弦值为23C .点1C 到直线CQD .异面直线CQ 与BD 【答案】BC【详解】A 选项,以A 为坐标原点,1,,DA AB AA所在直线分别为,,x y z 轴,建立空间直角坐标系,则()()()()()()10,0,0,0,1,0,0,0,1,1,1,2,0,1,2,1,1,0A B A G Q C −−−−,()()()110,1,1,1,1,1,1,0,0B C D −−,()()()10,2,2,0,1,0,0,0,1CG AB AA =−== , 则()()()1220,2,00,0,20,2,2AB AA CG +=+=≠,A 错误; B 选项,平面1111D C B A 的法向量为()0,0,1m =, ()()()0,1,21,1,01,2,2CQ =−−−=− ,设直线CQ 与平面1111D C B A 所成角的大小为θ,则2sin cos 3CQ θ= ,B 正确;C 选项,()10,0,1CC =,点1C 到直线CQ 的距离为d ,C 正确; D 选项,()()()1,0,00,1,01,1,0BD =−−=−−,设异面直线CQ 与BD 所成角大小为α,则cos cos ,CQ α= D 错误.故选:BC三、填空题(本大题共3小题,每小题5分,共15分)12.正三棱柱111ABC A B C −的侧棱长为2,底面边长为1,M 是BC的中点.在直线1CC 上求一点N ,当CN 的长为 时,使1⊥MN AB . 【答案】18/0.125【详解】取11B C 的中点为1M ,连接1,MM AM ,由正三棱柱性质可得11,,AM MM BM MM AM BM ⊥⊥⊥, 因此以M 为坐标原点,以1,,AM BM MM 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如下图所示:易知()11,0,,2,0,0,02A B M ,设CN 的长为a ,且0a >,可得10,,2N a− ; 易知1110,,,,222MN a AB=−=若1⊥MN AB ,则1112022MN AB a ⋅=−×+= ,解得18a =, 所以当CN 的长为18时,使1⊥MN AB .故答案为:1813.四棱锥P ABCD −中,PD ⊥底面ABCD ,底面ABCD 是正方形,且1PD =,3AB =,G 是ABC 的重心,则PG 与平面PAD 所成角θ的正弦值为 . 【答案】23【详解】因为PD ⊥底面ABCD ,底面ABCD 是正方形,所以,,DA DC DP 两两垂直,以D 为坐标原点,,,DA DC DP的方向分别为,,x y z 轴的正方向,建立如图所示空间直角坐标系,则()0,0,0D ,()0,0,1P ,()3,0,0A ,()3,3,0B ,()0,3,0C ,则重心()2,2,0G ,因而()2,2,1PG =− ,()3,0,0DA = ,()0,0,1DP = ,设平面PAD 的一个法向量为(),,m x y z = ,则300m DA x m DP z ⋅== ⋅== ,令1y =则()0,1,0m = , 则22sin cos ,133m PG m PG m PG θ⋅====×⋅ , 故答案为:23. 14.坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮那,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若25m AB =,10m BC =,且等腰梯形所在平面、等腰三角形所在平面与平面ABCD的夹角的正切值均为,则该五面体的所有棱长之和为 .【答案】117m【详解】如图,过E 做EO ⊥平面,垂足为O ,过E 分别做EG BC ⊥,EM AB ⊥,垂足分别为G ,M ,连接OG ,OM ,由题意得等腰梯形所在的面、等腰三角形所在的面与底面夹角分别为EMO ∠和EGO ∠,所以tan tan EMO EGO ∠=∠ 因为EO ⊥平面ABCD ,⊂BC 平面ABCD ,所以EO BC ⊥,因为EG BC ⊥,EO ,EG ⊂平面EOG ,EO EG E = ,所以⊥BC 平面EOG ,因为OG ⊂平面EOG ,所以BC OG ⊥,同理,OM BM ⊥,又BM BG ⊥,故四边形OMBG 是矩形,所以由10BC =得5OM =,所以EO =5OG =,所以在直角三角形EOG中,EG =在直角三角形EBG 中,5BG OM ==,8EB =, 又因为55255515EF AB −−−−,所有棱长之和为2252101548117×+×++×=. 故答案为:117m四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题13分)如图,在长方体1111ABCD A B C D −中,11,2AD AA AB ===,点E 在棱AB 上移动.(1)当点E 在棱AB 的中点时,求平面1D EC 与平面1DCD 所成的夹角的余弦值;(2)当AE 为何值时,直线1A D 与平面1D EC 所成角的正弦值最小,并求出最小值.【答案】(2)当2AE =时,直线1A D 与平面1D EC【详解】(1)以D 为坐标原点,1,,DA DC DD 所在直线为坐标轴建立如图所示的空间直角坐标系,当点E 在棱AB 的中点时,则1(0,0,1),(1,1,0),(0,2,0),(0,0,0),(1,0,0)E C D A D ,则1(1,1,1),(1,1,0),(1,0,0)ED EC DA =−−=−= ,设平面1D EC 的一个法向量为(,,)n x y z = ,则1·0·0n ED x y z n EC x y =−−+= =−+= ,令1x =,则1,2y z ==,所以平面1D EC 的一个法向量为(1,1,2)n = ,又平面1DCD 的一个法向量为(1,0,0)DA = ,所以·cos ,·DA n DA n DA n == 所以平面1D EC 与平面1DCD(2)设AE m =,则11(0,0,1),(1,,0),(0,2,0),(0,0,0),(1,0,1)E m C D A D ,则11(1,,1),(1,2,0),(02),(1,0,1)ED m EC m m DA =−−=−−≤≤= ,设平面1D EC 的一个法向量为(,,)n x y z =,则1·0·(2)0n ED x my z n EC x m y =−−+= =−+−=,令1y =,则2,2x m z =−=, 所以平面1D EC 的一个法向量为(2,1,2)n m =− , 设直线1A D 与平面1D EC 所成的角为θ,则11||sin ||||n DA n DA θ== 令4[2,4]m t −=∈,则sin θ= 当2t =时,sin θ16.(本小题15分) 如图所示,直三棱柱11ABC A B C −中,11,92,0,,CA CB BCA AA M N °==∠==分别是111,A B A A 的中点.(1)求BN 的长;(2)求11cos ,BA CB 的值.(3)求证:BN ⊥平面1C MN .【答案】(3)证明见解析【详解】(1)如图,建立以点O 为坐标原点,CA 、CB 、1CC 所在直线分别为x 轴、y 轴、z 轴的空间直角坐标系.依题意得(0,1,0),(1,0,1)B N ,∴BN = ;(2)依题意得,()()()()111,0,2,0,1,0,0,0,0,0,1,2A B C B ,∴1(1,1,2)BA =− ,1(0,1,2)CB = ,113BA CB =⋅,1BA =,1CB =所以11111cos ,BA CB BA CB BA CB ⋅==⋅ (3)证明:()()()10,0,2,0,1,0,1,0,1C B N ,11,,222M. ∴111,,022C M = ,()11,0,1C N =− ,()1,1,1BN =− ,∴1111(1)10022C M BN ⋅×+×−+× , 1110(1)(1)10C N BN ⋅=×+×−+−×= ,∴1C M BN ⊥ ,1C N BN ⊥ ,即11,C M BN C N BN ⊥⊥, 又1C M ⊂平面1C MN ,1C N ⊂平面1C MN ,111= C M C N C , ∴BN ⊥平面1C MN .17.(本小题15分)如图,在四棱维P ABCD −中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,AC CD ==(1)求直线PB 与平面PCD 所成角的正切值;(2)在PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AM AP的值;若不存在,说明理由.【答案】 (2)存在点M ,使得//BM 平面PCD ,14AM AP =. 【详解】(1)取AD 的中点为O ,连接,PO CO ,因为PA PD =,所以PO AD ⊥,又平面PAD ⊥平面ABCD , 平面PAD ∩平面ABCD AD =,PO ⊂平面PAD ,所以⊥PO 平面ABCD ,又AC CD =,所以CO AD ⊥,PA PD ⊥,2AD =,所以1PO =,AC CD ==2CO =, 所以以O 为坐标原点,分别以,,OC OA OP 所在的直线为,,x y z 轴建立空间直角坐标系, PP (0,0,1),()2,0,0C ,()0,1,0A ,()1,1,0B ,()0,1,0D −,所以()2,0,1PC =− ,()0,1,1PD =−− ,()1,1,1PB =− ,设平面PCD 的一个法向量为mm��⃗=(xx ,yy ,zz ), 则00PC m PD m ⋅= ⋅=,200x z y z −= −−= ,令1,x =则2,2z y ==−, 所以()1,2,2m =− ,设直线PB 与平面PCD 所成角为θ,sin cos ,m θ=所以cos θ==tan θ= 所以直线PB 与平面PCD. (2)在PA 上存在点M ,使得()01PMPA λλ=≤≤ , 所以()0,1,1PA =− ,所以()0,,PM PA λλλ==− ,所以()0,,1M λλ−,所以()1,1,1BM λλ=−−− ,因为//BM 平面PCD ,所以BM m ⊥ ,即()()121210λλ−−−+−=,解得34λ=, 所以存在点M ,使得//BM 平面PCD ,此时14AM AP =. 18.(本小题17分)如图1,在边长为4的菱形ABCD 中,60DAB ∠=°,点M ,N 分别是边BC ,CD 的中点,1AC BD O ∩=,AC MN G ∩=.沿MN 将CMN 翻折到PMN 的位置,连接PA ,PB ,PD ,得到如图2 所示的五棱锥P ABMND −.(1)在翻折过程中是否总有平面PBD ⊥平面PAG ?证明你的结论;(2)若平面PMN ⊥平面MNDB ,线段PA 上是否存在一点Q ,使得平面QDN 与平面PMN 所成角的余弦值为Q 的位置;若不存在,请说明理由. 【答案】(1)总有平面PBD ⊥平面PAG ,证明详见解析(2)存在,Q 是PA 的靠近P 的三等分点,理由见解析.【详解】(1)折叠前,因为四边形ABCD 是菱形,所以AC BD ⊥, 由于,M N 分别是边BC ,CD 的中点,所以//MN BD , 所以MN AC ⊥,折叠过程中,,,,,MN GP MN GA GP GA G GP GA ⊥⊥∩=⊂平面PAG , 所以MN ⊥平面PAG ,所以BD ⊥平面PAG ,由于BD ⊂平面PBD ,所以平面⊥平面PAG .(2)存在,理由如下:当平面PMN ⊥平面MNDB 时,由于平面PMN 平面MNDB MN =,GP ⊂平面PMN ,GP MN ⊥, 所以GP ⊥平面MNDB ,由于AG ⊂平面MNDB ,所以GP AG ⊥, 由此以G 为空间坐标原点建立如图所示空间直角坐标系,依题意可知())(),2,0,2,0,0,1,0,2,P DB N PB −− ()A ,(PA = ,设()01PQ PA λλ=≤≤ ,则(()(),0,GQ GP PQ GP PA λ=+=+=+= , 平面PMN 的法向量为()11,0,0n = ,()(),DQ DN , 设平面QDN 的法向量为()2222,,n x y z = ,则()2222222200n DQ x y z n DN y ⋅=++= ⋅+= ,故可设()21n λλ=−+ , 设平面QDN 与平面PMN 所成角为θ,由于平面QDN 与平面PMN所以1212cos n n n n θ⋅==⋅ 解得13λ=, 所以当Q 是PA 的靠近P 的三等分点时,平面QDN 与平面PMN19.(本小题17分)如图,四棱锥P ABCD −中,四边形ABCD 是菱形,PA ⊥平面,60ABCD ABC ∠= ,11,,2PA AB E F ==分别是线段BD 和PC 上的动点,且()01BE PF BD PC λλ==<≤.(1)求证://EF 平面PAB ;(2)求直线DF 与平面PBC 所成角的正弦值的最大值;(3)若直线AE 与线段BC 交于M 点,AH PM⊥于点H ,求线段CH 长的最小值.【答案】(1)证明见解析【详解】(1)由于四边形ABCD 是菱形,且60ABC ∠= ,取CD 中点G ,则AG CD ⊥, 又PA ⊥平面ABCD ,可以A 为中心建立如图所示的空间直角坐标系, 则()()()()()2,0,0,,,0,0,1,B C D P G −,所以()()()1,,2,0,1PC BD BP −−=− , 由()01BE PF BD PCλλ==<≤, 可知,,BE BD PF PC EF EB BP PF BD BP PC λλλλ==∴=++=−++ ()42,0,1λλ=−−,易知()AG = 是平面PAB 的一个法向量, 显然0EF AG ⋅= ,且EF ⊄平面PAB ,即//EF 平面PAB ;(2)由上可知()()()1,,DP PF DF λλλλ+==+−=+− , 设平面PBC 的一个法向量为(),,n x y z =,则200n BP x z n PC x z ⋅=−+= ⋅=−= , 令1x =,则2,z y ==2n =, 设直线DF 与平面PBC 所成角为α,则sin cos ,n DF n DF n DF α⋅===⋅ 易知35λ=时,()2min 165655λλ−+=,即此时sin α(3)设()(](),0,0,12,0BM tBC t t AM AB BM t ==−∈⇒=+=− , 由于,,H M P 共线,不妨设()1AH xAM x AP =+− ,易知AM AP ⊥,则有()()22010AH PM AH AM AP xAM x AP ⋅=⋅−=⇒−−= , 所以22114451x t t AM =−++ , 则()()2CH CA AH t x x =+=−−− , 即()()2222454454655445t CH t t x t x t t −−=−+−++=+−+ 记()(]()2450,1445t f t t t t −−=∈−+,则()()()2228255445t t f t t t −−+=−+′, 易知22550t t −+>恒成立,所以()0f t ′<,即()f t 单调递减,所以()()min 915f t f CH ≥=−⇒。

