离散数学及其应用集合论部分课后习题答案
离散数学及其应用集合论部分课后习题答案

34、设A,B为集合,证明:如果 ,则 。
证明:(反证法)
设 ,则 ,
所以 ;
所以
但是 。
与 矛盾。
37、设A,B,C为任意集合,证明: 。
证明:
对任意 ,由于 ,所以 且 所以
因此, 。
P121:习题七
5、设A,B为任意集合,证明
若 ,则 。
证明:
所以有
9、设 ,列出下列关系R
(2)
(3)
解答:
(2)不是,由于 集合较小,
①自反性:
②对称性,
但是传递性不满足, ,但是 。
(3)不是,满足对称性、传递性,但是不满足自反性
取 ,但是 不为奇数,所以 。
(5)满足
①自反性:
②对称性:
③传递性:
下面证明
若 ,则 ,所以
若 ,则 ,所以
所以 ,同理可证,
所以
所以 。因此满足传递性。
27、设 A上的等价关系
(2)不存在反函数,因为不是双射函数;
(3)
22、对于以下集合A和B,构造从A到B的双射函数。
(1)
(2)
(3)
(4)
解答:
(1)
(2)
(3)
(4)
作业答案:集合论部分
P90:习题六
5、确定下列命题是否为真。
(2)
(4)
(6)
解答:(2)假(4)真(6)真
8、求下列集合的幂集。
(5)
(6)
解答:
(5)集合的元素彼此互不相同,所以 ,所以该题的结论应该为
(6)
9、设 , , , ,求下列集合。
(1)
(2)
解答:
(1)
离散数学课后习题及答案

离散数学课后习题及答案离散数学是计算机科学与数学的重要基础课程之一,它涵盖了很多重要的概念和理论。
为了更好地掌握离散数学的知识,课后习题是必不可少的一部分。
本文将介绍一些常见的离散数学课后习题,并提供相应的答案,希望对读者有所帮助。
一、集合论1. 设A={1,2,3},B={2,3,4},求A∪B和A∩B的结果。
答案:A∪B={1,2,3,4},A∩B={2,3}2. 设A={1,2,3},B={2,3,4},C={3,4,5},求(A∪B)∩C的结果。
答案:(A∪B)∩C={3,4}二、逻辑与命题1. 判断下列命题的真假:a) 若2+2=5,则地球是平的。
b) 若今天下雨,则我会带伞。
c) 若x>0,则x^2>0。
答案:a)假,b)真,c)真。
2. 用真值表验证下列命题的等价性:a) p∧(q∨r) ≡ (p∧q)∨(p∧r)b) p→q ≡ ¬p∨q答案:a)等价,b)等价。
三、关系与函数1. 给定关系R={(1,2),(2,3),(3,4)},求R的逆关系R^-1。
答案:R^-1={(2,1),(3,2),(4,3)}2. 设函数f(x)=x^2,g(x)=2x+1,求复合函数f(g(x))的表达式。
答案:f(g(x))=(2x+1)^2=4x^2+4x+1四、图论1. 给定图G,其邻接矩阵为:0 1 11 0 11 1 0求图G的度数序列。
答案:度数序列为(2,2,2)2. 判断下列图是否为连通图:a) G1的邻接矩阵为:0 1 11 0 01 0 0b) G2的邻接矩阵为:0 1 01 0 10 1 0答案:a)不是连通图,b)是连通图。
五、组合数学1. 从10个不同的球中,任选3个,求共有多少种选法。
答案:C(10,3)=120种选法。
2. 求下列排列的循环节:a) (123)(45)(67)b) (12)(34)(56)(78)答案:a)循环节为(123)(45)(67),b)循环节为(12)(34)(56)(78)。
(集合论)离散数学习题参考答案3