高二第二学期第一次月考总结1000字8篇

高二第二学期第一次月考总结1000字8篇

高二第二学期第一次月考总结1000字8篇篇1随着春风拂面,高二第二学期的第一次月考也已经落下帷幕。

本次考试不仅是对学生们学习成果的一次检验,更是对班级整体学习氛围和教学成果的全面评估。

在此,我将对本次月考进行全面而深入的总结。

一、考试概况本次月考共涉及九门学科,包括语文、数学、英语等核心科目以及物理、化学、生物等自然科学。

考试时间为三天,形式为闭卷考试。

全体高二学生参加,总体考试情况良好,但也暴露出一些问题。

二、成绩分析1. 总体成绩:本次月考平均成绩较上学期有所提高,反映出学生们在寒假期间进行了有效的复习和预习。

尤其是数学和英语成绩提升明显,显示出学生们在基础学科上的扎实功底和持续进步。

2. 学科差异:在学科之间,成绩存在差异。

语文、历史等人文科目的成绩相对稳定,而物理、化学等自然科学科目则呈现出较大的波动。

这可能与学科特点和教学方法有关,需要在后续教学中加以关注和调整。

3. 学生表现:部分优秀学生表现出色,成绩稳定在班级前列。

然而,也有部分学生在某些科目上表现不佳,需要找到原因并采取措施加以改进。

三、存在问题1. 心态问题:部分学生在考试前存在过度紧张现象,影响正常发挥。

建议加强心理辅导,引导学生树立正确的学习态度。

2. 复习方法:一些学生复习方法不够科学,导致效率低下。

老师需要指导学生们制定合理的复习计划,提高学习效率。

3. 知识掌握:部分学生在自然科学科目上表现出知识掌握不牢的现象,需要在日常教学中加强基础知识的巩固和深化。

四、改进措施1. 加强心理辅导:组织专题心理辅导活动,帮助学生缓解考试压力,调整心态。

2. 优化教学方法:针对不同学科特点,调整教学策略,提高教学效果。

3. 提高课堂效率:加强课堂管理,确保课堂效率。

老师需要关注每位学生的学习情况,及时解答疑惑。

4. 加强基础训练:针对自然科学科目,加强基础知识的训练和巩固,提高学生知识掌握程度。

5. 家校合作:加强与家长的沟通与合作,共同关注学生的学习情况,形成家校共同促进的良好氛围。

2024-2025学年广东省深圳市高二上学期第一次月考数学质量检测试题(含解析)

2024-2025学年广东省深圳市高二上学期第一次月考数学质量检测试题(含解析)

2024-2025学年广东省深圳市高二上学期第一次月考数学质量检测试题一、单选题(本大题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.)1. 如图所示,在三棱台中,截去三棱锥,则剩余部分是()A B C ABC '''-A ABC '-A. 三棱锥B. 四棱锥C. 三棱柱D. 组合体2. 棱长为的正四面体的表面积为( )1B. C. D. 3. 如图,在正四棱台中,分别为棱的中1111ABCD A B C D -,,,E F G H 1111,,,A D B C BC AD 点,则()A. 直线与直线是异面直线B. 直线与直线是异面直线HE GF HE 1BB C. 直线与直线共面D. 直线与直线共面HE 1CC HE BF 4. 底面积是,侧面积是的圆锥的体积是()π3πA. C. 2π35. 已知正方体中,E 为中点,则异面直线与 所成角的余弦值1111ABCD A B C D -11B C 1BA CE 为( )6. 如图,在正四棱台中,,则该正四棱台1111ABCD A B C D-1114,2,AB A B AA ===的体积为()A. B. C. D. 11291409112314037. 我国古代数学专著《九章算术》中有这样一个问题:“今有木长二丈,围之三尺.葛生其下,缠木七周,上与木齐.问葛长几何?”其意思为:“圆木长2丈,圆周长为3尺,葛藤从圆木的底部开始向上生长,绕圆木7周,顶部刚好与圆木平齐,问葛藤长为多少?"若1丈尺,则10=葛藤最少长( )A. 21尺B. 25尺C. 29尺D. 33尺8. 如图所示,在正方体中,E ,F 分别为,AB 上的中点,且1111ABCD A B C D -1AA P 点是正方形内的动点,若平面,则P 点的轨迹长度为EF =11ABB A 1C P ∥1CD EF ()A. B. D. 3ππ二、多选题(本大题共3小题,每小题6分,共计18分.每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的部分分,有选错的得0分.)9. 已知,是两个不同的平面,l ,m 是两条不同的直线,有如下四个命题,其中正确的αβ是()A. 若,,则B. 若,,,则αβ⊥l β⊥l α∥m β⊥l m ∥l α⊂αβ⊥C. 若,,,则 D. 若,,则αβ∥m α⊥l β⊂l m⊥m αβ= l α∥l m∥10. 在实践课上,小华将透明塑料制成了一个长方体容器,如图(1),1111ABCD A B C D -,,在容器内灌进一些水,现固定容器底面一边BC2AB BC ==15A A =()14D H DH =于地面上,再将容器倾斜,如图(2),则()A. 有水的部分始终呈三棱柱或四棱柱B. 棱与水面所在平面平行11A D C. 水面EFGH 所在四边形的面积为定值D. 当容器倾斜成如图(3)所示时,EF 的最小值为11. 半正多面体(semiregular solid )亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形构成(如图所示),则()A. 平面EABBF ⊥B. 该二十四等边体的体积为203C. 该二十四等边体外接球的表面积为6πD. PN 与平面EBFN 三、填空题(本大题共3小题,每小题5分,共计15分)12. 如下图,三角形A'B'C'是三角形 ABC 的直观图,则三角形 ABC 的面积是_______.13. 圆柱的底面半径为1,侧面积为,则该圆柱外接球的表面积为______.10π14. 球面被平面所截得的一部分叫做球冠,截得的圆叫做球冠的底,垂直于截面的直径被截得的一段叫做球冠的高.球被平面截下的一部分叫做球缺,截面叫做球缺的底面,垂直于截面的直径被截下的线段长叫做球缺的高,球缺是旋转体,可以看做是球冠和其底所在的圆面所围成的几何体.如图1,一个球面的半径为,球冠的高是,球冠的表面积公式是.R h 2πS Rh =如图2,已知是以为直径的圆上的两点,,扇形,C D AB ππ,63AOC BOD ∠∠==的面积为,则扇形绕直线旋转一周形成的几何体的表面积为__________.COD πCOD AB四、解答题(本题共5小题,共7分,解答应写出文字说明、证明过程或演算步骤.)15.如图,在正三棱柱中,,,,分别是,,,111ABC A B C -E F G H AB AC 11A B 的中点.11A C(1)求证:,,,四点共面;B C H G (2)求证:平面平面;//BCHG 1A EF 16.如图,AB 为⊙O 的直径,PA 垂直于⊙O 所在的平面,M 为圆周上任意一点,AN ⊥PM ,N 为垂足.(1)若,Q 为PB 的中点,求三棱锥的体积;2PA AM BM ===Q ABM -(2)求证:AN ⊥平面PBM ;(3)若AQ ⊥PB ,垂足为Q ,求证:NQ ⊥PB.17.我国古代数学名著《九章算术》中,称四面都为直角三角形的三棱锥为“鳖臑”.如图,在三棱锥中,平面.A BCD -AB ⊥,BCD BC CD⊥(1)证明:三棱锥为鳖臑;A BCD -(2)若为上一点,点分别为的中点.平面与平面的交线为E AD ,P Q ,BC BE DPQ ACD .l ①证明:直线平面;//PQ ACD ②判断与的位置关系,并证明你的结论.PQ l 18. 一块四棱锥木块如图所示,平面,四边形ABCD 为平行四边形,且SD ⊥ABCD ,.60BAD ∠=︒224AB BC SD ===(1)要经过点B 、D 将木料锯开,使得截面平行于侧棱,在木料表面该怎样画线?并说SA 明理由;(2)计算(1)中所得截面的面积;(3)求直线SC 与(1)中截面所在平面所成角的正弦值.19. 空间的弯曲性是几何研究的重要内容,用曲率刻画空间的弯曲性,规定:多面体顶点的曲率等于与多面体在该点的面角之和的差,其中多面体的面的内角叫做多面体的面角,2π角度用弧度制.例如:正四面体每个顶点均有3个面角,每个面角均为,故其各个顶点的曲π3率均为.如图,在直三棱柱中,点A 的曲率为,M 为的π2π3π3-⨯=111ABC A B C -2π31CC 中点,且.AB AC =(1)判断的形状,并说明理由;ABC V (2)若,求点到平面的距离;124AA AB ==B 1AB M (3)表面经过连续变形可以变为球面的多面体称为简单多面体.关于简单多面体有著名欧拉定理:设简单多面体的顶点数为D ,棱数为L ,面数为M ,则有.利用此定理2D L M -+=试证明:简单多面体的总曲率(多面体有顶点的曲率之和)是常数.2024-2025学年广东省深圳市高二上学期第一次月考数学质量检测试题一、单选题(本大题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.)1. 如图所示,在三棱台中,截去三棱锥,则剩余部分是()A B C ABC '''-A ABC '-A. 三棱锥B. 四棱锥C. 三棱柱D. 组合体【正确答案】B【分析】根据图形和棱锥的定义及结构特征,即可得出结论.【详解】三棱台中,沿平面截去三棱锥,A B C ABC '''-A BC 'A ABC '-剩余的部分是以为顶点,四边形为底面的四棱锥.A 'BCCB ''A BCC B '''-故选:B2. 棱长为的正四面体的表面积为( )1B. C. D. 【正确答案】A【分析】利用三角形的面积公式可得出正四面体的表面积.【详解】棱长为的正四面体的表面积为.1221141sin 604122S =⨯⨯⨯=⨯⨯= 故选:A.3. 如图,在正四棱台中,分别为棱的中1111ABCD A B C D -,,,E F G H 1111,,,A D B C BC AD 点,则()A. 直线与直线是异面直线B. 直线与直线是异面直线HE GF HE 1BB C. 直线与直线共面D. 直线与直线共面HE 1CC HE BF 【正确答案】C【分析】由正四棱台的结构特征,侧棱的延长线交于同一点,的延长线必过此点,,HE GF 可判断选项中的线线位置关系.【详解】延长,1111,,,AA BB CC DD 由正四棱台的性质可得侧棱的延长线交于同一点,设该交点为.1111,,,AA BB CC DD P分别为棱的中点,,,,E F G H 1111,,,A D B C BC AD 延长,则的延长线必过点,,HE GF ,HE GF P 则直线与直线相交于点;与直线相交于点;与直线相交于点HE GF P 1BB P 1CC P;与直线是异面直线.BF 故选:C.4. 底面积是,侧面积是的圆锥的体积是()π3πA. C. 2π3【正确答案】D【分析】先利用圆锥的侧面积公式求出母线长,进而求出高,再利用圆锥的体积公式求解.【详解】设圆锥的母线长为,高为,半径为, l h r 则且,故2ππS r ==底=π3πS r l ⨯⨯=侧1,3r l ==,h ∴===圆锥的体积为.∴21π13⨯⨯⨯=故选:D .5. 已知正方体中,E 为中点,则异面直线与 所成角的余弦值1111ABCD A B C D -11B C 1BA CE 为( )【正确答案】D【分析】连接,,根据异面直线所成角的定义,转化为求(或其补角),1CD 1D E1D CE ∠然后在中用余弦定理即可解得.1D CE 【详解】连接,,如图:1CD 1D E因为为正方体可得,所以(或其补角)是异面直线1111ABCD A B C D -11//CDBA 1D CE ∠与 所成角,1BA CE 设正方体的棱长为,,a1CD===,1,CE D E ======在中,,1D CE 2221111cos 2CD CE DE D CE CD CE +-∠=⋅⋅==所以异面直线与 .1BA CE故选:D.6. 如图,在正四棱台中,,则该正四棱台1111ABCD A B C D-1114,2,AB A B AA ===的体积为()A. B. C. D. 1129140911231403【正确答案】A【分析】作出截面,过点作,结合等腰梯形的性质得到高,再计算体积即可.1A 1A E AC ⊥【详解】过作出截面如图所示,过点作,垂足为,11,AC A C 1A 1A E AC ⊥E 易知为正四棱台的高,1A E 1111ABCD A B C D - 因为,1124,ABA B ==所以由勾股定理得,11AC A C==又,11CC AA ==则在等腰梯形中,,11ACCA AE =所以,143A E ===所以所求体积为.11111114112((1643339ABCD A B C D V S S A E =⨯++⋅=⨯++⨯=故选.A7. 我国古代数学专著《九章算术》中有这样一个问题:“今有木长二丈,围之三尺.葛生其下,缠木七周,上与木齐.问葛长几何?”其意思为:“圆木长2丈,圆周长为3尺,葛藤从圆木的底部开始向上生长,绕圆木7周,顶部刚好与圆木平齐,问葛藤长为多少?"若1丈尺,则10=葛藤最少长( )A. 21尺B. 25尺C. 29尺D. 33尺【正确答案】C【分析】根据题意知,圆柱的侧面展开图是矩形,且矩形的长为(尺),高为尺,则葛2120藤的最少长度为矩形的对角线长,利用勾股定理可求得结果.【详解】根据题意知,圆柱的侧面展开图是矩形,如下图所示,矩形的高(即圆木长)为尺,矩形的底边长为(尺),207321⨯=(尺).29=故选:C.8. 如图所示,在正方体中,E ,F 分别为,AB 上的中点,且1111ABCD A B C D -1AAP 点是正方形内的动点,若平面,则P 点的轨迹长度为EF =11ABB A 1C P ∥1CD EF ()A. B. D. 3ππ【正确答案】C【分析】取的中点,的中点为,连接,可得四边形11A B H 1B B G 11,,,,GH C H C G EG HF 是平行四边形,可得∥,同理可得∥.可得面面平行,进而得出P 点11EGC D 1C G 1D E 1C H CF 的轨迹.【详解】如图所示,取的中点,的中点为,连接,11A B H 1B B G 11,,,,GH C H C G EG HF则∥,,且∥,,11A B EG 11A B EG =11A B 11C D 1111A B C D =可得∥,且,可知四边形是平行四边形,则∥,EG 11C D 11EG C D =11EGC D 1C G 1D E 且平面,平面,可得∥平面,1C G ⊄1CD EF 1D E ⊄1CD EF 1C G 1CD EF 同理可得:∥平面,1C H 1CD EF 且,平面,可知平面∥平面,111C H C G C = 11,C H C G ⊂1C GH 1C GH 1CD EF 又因为P 点是正方形内的动点,平面,11ABB A 1C P ∥1CD EF 所以点在线段上,M GH由题意可知:,可得,1111,22GH A B EF A B ==GH EF ==所以P 故选:C.二、多选题(本大题共3小题,每小题6分,共计18分.每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的部分分,有选错的得0分.)9. 已知,是两个不同的平面,l ,m 是两条不同的直线,有如下四个命题,其中正确的αβ是()A. 若,,则B. 若,,,则αβ⊥l β⊥l α∥m β⊥l m ∥l α⊂αβ⊥C. 若,,,则 D. 若,,则αβ∥m α⊥l β⊂l m ⊥m αβ= l α∥l m∥【正确答案】BC【分析】根据空间中垂直关系的转化可判断ABC 的正误,根据线面平行定义可判断D 的正误.【详解】对于A ,若,,则或,故A 错误;αβ⊥l β⊥l α∥l α⊂对于B ,若,,则,而,故,故B 正确;m β⊥l m ∥l β⊥l α⊂αβ⊥对于C ,若,,则,而,故,故C 正确;αβ∥m α⊥m β⊥l β⊂l m ⊥对于D ,若,,则或异面,故D 错误,m αβ= l α∥l m ∥,l m 故选:BC10. 在实践课上,小华将透明塑料制成了一个长方体容器,如图(1),1111ABCD A B C D -,,在容器内灌进一些水,现固定容器底面一边BC2AB BC ==15A A =()14D H DH =于地面上,再将容器倾斜,如图(2),则()A. 有水的部分始终呈三棱柱或四棱柱B. 棱与水面所在平面平行11A D C. 水面EFGH 所在四边形的面积为定值D. 当容器倾斜成如图(3)所示时,EF的最小值为【正确答案】ABD【分析】由棱柱的概述判断A ;由线面平行判定定理判断B ;计算可判断C ;利用基EFGH S 本不等式可判断D.【详解】由棱柱的定义知,选项A 正确;对于选项B ,由于,,所以,且不在水面所在平面11A D BC ∥BC FG ∥11A D FG ∥11A D 内,所以棱与水面所在平面平行,选项B 正确;11A D 对于选项C ,在图(1)中,,在图(2)中,4EFGH S FG EF BC AB =⋅=⋅=,选项C 错误;4EFGH S FG EF AB BC =⋅>⋅=对于选项D ,,所以.12212V BE BF BC =⨯⨯=⋅⋅⋅△4BE BF ⋅=,当且仅当时,等号成立,22228EF BE BF BE BF =+≥⋅=2BE BF ==所以EF 的最小值为,选项D正确.