第二部分 集合论第八次:(函数)P161 3,4,6,11,19,24,253 (1) 双射,反函数,({}){},({}){};118844f f f f −−===2(2) 双射,反函数:,()log ,({}){},({,}){,};111121201f R R f x x f f −+−−→===(3) 单射,({}){,},({,}){};155623f f −=<><>=(4) 单射,({,}){,},({,}){,};123571301f f −==(5) 满射,({,}){,},({}){,};11212111f f −−==−(6) 单射,((,))(,([,])[,];11311101044422f f −== (7) 单射,({,}){,},({}){};112101232f f −==1 (8) 单射,((,))(,),({,}){,};1110112323f f −=+∞= 4(1)是单射,但不是满射;(2)不是单射,也不是满射;(3)不是单射,也不是满射;(4)是满射但不是单射;(5)是单射但不是满射;(6)不是单射,也不是满射;6. (1) f: A->B ,不是单射,也不是满射;(2) 不是从A 到B 的函数,因为dom f ≠N;(3)f: A->B, 不是单射,因为f(<0,1>)=f(<0,2>)=0. 是满射;(4) f: A->B, 不是单射,也不是满射;(5) f: A->B, 是单射,不是满射;(6) f: A->B, 是单射、满射、双射;(7)f: A->B, 不是单射,也不是满射;(8) 不是从A 到B 的函数,因为dom f ≠R;(9) 不是从A 到B 的函数,因为ran f 不⊆N;11. (1) 是函数,单满射都不是 (2) 不是函数 (3) 不是函数 (4) 是函数,单射 (5) 不是函数19. (1) ,()(())()224281g f x f g x x x x ==+−=++D 4+()(())22242f g x g f x x x ==−+=D(2) 都不是单射,也不是满射和双射。
离散数学习题答案如下

离散数学习题答案如下离散数学是一门研究离散结构和离散现象的数学学科。
它与连续数学相对应,强调的是离散的、不连续的数学对象和现象。
离散数学的研究对象包括集合、关系、函数、图论等。
在离散数学的学习过程中,习题是不可或缺的一部分,通过解答习题可以加深对知识的理解和掌握。
下面是一些离散数学习题的答案,希望对大家的学习有所帮助。
1. 集合论习题题目:给定集合A={1,2,3,4,5}和集合B={3,4,5,6,7},求A与B的并集、交集和差集。
答案:A与B的并集为{1,2,3,4,5,6,7},交集为{3,4,5},A与B的差集为{1,2}。
2. 关系与函数习题题目:给定关系R={(1,2),(2,3),(3,4),(4,5)},判断该关系是否为自反、对称、传递关系。
答案:该关系不是自反关系,因为元素1没有与自身相关联;该关系不是对称关系,因为(1,2)属于R,但(2,1)不属于R;该关系是传递关系,因为对于任意的(a,b)和(b,c),若(a,b)和(b,c)均属于R,则(a,c)也属于R。
3. 图论习题题目:给定无向图G,其邻接矩阵为:0 1 1 01 0 1 11 1 0 10 1 1 0求图G的度数序列和邻接矩阵的平方。
答案:图G的度数序列为(2,3,3,2),即顶点1的度数为2,顶点2的度数为3,顶点3的度数为3,顶点4的度数为2;邻接矩阵的平方为:2 23 22 3 3 33 34 32 3 3 24. 组合数学习题题目:有5个红球和3个蓝球,从中选取3个球,求选取的球中至少有一个红球的概率。
答案:选取的球中至少有一个红球等价于选取的球中没有红球的概率的补集。
选取的球中没有红球的情况只有选取3个蓝球,所以概率为C(3,3)/C(8,3)=1/56。
因此,选取的球中至少有一个红球的概率为1-1/56=55/56。
以上是一些离散数学习题的答案,通过解答这些习题可以加深对离散数学的理解和掌握。
离散数学作为一门重要的数学学科,不仅在理论研究中有广泛应用,也在计算机科学、信息科学等领域中发挥着重要作用。
离散数学第2版课后习题答案