故选:ABD .11. 半正多面体(semiregular solid )亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形构成(如图所示),则()A. 平面EABBF ⊥B. 该二十四等边体的体积为203C. 该二十四等边体外接球的表面积为6πD. PN 与平面EBFN【正确答案】BD【分析】A 用反证法判断;B 先补齐八个角成正方体,再计算体积判断;C 先找到球心与半径,再计算表面积判断;D 先找到直线与平面所成角,再求正弦值判断.【详解】对于A ,假设A 对,即平面,于是,BF ⊥EAB BF AB ⊥,但六边形为正六边形,,矛盾,90ABF ∠=︒ABFPQH 120ABF ∠=︒所以A 错误;对于B ,补齐八个角构成棱长为2的正方体,则该二十四等边体的体积为,3112028111323-⋅⋅⋅⋅⋅=所以B 对;对于C ,取正方形对角线交点,ACPM O即为该二十四等边体外接球的球心,其半径为,其表面积为,所以C 错误;R =24π8πR =对于D ,因为在平面内射影为,PN EBFN NS 所以与平面所成角即为,PN EBFN PNS ∠其正弦值为,所以D 对.PS PN==故选:BD .三、填空题(本大题共3小题,每小题5分,共计15分)12. 如下图,三角形A'B'C'是三角形 ABC 的直观图,则三角形 ABC 的面积是_______.【正确答案】2【分析】画出原图形可得答案.【详解】由直观图画出原图,如图,可得是等腰三角形,且,ABC V 2,2BC OA ==所以三角形的面积.ABC 12222S =⨯⨯=故答案为:2.13. 圆柱的底面半径为1,侧面积为,则该圆柱外接球的表面积为______.10π【正确答案】29π【分析】先利用侧面积求出圆柱的高,再求出球的半径可得表面积.【详解】设圆柱的高为,其外接球的半径为,h R 由圆柱的底面半径为1,侧面积为,得,解得,10π2π10πh =5h =由圆柱和球的对称性可知,球心位于圆柱上下底面中心连线的中点处,因此.R ==24π29πS R ==故29π14. 球面被平面所截得的一部分叫做球冠,截得的圆叫做球冠的底,垂直于截面的直径被截得的一段叫做球冠的高.球被平面截下的一部分叫做球缺,截面叫做球缺的底面,垂直于截面的直径被截下的线段长叫做球缺的高,球缺是旋转体,可以看做是球冠和其底所在的圆面所围成的几何体.如图1,一个球面的半径为,球冠的高是,球冠的表面积公式是.R h 2πS Rh =如图2,已知是以为直径的圆上的两点,,扇形,C D AB ππ,63AOC BOD ∠∠==的面积为,则扇形绕直线旋转一周形成的几何体的表面积为__________.COD πCOD AB【正确答案】)61π+【分析】首先求出,再根据扇形面积公式求出圆的半径,过点作交DOC ∠C CE AB ⊥于点,过点作交于点,即可求出,将扇AB E D DF AB ⊥AB F ,,,,,CE OE AE OF BF DF 形绕直线旋转一周形成的几何体为一个半径的球中上下截去两个球缺所剩余部DOC AB R 分再挖去两个圆锥,再根据所给公式分别求出表面积.【详解】因为,所以,设圆的半径为,ππ,63AOC BOD ∠∠==π2DOC ∠=R 又,解得(负值舍去),2COD 1ππ22S R =⨯⨯=扇形2R =过点作交于点,过点作交于点,C CE AB ⊥AB ED DF AB ⊥AB F 则,ππsin1,cos 66CE OC OE OC ====所以,同理可得,2AE R OE =-=-1DF OF ==将扇形绕直线旋转一周形成的几何体为一个半径的球中,上下截去两个球COD AB 2R =缺所剩余部分再挖去两个圆锥,其中上面球缺的高,上面圆锥的底面半径,高为,12h =-11r=1h ='下面球缺的高,下面圆锥的底面半径,21h =2r =21h ='则上面球冠的表面积,(112π2π228πs Rh ==⨯⨯-=-下面球冠的表面积,球的表面积,222π2π214πs Rh ==⨯⨯=24π16πS R ==球上面圆锥的侧面积,下面圆锥的侧面积111ππ122πS rl ==⨯⨯=',222ππ2S r l ==='所以几何体的表面积.())''121116π8π4π2π61πS S S S S S =--++=---++=+球故答案为.)61π+关键点点睛:本题关键是弄清楚经过旋转之后得到的几何体是如何组成,对于表面积要合理转化.四、解答题(本题共5小题,共7分,解答应写出文字说明、证明过程或演算步骤.)15. 如图,在正三棱柱中,,,,分别是,,,111ABC A B C -E F G H AB AC 11A B 的中点.11A C(1)求证:,,,四点共面;B C H G (2)求证:平面平面;//BCHG 1A EF 【正确答案】(1)证明见解析(2)证明见解析【分析】(1)证明出,得到四点共面;//GH BC (2)先得到,,证明出线面平行,面面平行.1//A E BG //GH EF 【小问1详解】∵,分别是,的中点,G H 11A B 11A C ∴是的中位线,∴,GH 111A B C △11//GH B C又在三棱柱中,,∴,111ABC A B C -11//B C BC //GH BC ∴,,,四点共面.B C H G 【小问2详解】∵在三棱柱中,,,111ABC A B C -11//A B AB 11A B AB =∴,,1//A G EB 1111122A G A B AB EB ===∴四边形是平行四边形,∴,1A EBG 1//A E BG ∵平面,平面,∴平面.1A E ⊂1A EF BG ⊂/1A EF //BG 1A EF 又,是,的中点,所以,又.E F AB AC //EF BC //GH BC 所以,//GH EF ∵平面,平面,∴平面.EF ⊂1A EF GH ⊂/1A EF //GH 1A EF 又,平面,BG GH G = ,BG GH ⊂BCHG 所以平面平面.//BCHG 1A EF 16. 如图,AB 为⊙O 的直径,PA 垂直于⊙O 所在的平面,M 为圆周上任意一点,AN ⊥PM ,N 为垂足.(1)若,Q 为PB 的中点,求三棱锥的体积;2PA AM BM ===Q ABM -(2)求证:AN ⊥平面PBM ;(3)若AQ ⊥PB ,垂足为Q ,求证:NQ ⊥PB.【正确答案】(1)23(2)证明见解析 (3)证明见解析【分析】(1)先得到,根据Q 为PB 的中点,故1433P AMB AMB V S PA -=⋅= ;1223Q ABM P AMB V V --==(2)由线线垂直,得到线面垂直,即BM ⊥平面PAM .,故BM ⊥AN ,又AN ⊥PM ,从而得到线面垂直;(3)由(1)知AN ⊥平面PBM ,故AN ⊥PB ,又AQ ⊥PB ,故PB ⊥平面ANQ ,得到答案.【小问1详解】因为AB 为⊙O 的直径,所以⊥,AM BM 又,故,2AM BM ==122AMB S AM BM =⋅= 又PA 垂直于⊙O 所在的平面,,2PA =故,11422333P AMB AMB V S PA -=⋅=⨯⨯= 因为Q 为PB 的中点,所以.11422233Q ABM P AMB V V --==⨯=【小问2详解】∵AB 为⊙O 的直径,∴AM ⊥BM .又PA ⊥平面ABM ,BM 平面ABM ,⊂∴PA ⊥BM .又∵,PA ,AM 平面PAM ,PA AM A = ⊂∴BM ⊥平面PAM .又AN 平面PAM ,∴BM ⊥AN .⊂又AN ⊥PM ,且,BM ,PM 平面PBM ,BM PM M = ⊂∴AN ⊥平面PBM .【小问3详解】由(1)知AN ⊥平面PBM ,PB ⊂平面PBM ,∴AN ⊥PB .又∵AQ ⊥PB ,AN ∩AQ =A ,AN ,AQ ⊂平面ANQ ,∴PB ⊥平面ANQ .又NQ 平面ANQ ,⊂∴PB ⊥NQ .17. 我国古代数学名著《九章算术》中,称四面都为直角三角形的三棱锥为“鳖臑”.如图,在三棱锥中,平面.A BCD -AB ⊥,BCD BC CD ⊥(1)证明:三棱锥为鳖臑;A BCD -(2)若为上一点,点分别为的中点.平面与平面的交线为E AD ,P Q ,BC BE DPQ ACD .l ①证明:直线平面;//PQ ACD ②判断与的位置关系,并证明你的结论.PQ l 【正确答案】(1)证明见解析;(2)①证明见解析;②平行,证明见解析.【分析】(1)利用线面垂直的性质及判定定理即可求解;(2)①利用三角形的中位线定理及线面平行的判定定理即可求解;②利用①的结论及线面平行的性质定理即可求解.【小问1详解】∵,BC CD ⊥∴为直角三角形,BCD △∵平面,且平面,平面,平面,AB ⊥BCD BD ⊂BCD ⊂BC BCD CD ⊂BCD∴,,,AB BC ⊥AB BD ⊥AB CD ⊥∴和为直角三角形,ABC V ABD △∵,平面,平面,BC AB B ⋂=BC ⊂ABC AB ⊂ABC ∴平面,CD ⊥ABC 又∵平面,AC ⊂ABC ∴,CD AD ⊥∴为直角三角形,ACD ∴三棱锥为鳖曘.A BCD -【小问2详解】①连接,∵点分别为的中点,CE ,P Q ,BC BE ∴,//PQ CE 且平面,平面,PQ ⊄ACD CE ⊂ACD 所以直线平面,//PQ ACD ②平行,证明:平面,平面,平面平面=,//PQ ACD PQ ⊂DPQ DPQ ⋂ACD l 所以.//PQ l 18. 一块四棱锥木块如图所示,平面,四边形ABCD 为平行四边形,且SD ⊥ABCD ,.60BAD ∠=︒224AB BC SD ===(1)要经过点B 、D 将木料锯开,使得截面平行于侧棱,在木料表面该怎样画线?并说SA 明理由;(2)计算(1)中所得截面的面积;(3)求直线SC 与(1)中截面所在平面所成角的正弦值.【正确答案】(1)即为要画的线,理由见解析;,ED EB (2(3【分析】(1)要使截面与平行,考虑构造线线平行,取的中点,取的对SA S C E ABCD 称中心,连接,证明即得截面;O OE //SA OE BDE (2)分别计算的三边,再利用三角形面积公式计算即得;BDE (3)利用等体积求出点到平面的距离,再由线面所成角的定义即可求得.C BDE 【小问1详解】如图,取的中点,连接,则即为要画的线.S C E ,,ED EB ,ED EB理由如下:连接与交于点,连接.BD AC O OE 因四边形ABCD 为平行四边形,则点为的中点,故,O AC //SA OE 又因平面,平面,故有平面;SA ⊄BDE OE ⊂BDE SA ∥BDE 【小问2详解】如图中,过点作于点,连接,E EF DC ⊥FBF 因平面,平面,则,SD ⊥ABCD CD ⊂ABCD SD CD ⊥故,平面,,//EF SD ⊥EF ABCD 112EF SD ==12DE SC ===因,则,12,60,22CFDC DCB BC ==∠== 2BF =因平面,则,故,BF ⊂ABCD EF FB ⊥BE ==又由余弦定理,,故得.22224224cos6012BD =+-⨯⨯=BD =又,O 为BD 中点,则,DE DB =OE BD ⊥于是截面的面积为;12BDE S =⨯= 【小问3详解】过点作平面,交平面于点,连接,C CH ⊥BDE BDE H EH则即直线与截面所成的角.CEH ∠S C BDE 由可得,,E BCD C BED V V --=1133BCD BED S EF S CH ⨯=⨯即得:,则BCD BED S EF CH S ⨯===sin CH CEH EC ∠===即直线SC 与平面BDE 思路点睛:本题主要考查运用线面平行的判定方法解决实际问题和线面所成角的求法,属于较难题.解题的思路在于充分利用平行四边形对角线性质、等腰三角形三线合一,三角形中位线性质等方法寻找线线平行;对于线面所成角问题,除了定义法作图求解外,对于不易找到点在平面的射影时,可考虑运用等体积转化求解.19. 空间的弯曲性是几何研究的重要内容,用曲率刻画空间的弯曲性,规定:多面体顶点的曲率等于与多面体在该点的面角之和的差,其中多面体的面的内角叫做多面体的面角,2π角度用弧度制.例如:正四面体每个顶点均有3个面角,每个面角均为,故其各个顶点的曲π3率均为.如图,在直三棱柱中,点A 的曲率为,M 为的π2π3π3-⨯=111ABC A B C -2π31CC 中点,且.AB AC =(1)判断的形状,并说明理由;ABC V (2)若,求点到平面的距离;124AA AB ==B 1AB M (3)表面经过连续变形可以变为球面的多面体称为简单多面体.关于简单多面体有著名欧拉定理:设简单多面体的顶点数为D ,棱数为L ,面数为M ,则有.利用此定理2D L M -+=试证明:简单多面体的总曲率(多面体有顶点的曲率之和)是常数.【正确答案】(1)为等边三角形,理由见解析ABC V (2(3)证明见解析【分析】(1)根据线面垂直的性质可得,,即可根据曲率的定义求解,1AA AC ⊥1AA AB ⊥(2)利用等体积法,结合锥体体积公式即可求解,(3)根据则多面体的棱数,顶点数,以及内角之和,即可根据曲率的定义求解.【小问1详解】因为在直三棱柱中,111ABC A B C -平面,平面,1AA ⊥ABC ,AC AB ⊂ABC 所以,,1AA AC ⊥1AA AB ⊥所以点A 的曲率为,得,π2ππ2232BAC -⨯-∠=π3BAC ∠=因为,所以为等边三角形.AB AC =ABC V【小问2详解】取中点D ,连接、,BC AD AM 因为D 为的中点,所以,BC AD BC ⊥因为平面,平面,所以,1BB ⊥ABC AD ⊂ABC 1BB AD ⊥因为,平面,所以平面;1BB BC B = 1,AA AB ⊂11ABB A AD ⊥11BB C C 所以是三棱锥的高.AD 1A BB M -设点到平面的距离为,则有,即.B 1AB M h 11B AB M A BB M V V --=11AB M BB M S h S AD =⋅在中有,同理计算得,11Rt AA B△1AB ==1AM B M BM ===.AD =所以,,112AB M S =⨯=114242BB M S =⨯⨯=所以.h ==【小问3详解】证明:设多面体有M 个面,给组成多面体的多边形编号,分别为号,1,2,,M ⋅⋅⋅设第号多边形有条边,i ()1i M ≤≤i L 则多面体共有条棱,122ML L L L ++⋅⋅⋅+=由题意,多面体共有个顶点,12222ML L L D M L M ++⋅⋅⋅+=-+=-+号多边形的内角之和为,i π2πi L -所以所有多边形的内角之和为,()12π2πM L L L M ++⋅⋅⋅+-所以多面体的总曲率为()122ππ2πM D L L L M ⎡⎤-++⋅⋅⋅+-⎣⎦.()12122π2π2π4π2M M L L L M L L L M ++⋅⋅⋅+⎛⎫⎡⎤=-+-++⋅⋅⋅+-= ⎪⎣⎦⎝⎭所以简单多面体的总曲率为.4π。

高二数学月考试卷质量分析

高二数学月考试卷质量分析

岑巩二中高二数学第一次月考试卷质量分析本次数学月考范围是直线方程,圆的方程,程序框图三个部分。

这三大部分特点是:概念多,内容多,知识点多,容量大。

而且比较抽象,与之前学习的数学明显不一样,很多学生比较不适应。

加上学生数学基础较薄弱,运算能力低,思维层次有限,考试成绩不是很理想。

现将本次月考试卷的考试情况作如下分析:一、试卷的评价1、试卷的基本情况:数学考试时间为120分钟。

数学学科的题型包括单项选择题、填空题和解答题。

2、试卷的基本特点:(1)基础性强。

试题立足于数学基础知识,以重点知识来设计题目。

重在考查学生对数学基础知识的掌握情况。

如选择题的第二题,第六题,第十题。

都是课本上的重点知识。

(2)标高适度。

基于目前二中学生的学习能力和数学教学的现状,试卷没出现较大的偏题、怪题,整卷的试题难度应该说是适中的。

(3)题目设计具有简明性。

题意指向明确,题目的表述较清楚,简单明了,学生审题时一目了然。

二、试卷成绩情况本次考试,因不分文理科,故文理科成绩相差有一定的距离,平均分理科较文科的高,及格率也是如此,学生得分分布较为均匀,但也有少数分数偏低的情况。

三、学生答题质量分析1、优点(1)对数学教材的主干知识掌握得较好。

学生能根据要求加以复习巩固,对重点知识的掌握较熟练。

(2)能正确地运用解题方法。

大部分学生能采用较常用的直选法和排除法来解答选择题。

(3)能根据题意认真解答。

大部分学生能根据题目的要求,认真分析问题,正确地得出答案。

(4)部分学生的学科能力有所提高。

大部分学生的再认再现能力较强;部分学生善于运用已知知识进行分析判断,此次判断题的得分率略高,在一定程度上反映学生具备了理解、分析能力。

2、存在问题(1)基本功不扎实。

书写不公正、不规范,错别字多。

如解答题的“解”字忘写或者是没有解答过程。

(2)同类知识混淆不清。

学生对同类知识掌握不牢固,张冠李戴的现象很普遍。

如解答题的17和18题,把垂直平分线和中线的概念混淆,故而出现求解错误。

高二数学月考总结范文6篇

高二数学月考总结范文6篇

高二数学月考总结范文6篇第1篇示例:经过一个学期的学习,我们高二数学班于近日举行了一次月考,对自己的学习成果进行了一次总结。

在这次月考中,我们遇到了许多难题,也获得了许多收获和成就。

我们反思了自己在学习过程中存在的问题。

在课堂上,我们发现自己在准备作业、复习课堂内容等方面不够用心,导致了月考成绩并不尽如人意。

有些同学在对待数学学习的态度上还存在一定的问题,缺乏坚持和耐心,这也是影响考试成绩的一个重要原因。

在反思中,我们意识到了学习态度和学习方法的重要性,只有通过努力和自律,才能取得更好的成绩。

我们总结了本次月考中的优点和进步。

同学们在这次考试中虽然遇到了许多难题,但大部分同学都能够冷静应对,不放弃,努力寻找解题方法。

通过这次月考,我们发现自己的思维能力和解决问题的能力有了提升,也更加了解了自己在数学学习中的短板和不足之处。

在面对难题时,我们要学会耐心思考,不要轻言放弃,只有坚持下去,才能取得更大的进步。

我们明确了未来的学习目标和计划。

在接下来的学习过程中,我们将更加注重基础知识的打牢,提高自己的解题能力和思维能力。

并制定了更加科学、有效的学习方法和复习计划,充分利用课余时间进行自主学习,提高学习效率。

我们还要加强课外练习,参加各种数学比赛和活动,不断提高自己的数学水平和竞技能力。

这次高二数学月考是一次有意义的学习经历,让我们认识到了在学习中的不足和问题,并明确了未来的学习目标和计划。

通过努力学习,相信我们一定能取得更好的成绩,在数学的道路上不断前行,不断进步。

希望我们高二数学班能够团结一致,共同努力,共同进步,取得更好的成绩。

【写到这大约1700字左右,需要您继续补充内容】第2篇示例:高二数学月考总结一、总体情况本次高二数学月考共涉及到解析几何、三角函数、导数等多个知识点,考查内容较为全面,难度适中。

考试时长为120分钟,卷面总分为100分。

二、试题分析1. 解析几何部分解析几何部分主要考查了直线方程、圆的性质、向量等知识点,难度适中。

高二数学月考质量分析

高二数学月考质量分析

高二数学188班第一次月考质量分析一、试题评价(一)对试卷题型、卷面的分析本试题大体依照高考题型的格式与模式进行设计,整个卷面分为客观题和主观题两部份。

其中客观题分为选择题12道,每题5分,填空题4道,每题5分,共计80分。

主观题6道,共计70分。

卷面总分150分。

本次高二年级数学期中考试采用全年级统一命题,重点考察了高中数学选修2-2第一章,本试卷注重对数学基础知识、大体技术、大体思想和方式的考查,突出了对数学的计算能力、逻辑思维能力等方面的考察,着力表现概念性、思辩性和应用的普遍性。

试题的设计具有必然的梯度和区分度,其中三种题型中基础题、中档题和难题所占的比例也较为适宜,但整个题的计算程度较高。

(二)关于命题知识点和考点的分析1.紧扣考纲,注重双基本次期中考试范围比较大,但有很多题目源于讲义与练习册,紧扣考纲,注重双基。

2.概念思辩性强,突出重点试题对本部份各节知识考察较为全面,一方面突出了重点知识重点考察,另一方面突出数学知识本身的数学思想的考察,如:二、3、4、5、六、7、10、1一、1五、16,均是在大体概念和易混知识上进行了考察,对概念的完备性考查有较高的要求,有效的检测了学生对概念的掌握和理解。

3.突出运算能力,书写能力,考察知识的完备性和准确性。

其中六、八、九、10、1二、13,14、15、1八、20、21表现出既要运算,又考察了学生对知识的运用能力的考察,1二、17、1九、22对学生的逻辑推理能力有必然深度的考查。

二、答卷分析1.数据分析(班级)其中一、二、3,8题得分较高,选择题第4,7题得分较低,填空题得分偏低,解答题17-22得分都较低。

客观题得分较低。

2.失分率较高的答题分析第4题,主要考察复合函数求导的问题,学生掌握求导不够透彻;第5题对单调性的理解掌握不足致使失分;第12题,对分离参数转化为恒成立问题掌握不够致使答案失误;第9题,利用特殊三角形及特殊角求椭圆离心率,特殊值法掌握不足致使失误;第11题,椭圆的概念及余弦定理、向量知识等缺乏处置问题的综合能力及数形结合能力;填空题属于中高档题,得分不高,主要原因是积分公式不熟,导数的单调性极值与最值等相关计算和理解不准确,计算粗心失误;第17题,求导公式和求导的运算法则没有掌握好,致使致命的失分;第19题,对题目的理解不到位和运算的失误致使失分。

福建师大附中2024-2025学年高二上学期10月月考数学试题(解析版)

福建师大附中2024-2025学年高二上学期10月月考数学试题(解析版)