离散数学第2版课后习题答案离散数学是计算机科学和数学领域中一门重要的学科,它研究离散对象及其关系、结构和运算方法。
离散数学的应用非常广泛,包括计算机科学、信息科学、密码学、人工智能等领域。
而离散数学第2版是一本经典的教材,它系统地介绍了离散数学的基本概念、原理和方法。
本文将为读者提供离散数学第2版课后习题的答案,帮助读者更好地理解和掌握离散数学的知识。
第一章:基本概念和原理1.1 命题逻辑习题1:命题逻辑的基本符号有哪些?它们的含义是什么?答:命题逻辑的基本符号包括命题变量、命题联结词和括号。
命题变量用字母表示,代表一个命题。
命题联结词包括否定、合取、析取、条件和双条件等,分别表示“非”、“与”、“或”、“如果...则...”和“当且仅当”。
括号用于改变命题联结词的优先级。
习题2:列举命题逻辑的基本定律。
答:命题逻辑的基本定律包括德摩根定律、分配律、结合律、交换律、吸收律和否定律等。
1.2 集合论习题1:什么是集合?集合的基本运算有哪些?答:集合是由一些确定的对象组成的整体,这些对象称为集合的元素。
集合的基本运算包括并、交、差和补等。
习题2:列举集合的基本定律。
答:集合的基本定律包括幂等律、交换律、结合律、分配律、吸收律和德摩根定律等。
第二章:数理逻辑2.1 命题逻辑的推理习题1:什么是命题逻辑的推理规则?列举几个常用的推理规则。
答:命题逻辑的推理规则是用来推导命题的逻辑规则。
常用的推理规则包括假言推理、拒取推理、假言三段论和析取三段论等。
习题2:使用推理规则证明以下命题:如果A成立,则B成立;B不成立,则A不成立。
答:假言推理规则可以用来证明该命题。
根据假言推理规则,如果A成立,则B成立。
又根据假言推理规则,如果B不成立,则A不成立。
2.2 谓词逻辑习题1:什么是谓词逻辑?它与命题逻辑有何区别?答:谓词逻辑是一种扩展了命题逻辑的逻辑系统,它引入了谓词和量词。
与命题逻辑不同,谓词逻辑可以对个体进行量化和描述。
离散数学第3版习题答案

离散数学第3版习题答案离散数学是一门重要的数学学科,它研究的是离散对象和离散结构的数学理论。
离散数学的应用广泛,涉及到计算机科学、信息技术、通信工程等领域。
在学习离散数学的过程中,习题是不可或缺的一部分,通过解答习题可以加深对知识的理解和掌握。
本文将为大家提供《离散数学第3版》习题的答案,希望能对学习者有所帮助。
第一章:命题逻辑1.1 习题答案:1. (a) 真值表如下:p | q | p ∧ qT | T | TT | F | FF | T | FF | F | F(b) 命题“p ∧ q”的真值表如下:p | q | p ∧ qT | T | TT | F | FF | T | FF | F | F(c) 命题“p ∨ q”的真值表如下:p | q | p ∨ qT | T | TT | F | TF | T | TF | F | F(d) 命题“p → q”的真值表如下:p | q | p → qT | T | TT | F | FF | T | TF | F | T1.2 习题答案:1. (a) 命题“¬(p ∧ q)”等价于“¬p ∨ ¬q”。
(b) 命题“¬(p ∨ q)”等价于“¬p ∧ ¬q”。
(c) 命题“¬(p → q)”等价于“p ∧ ¬q”。
(d) 命题“¬(p ↔ q)”等价于“(p ∧ ¬q) ∨ (¬p ∧ q)”。
1.3 习题答案:1. (a) 命题“p → q”的否定是“p ∧ ¬q”。
(b) 命题“p ∧ q”的否定是“¬p ∨ ¬q”。
(c) 命题“p ↔ q”的否定是“(p ∧ ¬q) ∨ (¬p ∧ q)”。
(d) 命题“p ∨ q”的否定是“¬p ∧ ¬q”。
1.4 习题答案:1. (a) 命题“p → q”与命题“¬p ∨ q”等价。
离散数学及其应用课后习题答案