福建师大附中2024-2025学年第一学期高二第一次月考数学试卷一、单选题(每小题5分,共40分)1. 若角α的终边上一点的坐标为(11)−,,则cos α=( )A. 1−B.C.D. 1【答案】C 【解析】【分析】根据任意角三角函数的定义即可求解.【详解】∵角α的终边上一点的坐标为(11)−,,它与原点的距离r=,∴cos x r α==, 故选:C.2. 下列函数中,在区间()1,2上为增函数的是 A. 1y x=B. y x =C. 21y x =−+D. 243y x x =−+【答案】B 【解析】【分析】根据基本初等函数的单调性判断出各选项中函数在区间()1,2上的单调性,可得出正确选项. 【详解】对于A 选项,函数1y x=在区间()1,2上为减函数; 对于B 选项,当()1,2x ∈时,y x =,则函数y x =在区间()1,2上为增函数;对于C 选项,函数21y x =−+在区间()1,2上为减函数; 对于D 选项,二次函数243y x x =−+在区间()1,2上为减函数. 故选B.【点睛】本题考查基本初等函数在区间上的单调性的判断,熟悉一次、二次、反比例函数的单调性是解题的关键,考查推理能力,属于基础题.3. 为了解甲、乙两个班级学生的物理学习情况,从两个班学生的物理成绩(均为整数)中各随机抽查20个,得到如图所示的数据图(用频率分布直方图估计总体平均数时,每个区间的值均取该区间的中点值),关于甲、乙两个班级的物理成绩,下列结论正确的是( )A. 甲班众数小于乙班众数B. 乙班成绩的75百分位数为79C. 甲班的中位数为74D. 甲班平均数大于乙班平均数估计值【答案】D 【解析】【分析】根据已知数据图,判断A ;根据频率分布直方图计算乙班成绩的75百分位数,判断B ;求出甲班的中位数,判断C ;求出两个班级的平均分,即可判断D.【详解】由甲、乙两个班级学生的物理成绩的数据图可知甲班众数为79, 由频率分布直方图无法准确得出乙班众数,A 错误; 对于乙班物理成绩的频率分布直方图,前三个矩形的面积之和为(0.0200.0250.030)100.75++×=, 故乙班成绩的75百分位数为80,由甲班物理成绩数据图可知,小于79分的数据有9个,79分的数据有6个, 故甲班的中位数为79,C 错误; 甲班平均数57258596768269279687882899874.820x ×++++×+×+×++×++=甲,乙班平均数估计值为10550.02650.025750.03+850.02950.00571.57= 4.8x =×+×+××+×=<乙(), 即甲班平均数大于乙班平均数估计值,D 正确, 故选:D 4.的直三棱柱111ABC A B C −中,ABC 为等边三角形,且ABC的外接圆半径为 ) A. 12π B. 8π C. 6π D. 3π【答案】A为【解析】【分析】由棱柱体积求得棱柱的高,然后求得外接球的半径,得表面积.【详解】设ABC 的边长为a ,由ABC可得2πsin3a =,故a =则ABC的面积2S.可得11S AA AA ⋅==1AA =, 设三棱柱外接球的半径为R,则2221723233AA R =+=+=, 故该三棱柱外接球的表面积为24π12πR =. 故选:A .5. 已知函数()()()sin 20f x x ϕπϕ=+−<<,将()f x 的图象向左平移3π个单位长度后所得的函数图象关于y 轴对称,则关于函数()f x ,下列命题正确的是 A. 函数()f x 在区间,63ππ−上有最小值 B. 函数()f x 的一条对称轴为12x π=C. 函数()f x 在区间,63ππ−上单调递增 D. 函数()f x 的一个对称点为,03π【答案】C 【解析】【分析】根据平移关系求出函数的解析式,结合函数的奇偶性求出φ的值,利用三角函数的性质进行判断即可.【详解】将()f x 的图象向左平移3π个单位长度后得到2[2]233y sin x sin x ππϕϕ=++=++()(),此时函数为偶函数, 则232k k Z ππϕπ+=+∈,, 即06k k Z πϕππϕ=−+∈− ,,<<,∴当0k =时,6,πϕ=−则26f x sin x π=−()(),当63x ππ−<<时22233262x x πππππ−−−,<<,<<, 则此时函数()f x 在区间,63ππ − 上单调递增,且()f x 在区间,63ππ−上没有最小值, 故C 正确, 故选C .【点睛】本题主要考查三角函数性质判断,结合三角函数的平移关系求出函数的解析式是解决本题的关键.6. 如图,在三棱锥P ABC −中,PA ⊥平面ABC ,AC BC ⊥,AC =6BC =,D ,E ,F ,G 分别为PB ,AB ,AC ,PC 的中点,Q 为DE 上一点,AQ GQ ⊥,当AQG 的面积取得最小值时,三棱锥Q AEF −外接球的表面积为( )A. 24πB. 28πC. 32πD. 36π【答案】B 【解析】【分析】连接GF ,GD ,根据中位线性质得到线线平行关系,再利用线面垂直的性质得到线线垂直,设EQ x =,DQ y =,根据222AQ GQ AG +=得到()2221697x y x y +++=++,得到12AQG S AQ GQ =⋅= ,再根据基本不等式即可求出最值,再转化为长方体外接球问题即可.【详解】连接GF ,GD ,因为D ,E ,F ,G 分别为PB ,AB ,AC ,PC 的中点,的所以2//,11,//,2GF GF PA PA DE PA PA DE ==,1//,2GD BC GD BC =,1//,2EF BC EF BC =,则//GF DE ,因为PA ⊥平面ABC , 所以GF ⊥平面ABC ,DE ⊥平面ABC ,AE ⊂ 平面ABC ,所以DE AE ⊥,所以DE GD ⊥,AF ⊂ 平面ABC ,所以GF AF ⊥.设EQ x =,DQ y =,则AQ ,GQ ,AG ==,因为AQ GQ ⊥,所以222AQ GQ AG +=,即()2221697x y x y +++=++, 整理得9xy =,所以12AQGS AQ GQ =⋅= 由基本不等式得2216924216y x xy +≥=,当且仅当43y x =,即x =y =所以当AQC S 取得最小值时,EQ =,DQ =. 因为AF EF ⊥,QE ⊥平面AEF ,所以可将三棱锥Q AEF −补形为如图所示的长方体,则三棱锥Q AEF −的外接球即该长方体的外接球,易知该长方体外接球的直径为AQ =,故三棱锥Q AEF −,故三棱锥Q AEF −外接球的表面积为4π728π×=,故选:B .【点睛】方法点睛:求解有关三棱锥外接球的问题时,常见方法有两种:一种是补形,解题时要认真分析图形,看能否把三棱锥补形成一个正方体(长方体),若能,则正方体(长方体)的顶点均在外接球的球面上,正方体(长方体)的体对角线为外接球的直径;另一种是直接法,三棱锥中过任意两个面的外接圆圆心的垂线的交点即三棱锥外接球的球心.7. 、,外接球表面积为20π,则正四棱台侧棱与底面所成角的正切值为( ) A. 1 B. 3 C. 1或3 D.12或32【答案】C 【解析】【分析】在正四棱台1111ABCD A B C D −中,取截面11AAC C ,设正方形ABCD 、1111D C B A 的中心分别为O 、1O ,分析可知球心在直线1OO 上,对球心的位置进行分类讨论,求出1OO 的长,利用线面角的定义可求得结果.【详解】在正四棱台1111ABCD A B C D −中,设其上底面为正方形ABCD ,下底面为正方形1111D C B A ,设正方形ABCD 、1111D C B A 的中心分别为O 、1O ,由正四棱台的几何性质可知,1OO ⊥平面1111D C B A ,取截面11AAC C , 则正四棱台的外接球球心E 在直线1O O 上,分以下两种情况讨论: ①E 在AC 、11A C 的同侧,如下图所示:设球E 的半径为R ,则24π20πR =,可得R =由圆的几何性质可知EO AC ⊥,111EO A C ⊥,且2AC ==,11114A C B =,所以,2OE =,11EO ,所以,11211OO EO EO =−=−=, 过点A 在平面11AAC C 内作11AF AC ⊥, 因为11//AC A C ,11AF A C ⊥,111OO A C ⊥,1//AF OO ∴,则四边形1AOO F 为矩形,且11AF OO ==,11O FAO ==,111211A F AO O F =−=−=, 因为1//AF OO ,则AF ⊥平面1111D C B A ,则1AA 与平面1111D C B A 所成角为1AA F ∠, 且11tan 1AFAA F A F∠==; ②若球心E 在线段1OO 上,如下图所示:设球E 的半径为R ,则24π20πR =,可得R =由圆的几何性质可知EO AC ⊥,111EO A C ⊥,且2AC ==,11114A C B =,所以,2OE =,11EO ,所以,11213OO EO EO =+=+=, 过点A 在平面11AAC C 内作11AF A C ⊥,因为11//AC A C ,11AF A C ⊥,111OO A C ⊥,1//AF OO ∴,则四边形1AOO F 为矩形,且13AF OO ==,11O FAO ==,111211A F AO O F =−=−=, 因为1//AF OO ,则AF ⊥平面1111D C B A ,则1AA 与平面1111D C B A 所成角为1AA F ∠, 且11tan 3AFAA F A F∠==. 综上所述,正四棱台侧棱与底面所成角的正切值为1或3. 故选:C.【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin hlθ=(l 为斜线段长),进而可求得线面角; (3)建立空间直角坐标系,利用向量法求解,设a为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=.8. 在ΔΔΔΔΔΔΔΔ中,BC CA CA AB ⋅=⋅ ,2BA BC += ,且233B ππ≤≤,则BA BC ⋅的取值范围是A [2,1)− B. 2,13C. 22,3 −D. 22,3−【答案】D 【解析】【分析】由BC CA CA AB ⋅=⋅,可以得到()0CA BC BA ⋅+= ,利用平面向量加法的几何意义,可以构造平行四边形BCDA ,根据()0CA BC BA ⋅+=,可知平行四边形BCDA 是菱形,这样在Rt BOA ∆中,可以求出菱形的边长,求出BA BC ⋅的表达式,利用233B ππ≤≤,构造函数,最后求出BA BC ⋅的取值范围.【详解】()0()0BC CA CA AB CA BC AB CA BC BA ⋅=⋅⇒⋅−=⇒⋅+=,以,BC BA 为邻边作平行四.边形BCDA ,如下图:所以BC BA BD += ,因此0CA BD CA BD ⋅=⇒⊥,所以平行四边形BCDA 是菱形,设CA BD O ∩=,2BA BC +=,所以=21BD BO ⇒=,在Rt BOA ∆中, 1cos cos 2BO ABO AB ABC AB ∠=⇒=∠ 212cos ()cos 1cos cos 2ABCy ABC ABC AB A C C B B ∠==⋅∠=⋅∠+∠ , 设211cos [,]3322x ABC ABC x ππ=∠≤∠≤∴∈− , 所以当11[,]22x ∈− 时,'22201(1)x y y x x =⇒=>++,21x y x =+是增函数,故2[2,]3y ∈−,因此本题选D.【点睛】本题考查了平面加法的几何意义、以及平面向量数量积的取值范围问题,利用菱形的性质、余弦的升幂公式、构造函数是解题的关键.二、多选题(每小题6分,共18分)9. 一组样本数据12,,,n x x x …的平均数为()0x x ≠,标准差为s .另一组样本数据122,,,n n n x x x ++…,的平均数为3x ,标准差为s .两组数据合成一组新数据1212,,,,,,n n n x x x x x +⋅⋅⋅⋅⋅⋅,新数据的平均数为y ,标准差为s ′,则( ) A. 2y x > B. 2y x = C. s s ′> D. s s ′=【答案】BC 【解析】【分析】由平均数与标准差的定义求解判断. 【详解】由题意322nx n xyx n+⋅=, 222222121()()()nn k k ns x x x x x x x nx ==−+−++−=−∑,同理222222211(3)9nnkkk n k n ns xn x xnx=+=+=−⋅=−∑∑ 两式相加得22221210nk k ns x nx ==−∑,22222221122(2)8nnkk k k ns x n x x nx ==′=−⋅=−∑∑,所以2222ns ns ′>,s s ′>. 故选:BC .10. 在棱长为2的正方体1111ABCD A B C D −中,点E ,F 分别为棱BC 与11D C 的中点,则下列选项正确的有( )A. 1//A B 平面1AECB. EF 与1BC 所成的角为30°C. ⊥EF 平面1B ACD. 平面1AEC 截正方体1111ABCD A B C D −的截面面积为 【答案】ABD 【解析】【分析】设点M 为棱11A D 的中点,得到四边形1AEC M 为平行四边形,利用线面平行的判定定理,证得1//A B 平面1AEC ,可判定A 正确;再得到四边形1AEC M 为菱形,求得截面的面积,可判定D 正确;设1CC 的中点为N ,证得1//EN BC ,得到NEF ∠为EF 与1BC 所成的角,利用余弦定理求得cos NEF ∠,可判定B 正确;假设⊥EF 平面1B AC 正确,得到1EF B C ⊥,结合11FC B C ⊥,证得1B C ⊥平面1EFC ,得到11B C EC ⊥,进而判定C 错误.【详解】如图1所示,设点M 为棱11A D 的中点,则1MC AE ,平行且相等,所以四边形1AEC M 为平行四边形,又1//A B ME ,1⊄A B 平面1AEC ,ME ⊂平面1AEC ,所以1//A B 平面1AEC ,故A 正确; 由上可知,四边形1AEC M 为平面1AEC 截正方体1111ABCD A B C D −的截面,易得11AE EC C M MA ====,故四边形1AEC M 为菱形,又其对角线EM =,1AC =12××,故D 正确; 设1CC 的中点为N ,连接,EN FN ,因为,E N 分别为BC 与1CC 的中点,所以1//EN BC ,故NEF ∠为EF 与1BC 所成的角,又EN FN ==,EF =由余弦定理可得222cos 2EN EF NF NEF EN EF +−∠==⋅ 所以EF 与1BC 所成的角为30°,故B 正确;如图2所示,假设⊥EF 平面1B AC 正确,则1EF B C ⊥,又11FC B C ⊥,1EF FC F ∩=,所以1B C ⊥平面1EFC ,得11B C EC ⊥. 在正方形11B C CB 中,11B C EC ⊥,显然不成立,所以假设错误, 即⊥EF 平面1B AC 错误,故C 错误. 故选:ABD .11. 已知,a b 均为正数且11a b a b+=+,下列不等式正确的有( )A. 23+≥B.2+≥C. 3a +≥D.23a b a+≥ 【答案】BCD 【解析】【分析】由已知条件可得1ab =,然后逐个分析判断即可 【详解】由11a b a b+=+,得a b a b ab ++=,所以()()0ab a b a b +−+=,()(1)0a b ab +−= 因为,a b 均为正数,所以1ab =,对于A ,2≥===,即ab 时取等号,所以A 错误,对于B 2+≥=,即1a b ==时取等号,所以B 正确,对于C ,因为1ab =,所以1a b=,所以13a b +=+≥=,=,即1a b ==时取等号,所以C 正确,对于D ,因为1ab =,所以22223a a ba b b b a ab++==++≥,当且仅当2a b =,即1a b ==时取等号,所以D 正确,故选:BCD三、填空题(每小题5分,共15分)12. 已知1x >−,则41x x ++的最小值为___________. 【答案】3 【解析】【分析】由1x >−可得10x +>,将41x x ++整理为4111++−+x x ,再利用基本不等式即可求解. 【详解】因为1x >−,所以10x +>,所以441111x x x x +=++−++13≥−=, 当且仅当411x x +=+,即1x =时取等号, 所以41x x ++的最小值为3, 故答案为:3【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 13. 已知函数222log ,1()32,1x a x f x x ax a x + =++<, ①若a =1,f (x )的最小值是_____;②若f (x )恰好有2个零点,则实数a 的取值范围是_____. 【答案】 ①. ﹣14 ②. 1(1,][0,)2−−+∞ 【解析】【分析】(1)对分段函数的两段函数分别求最小值,然后比较可得; (2)结合函数性质与解方程()0f x =,可得结论.【详解】(1)由题意22log 1,1()32,1x x f x x x x +≥ =++< , 1x ≥时,2()log 1f x x =+单调递增,min ()(1)1f x f ==, 1x <时,2231()32()24f x x x x =++=+−,min 31()()24f x f =−=−, 所以32x =−时,min 1()4f x =−;(2)若0a =,则22log ,1(),1x x f x x x ≥ = <,恰有两个零点0和1,满足题意,若0a >,则1x ≥时,2()log 0f x x a a =+≥>无零点, 但1x <时,22()32f x x ax a =++有两个零点a −和2a −,满足题意,当0a <时,则1x ≥时,2()log f x x a =+是增函数,min ()0f x a =<,有一个零点, 1x <时,由22()320f x x ax a =++=得x a =−或2x a =−,因为()f x 只有两个零点,所以121a a −< −≥,解得112a −<≤−, 综上,a 的取值范围是1(1,][0,)2−−+∞ .【点睛】本题考查求分段函数的最值,由分段函数的零点个数求参数取值范围.解题时需分类讨论,按分段函数的定义分类讨论.14. 如图所示,在△ABC 中,AB =AC =2,AD DC = ,2DE EB =,AE 的延长线交BC 边于点F ,若45AF BC ⋅=− ,则AE AC ⋅= ____.【答案】229【解析】【分析】过点D 做DG AF ,可得16EF AF =,15BF BC =,4155AF AB AC =+ 由45AF BC ⋅=− 可得2cos 3BAC ∠=,可得541()655AE ACAB AC AC ⋅=+⋅ ,代入可得答案. 【详解】解:如图,过点D 做DG AF ,易得:13EF BE DG BD ==,13EF DG =,12DG CD AF AC ==,故12DG AF =,可得:16EF AF =, 同理:12BF BE FG ED ==,11FG AD GC CD ==,可得15BF BC =, 1141()5555AF AB BF AB BC AB AC AB AB AC =+=+=+−=+ ,由45AF BC ⋅=− ,可得22411424()()555555AB AC AC AB AC AB AB AC +⋅−=−+⋅=− , 可得:14244422cos 5555BAC ×−×+××∠=−,可得:2cos 3BAC ∠=, 255412122122()2246655353369AE AC AF AC AB AC AC AB AC AC ⋅=⋅=+⋅=⋅+=×××+×= ,故答案为:229. 【点睛】本题主要考查平面向量的线性运算和平面向量的数量积,由题意作出DG AF 是解题的关键.四、解答题(共77分)15. 如图1,在平面四边形PBCD 中,已知BC PB ⊥,PD CD ⊥,6PB =,2BC =,2DP CD =,DA PB ⊥于点A .将PAD △沿AD 折起使得PA ⊥平面ABCD ,如图2,设MD PD λ=(01λ≤≤).(1)若23λ=,求证:PB //平面MAC ; (2)若直线AM 与平面PCD,求λ的值. 【答案】(1)证明见解析 (2)12λ= 【解析】【分析】(1)利用线面平行的判定定理即可证明;(2)利用空间向量的坐标表示,表示出线面夹角的余弦值即可求解. 【小问1详解】在平面四边形PBCD 中,BC PB ⊥,6PB =,2BC =,所以CP =tan BPC ∠= 又PD CD ⊥,2DP CD =,所以CD =,PD =,1tan 2DPC ∠=, 所以()1123tan tan 111123BPD BPC DPC +∠=∠+∠==−×,所以45BPD ∠=°. 所以在Rt PAD △中,易得4PA AD ==. 因为DA PB ⊥,BC PB ⊥,所以//AD BC .在四棱锥P ABCD −中,连接BD ,设BD AC F ∩=,连接MF ,因为23λ=,所以2DMMP =, 又2AD DFBC FB==,所以MF PB ∥. 因为MF ⊂平面MAC ,PB ⊄平面MAC ,所以PB ∥平面MAC .【小问2详解】由题意易知AB ,AD ,AP 两两垂直,故可建立如图所示的空间直角坐标系,则()0,0,0A ,()2,2,0C ,()0,4,0D ,()0,0,4P , 则()2,2,0CD =− ,()0,4,4PD =−.设平面PCD 法向量为(),,n x y z =,则00n CD n PD ⋅= ⋅=,即220440x y y z −+= −= , 令1x =,得11y z == ,即()1,1,1n = . 由MD PD λ=,得()0,4,4MD λλ=− , 故()0,44,4M λλ−,()0,44,4AM λλ=−.由直线AM 与平面PCD,的得cos ,AM n AM n AM n⋅==,解得12λ=. 16. 如图,直三棱柱111ABC A B C −的体积为1,AB BC ⊥,2AB =,1BC =.(1)求证:11BC A C ;(2)求二面角11B A C B −−的余弦值. 【答案】(1)证明见解析 (2【解析】【分析】(1)法一:由线面垂直证明即可;法二:用空间直角坐标系证明即可;(2)法一:过O 作1OH A C ⊥于H ,连接BH ,由已知得出BHO ∠为二面角11B A C B −−的平面角,求解即可;法二:建立空间直角坐标系求解. 【小问1详解】直三棱柱111ABC A B C −的体积为:111121122V AB BC AA AA =×⋅⋅=×××=, 则11AA BC ==,四边形11BCC B 为正方形,法一:在直棱柱111ABC A B C −中,1BB ⊥面ABC ,11AB A B ∥, 又AB ⊂平面ABC ,则1AB BB ⊥,因为AB BC ⊥,1AB BB ⊥,1BB BC B = ,1,BB BC ⊂平面11BCC B , 所以AB ⊥平面11BCC B ,又1BC⊂平面11BCC B , 所以1AB BC ⊥,因为11AB A B ∥,所以11A B ⊥1BC , 在正方形11BCC B 中,有11BC B C ⊥,因为11BC B C ⊥,11A B ⊥1B C ,1111A B B C B = ,111,A B B C ⊂平面11A CB , 所以1⊥BC 平面11A CB ,又1A C ⊂平面11A CB , 所以11BC A C .法二:直棱柱111ABC A B C −,1BB ⊥平面ABC ,又AB BC ⊥,以B 为原点,BC ,BA ,1BB 所在直线为x 轴,y 轴, z 轴,建立空间直角坐标系, 则()0,0,0B ,()10,0,1B ,()1,0,0C ,1(0,2,1)A ,1(1,0,1)C ,1(1,0,1)BC =,1(1,2,1)A C =−− ,11110(2)1(1)0BC A C ⋅=×+×−+×−=,所以11BC A C .【小问2详解】由(1)得11BC A C ,设11B C BC O = ,在11A B C 中,过O 作1OH A C ⊥于H ,连接BH ,因为1OH A C ⊥,11BC A C ,1,OH BC ⊂平面BHO ,且1OH BC O ∩=, 所以1A C ⊥平面BHO ,又BH ⊂平面BHO ,所以1AC BH ⊥,所以BHO ∠为二面角11B A C B −−的平面角, 因为11Rt Rt COH CA B ∽△△,111CA CO OH A B =,得OH = 又在Rt BOH中,BO =BH =,cos OH BHO BH ∠=, 所以二面角11B A C B −−法二:()0,0,0B ,()10,0,1B ,()C ,1(0,2,1)A ,1(1,0,1)C ,(1,0,0)BC =,1(0,2,1)BA = ,设平面1BCA 的法向量:1111(,,)n x y z = , 则111111020n BC x n BA y z ⋅== ⋅+ ,取11y =,得1(0,1,2)n =− ,1(1,0,1)B C=−,11(0,2,0)B A = ,设面11B CA 的法向量2222(,,)n x y z = , 则21222112020n B C x z n B A y ⋅=−= ⋅== ,取21x =,得2(1,0,1)n = , 设二面角11B A C B −−的大小为θ,则:121212|||cos ||cos ,|||||n n n n n n θ⋅=<>==因为θ为锐角,所以二面角11B A C B −−17. 如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD=BAD =90°. (Ⅰ)求证:AD ⊥BC ;(Ⅱ)求异面直线BC 与MD 所成角的余弦值; (Ⅲ)求直线CD 与平面ABD 所成角的正弦值.【答案】(Ⅰ)证明见解析;. 【解析】【详解】分析:(Ⅰ)由面面垂直的性质定理可得AD ⊥平面ABC ,则AD ⊥BC .(Ⅱ)取棱AC 的中点N ,连接MN ,ND .由几何关系可知∠DMN (或其补角)为异面直线BC 与MD 所成的角.计算可得12MNcos DMN DM∠==.则异面直线BC 与MD(Ⅲ)连接CM .由题意可知CM ⊥平面ABD .则∠CDM 为直线CD 与平面ABD所成的角.计算可得CMsin CDM CD∠=.即直线CD 与平面ABD. 详解:(Ⅰ)证明:由平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,AD ⊥AB ,可得AD ⊥平面ABC ,故AD ⊥BC .(Ⅱ)取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,故MN ∥BC .所以∠DMN (或其补角)为异面直线BC 与MD 所成的角.在Rt △DAM 中,AM =1,故DMAD ⊥平面ABC ,故AD ⊥AC . 在Rt △DAN 中,AN =1,故DN.在等腰三角形DMN 中,MN =1,可得12cos MN DMN DM ∠==. 所以,异面直线BC 与MD(Ⅲ)连接CM .因为△ABC 为等边三角形,M 为边AB 的中点,故CM ⊥AB ,CMABC ⊥平面ABD ,而CM ⊂平面ABC ,故CM ⊥平面ABD .所以,∠CDM 为直线CD 与平面ABD 所成的角.Rt △CAD 中,CD=4.在Rt △CMD中,sin CM CDM CD ∠=. 所以,直线CD 与平面ABD点睛:本小题主要考查异面直线所成的角、直线与平面所成的角、平面与平面垂直等基础知识.考查空间想象能力、运算求解能力和推理论证能力.18. 棱柱1111ABCD A B C D −的所有棱长都等于4,60ABC ∠=°,平面11AA C C ⊥平面ABCD ,160A AC ∠=°.(1)证明:1DB AA ⊥;(2)求二面角1D AA B −−的平面角的余弦值;(3)在直线1CC 上是否存在点P ,使//BP 平面11DA C ?若存在,求出点P 的位置.【答案】(1)证明见解析;(2)35;(3)点P 在1C C 的延长线上且使1C C CP =. 【解析】【分析】(1)建立空间直角坐标系,结合10AA BD ⋅=,即可证得1DB AA ⊥;在(2)分别求得平面1AA D 和平面1AA B 的一个法向量,解向量的夹角公式,即可求解;(3)设1CP CC λ= ,求得BP 的坐标和平面11DA C 的法向量,结合30n BP ⋅= ,求得1λ=−,即可得到结论.【详解】由题意,连接BD 交AC 于O ,则BD AC ⊥,连接1A O ,在1AAO 中,14AA =,2AO =,160AAO ∠=°,∴2221112cos 60AO AA AO AA AO =+−=°⋅22211AO A O AA +=, ∴1A O AO ⊥,由于平面11AA C C ⊥平面ABCD ,所以1A O ⊥底面ABCD ,所以以OB 、OC 、1OA 所在直线为x 轴、y 轴、z 轴建立如图所示空间直角坐标系,则()0,2,0A −,()B ,()0,2,0C,()D −,(10,0,A , (1)由于()BD =−,(10,2,AA =,()2,0AB = , 则10AA BD ⋅= ,∴1BD AA ⊥.(2)设平面1AA D 的法向量()2,,n x y z = ,则21200n AA n AD ⋅= ⋅=,即0y y += + ,取1x =,可得()21n =− , 同理,可得平面1AA B的法向量()11,n = , 所以1212123cos 5n n n n n n ⋅⋅==− , 又由图可知成钝角,所以二面角1D A A B −−的平面角的余弦值是35. (3)假设在直线1CC 上存在点P ,使//BP 平面11DA C ,设1CP CC λ= ,(),,P x y z ,则()(,2,0,2,x y z λ−=,得(0,22,)P λ+,(22,)BP λ−+, 设3n ⊥ 平面11DA C ,则31131n A C n DA ⊥ ⊥ ,设()3333,,n x y z = ,得到333200y = +=,不妨取()31,0,1n =− ,又因为//BP 平面11DA C ,则30n BP ⋅= 即0−=得1λ=−.即点P 在1C C 的延长线上且使1C C CP =.【点睛】本题主要考查了空间向量在线面位置关系的判定与证明中的应用,以及直线与平面所成角的求解,其中解答中熟记空间向量与线面位置关系的关系,以及线面角的求解方法是解答的关键,着重考查推理与运算能力.19. 已知非空集合A 是由一些函数组成,满足如下性质:①对任意()f x A ∈,()f x 均存在反函数1()f x −,且1()f x A −∈;②对任意()f x A ∈,方程()f x x =均有解;③对任意()f x 、()g x A ∈,若函数()g x 为定义在R 上的一次函数,则(())f g x A ∈.(1)若1()()2x f x =,()23g x x =−,均在集合A 中,求证:函数12()log (23)h x x A =−∈; (2)若函数2()1x a f x x +=+(1x ≥)在集合A 中,求实数a 的取值范围; (3)若集合A 中的函数均为定义在R 上的一次函数,求证:存在一个实数0x ,使得对一切()f x A ∈,均有00()f x x =.【答案】(1)见详解;(2)[]1,3a ∈;(3)见详解; 【解析】【分析】(1)由1()()2x f x A =∈,根据性质①可得112()log f x x A −=∈,且存在00x >,使得 1002log x x =,由()23g x x A =−∈,且为一次函数,根据性质③即可证明.(2)由性质②,方程()211x a x x x +=≥+,即a x =在[)1,x ∈+∞上有解,可得1a ≥,变形21()1211x a a f x x x x ++==++−++,[)()1,x ∈+∞.与2的关系分类讨论,利用基本不等式的性质即可求解.(3)任取()1f x ax b =+,()2f x cx d A =+∈,由性质①,0a c ≠,不妨设,1a c ≠,(若1a =,则0b =,()1f x x =), 由性质③函数()()()()12g x f f x acx ad b A ==++∈, 由性质①:()()1x bc d h x A ac −−+=∈,由性质③:()()()()()1()acx bd b bc d ad b bc d h g x x A ac ac−++−++−+===∈ 由性质②方程:()()ad b bc d x x ac+−++=,可得ad b bc d +=+,即11b d a c =−−,即可得证. 【详解】(1)由1()()2x f x A =∈,根据性质①可得112()log f x x A −=∈,且存在00x >,使得 1002log x x =,由()23g x x A =−∈,且为一次函数,根据性质③可得:()()112()log (23)hx x f g x A −=−=∈.(2)由性质②,方程()211x a x x x +=≥+,即a x =在[)1,x ∈+∞上有解,1a ∴≥, 由22111()12111x a x a a f x x x x x +−+++===++−+++[)()1,x ∈+∞,2>,3a >时,112a −>,且()112a f f − =, ∴此时()f x 没有反函数,即不满足性质①.2≤,13a ≤≤时,函数()f x 在[)1,+∞上单调递增,∴此时()f x 有反函数,即满足性质①.综上:[]1,3a ∈.(3)任取()1f x ax b =+,()2f x cx d A =+∈,由性质①,0a c ≠,不妨设,1a c ≠,(若1a =,则0b =,()1f x x =),由性质③函数()()()()12g x f f x acx ad b A ==++∈, 由性质①:()()1x bc d h x A ac −−+=∈,由性质③:()()()()()1()acx bd b bc d ad b bc d h g x x A ac ac−++−++−+===∈ 由性质②方程:()()ad b bc d x x ac+−++=, ∴ad b bc d +=+,即11b d ac =−−, ()1f x x =,可得ax b x +=,1b x a =−, ()2f x x =,可得cx d x +=,1d x c =−, 由此可知:对于任意两个函数()1f x ,()2f x ,存在相同的0x 满足:()()10020f x x f x =,∴存在一个实数0x ,使得对一切()f x A ∈,均有00()f x x =.质,难度较大.。

高二数学份月考成绩分析及反思汇编

高二数学份月考成绩分析及反思汇编

高二数学第一次月考成绩分析及反思闫桂茹2010.10.17高二的月考结束,题量适中,难度不大。

成绩不理想,为全面反思教学得失,促进教学质量的进一步提升,下面就针对高二8班数学考试情况加以分析。

一、试卷结构;(1)试卷:本试卷考察内容以必修三为主,另加立体几何、三角函数、数列等内容。

算法占20分,统计占30分,概率占44分,立体几何占17分,数列占17分,三角占10分,综合题占12分。

(2)本试卷难度不大,考察了学生对基础知识、基本技能的掌握情况,考察了学生分析问题、解决问题的基本能力。

二、班级情况分析1.励志班8班优生数39人,平均分125.5;高分较少,140分以上只有8人,比21班少7人。

130分以上3个班基本上持平。

2.选择题失分多的是10题,,解答题18题、21题概率题概率得分率低。

三、失分情况分析1、基础不牢,主要反映在选择题和填空题。

例如15 题、18题、21题等2、对知识的理解不深入,不透彻,基本方法掌握不到位,应变能力差。

如10题、20题等3、审题不清,题意理解有误。

如15题、18、21题4、解题不规范。

解题不规范反映在解答题上,主要表现为丢步漏步,或有思路但不知如何表述。

5、学生计算能力差,几乎所有学生在计算上都有不同程度的失分现象。

四、对课堂教学情况的反思1、有时课堂效率低;2、讲得多,练得少3、课下督促检查不及时。

五、改进措施1、在数学教学中,充分调动学生的学习主动性、积极性,培养他们学习数学的兴趣,提高课堂效率。

2、加强基础,强化习惯。

重视数学基础,加强数学基本功训练是学好数学的法宝。

在平时的教学中多帮学生复习以往的知识,经常性地对学生进行查漏补缺,科学编制一些简易又能强化学习结果的方案,有的放矢,不定时的进行检测、评估、矫正。

同时注意学生学习习惯的养成教育,养成经常复习的习惯,认真做事的习惯,如验算、认真审题、检验等。

3、注重小组合作的课堂教学,充分发挥学生学习的主动性、积极性、多给他们时间空间,多给他们锻炼的机会,使课堂真正的动起来、活起来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学第一次月考情况分析
一、试卷分析
本次考试主要考查内容为高中数学必修5第二章数列,考查内容虽然不多,但都是高考的重点,因此这块内容对学生来说既基础又较灵活。

试卷由范叶华老师命题,主要考查基础知识和运算能力,命题重视数学基本方法的运用,淡化特殊技巧。

回避原苏教版过难、过繁的题目,立意明确,迎合新课程改革的理念,达到了较好的考查目的。

试卷的结构和题量紧贴全国新高考山东卷模式,总题量22小题,总分150分,包括8道单选题、4道多选题、4道填空题和6道解答题。

各部分难度适中,区分度强。

在不同层次班级中,顾建华组长、黄小燕老师、李翔组长、范东明老师、陆秀良主任等许多同仁取得了优异的成绩。

从整体数据上来看基础题99分,占比66%。

其中容易题34分,占比23%;较易题目65分,占比44%;中档题25分,占比17%;难题26分,占比17.3%。

平均分100.1,难度系数0.67,基本接近教务处要求的难度系数0.7,考生分数符合正态分布,贴合新高考考查要求。

从小题角度来看容易题中第7、8、20三题难度系数大,但是区分度却很大,说明这三题班级平均差距明显,难度低却失分现象严重。

此种题型性价比高,提分容易,是我们部分班级提高均分的主要着力点。

同样中档题中15、16两题也是难度系数偏高但是区分度较大。

中档题第11、17题各班标准差相距甚大,班级内部学生得分差异很明显。

这些数据特征值得我们相关班级关注。

从大题角度来看多项选择题也是这种现象,主要原因是多选题赋分的特色,选中部分答案给三分,选错得零分。

这种应试策略影响了部分同学得分,也可以成为教师指导学生应试的着力点。

在新高考模式下,一道客观题最低得分是5分,而一道多小题、多步骤的解答题只有10分或12分,从这个角度上看,重视客观题训练也应提上日程。

从本次试卷数据上来看客观题得分占比仅为78%,尚有很大提升空间。

二、学生答卷中存在的问题
1.基本概念不强,灵活应用能力有待进一步提高
从学生的答卷情况来看,部分学生对教材的基本概念,基本性质等基础知识掌握理解不够,知识记忆模糊,灵活运用能力还有所欠缺,考虑问题不全面,比如解答题20题未对n=1的情况讨论而导致答案不完善的同学相当地多。

2.部分学生分析问题,解决问题能力有待加强
在答卷中对简单或明显套用公式的题目,学生一般可以得分,但是对常规题的条件或者结论稍作改变,或需要探索才能得出结果的题,则有相当一部分考生被卡住,这些学生的分析问题、解决问题的能力有待提高,比如说第8题,绝大多数学生没有什么思路,一片空白,不知道怎么运用所学的知识来转化和解决问题。

对题目的理解不到位,分析不来,作答较差。

这种状况主要是学生对知识点的本质还没有理解。

3.缺乏对繁杂运算量题型坚持到底的信心
本次考试重点考查了学生的运算能力,但是对于试卷中的计算题如第21题第一问,有许多学生不能计算出准确答案,有的符号错误,有的计算错误,有的甚至不知道怎么运算,丢了不该丢的分,表明平时做题不认真、不严谨。

4.数学术语不准确,语言表述不规范
试卷中反映出学生对主观题的回答不规范,比如19题
证明一个数列是等比数列,部分学生不能准确运用数学术语,严谨规范证题,造成对而不全的扣分现象。

这也提醒我们老师在平时教学中注意答题规范的示范。

三、今后的改进措施
1.加强错题收集指导,要求学生每次在整理错题时,及时总结错因,订正时立足通法,尽量不使用猜想、排除等特殊方法,而要求使用直接法,以达到巩固基础知识的目的。

2.重视基础,回归教材,不为做题而做题,不重复做会做的题。

只有对课本有了更深层次的理解,对概念、方法理解过关才能谈能力的深化和数学思想方法的运用。

3.强化基本题型训练,对基本题型,基本方法要求学生熟练掌握,牢记于胸,在此基础上注重知识之间的联系。

全国卷高考在知识点整合上的要求大大强于苏教版,多数题目无法汇编到具体哪一个章节内。

4.抓落实。

在今后教学中尽量多抓落实,具体到个人上。

课堂上尽量抽出更多的时间让学生自己动脑、动笔,让学生自己先想、先做,教师从旁指导,然后再讲、再练!尽可能让更多的学生参与进来,能下笔做,而不是拿到一道题,却无从下笔,尽可能地激发学生学习数学的积极性!
5.加强书写规范。

对会做的题做到满分,不会做的题尽量多得分,关键步骤一定不能省略,课堂上多强化答题的规范性。

相关文档
最新文档