离散数学及其应用课后习题答案【篇一:离散数学及其应用(课后习题)】出下列命题是原子命题还是复合命题。
(3)大雁北回,春天来了。
(4)不是东风压倒西风,就是西风压倒东风。
(5)张三和李四在吵架。
解:(3)和(4)是复合命题,(5)是原子命题。
习题1.21. 指出下列命题的真值:(1)若2?2?4,则太阳从西方升起。
解:该命题真值为t(因为命题的前件为假)。
(3)胎生动物当且仅当是哺乳动物。
解:该命题真值为f(如鸭嘴兽虽是哺乳动物,但不是胎生动物)。
2. 令p:天气好。
q:我去公园。
请将下列命题符号化。
(2)只要天气好,我就去公园。
(3)只有天气好,我才去公园。
(6)天气好,我去公园。
解:(2)p?q。
(3)q?p。
(6)p?q。
习题1.32. 将下列命题符号化(句中括号内提示的是相应的原子命题的符号表示):(1)我去新华书店(p),仅当我有时间(q)。
(3)只要努力学习(p),成绩就会好的(q)。
(6)我今天进城(p),除非下雨(q)。
(10)人不犯我(p),我不犯人(q);人若犯我,我必犯人。
解:(1)p?q。
(3)p?q。
(6)?q?p。
(10)(?p??q)?(p?q)。
习题1.41. 写出下列公式的真值表:(2)p?(q?r)。
解:该公式的真值表如下表:2. 证明下列等价公式:(2)(p?q)??(p?q)??(p?q)。
证明:?(p?q)??((p?q)?(?p??q))??(p?q)??(?p??q))??(p?q)?(p?q) ?(p ?q)??(p?q)(4)(p?q)?(p?r)?p?(q?r)。
证明:(p?q)?(p?r)?(?p?q)?(?p?r)??p?(q?r)?p?(q?r)3. 甲、乙、丙、丁4人参加考试后,有人问他们谁的成绩最好,甲说,不是我。
乙说:是丁。
丙说:是乙。
丁说:不是我。
已知4个人的回答只有一个人符合实际,问成绩最好的是谁?解:设a:甲成绩最好。
b:乙成绩最好。
离散数学及应用课后习题答案

离散数学及应用课后习题答案【篇一:离散数学及其应用图论部分课后习题答案】p165:习题九1、给定下面4个图(前两个为无向图,后两个为有向图)的集合表示,画出它们的图形表示。
(1)g1??v1,e1?,v1?{v1,v2,v3,v4,v5},e1?{(v1,v2),(v2,v3),(v3,v4),(v3,v3),(v4,v5)} (2)g2??v2,e2?,v2?v1,e1?{(v1,v2),(v2,v3),(v3,v4),(v4,v5),(v5,v1)} (3)d1??v3,e3?,v3?v1,e3?{?v1,v2?,?v2,v3?,?v3,v2?,?v4,v5?,?v5,v 1?} (4)d2??v4,e4?,v4?v1,e3?{?v1,v2?,?v2,v5?,?v5,v2?,?v3,v4?,?v4,v 3?} 解答:(1)(2)10、是否存在具有下列顶点度数的5阶图?若有,则画出一个这样的图。
(1)5,5,3,2,2;(2)3,3,3,3,2;(3)1,2,3,4,5;(4)4,4,4,4,4 解答:(1)(3)不存在,因为有奇数个奇度顶点。
14、设g是n(n?2)阶无向简单图,g是它的补图,已知?(g)?k1,?(g)?k2,求?(g),(g)。
解答:?(g)?n?1?k2;?(g)?n?1?k1。
15、图9.19中各对图是否同构?若同构,则给出它们顶点之间的双射函数。
解答:(c)不是同构,从点度既可以看出,一个点度序列为4,3,3,3,3而另外一个为4,4,3,3,1(d)同构,同构函数为12f(x)345解答:(1)三条边一共提供6度;所以点度序列可能是x?ax?bx?c x?dx?e16、画出所有3条边的5阶简单无向图和3条边的3阶简单无向图。
①3,3,0,0,0,0;②3,2,1,0,0,0;③3,1,1,1,0,0;④2,2,2,0,0,0;⑤2,2,1,1,0,0;⑥2,1,1,1,1,0;⑦1,1,1,1,1,1;由于是简单图,①②两种情形不可能图形如下:(2)三条边一共提供6度,所以点度序列可能为①3,3,0;②3,2,1;③2,2,2 由于是简单图,①②两种情形不可能21、在图9.20中,下述顶点序列是否构成通路?哪些是简单通路?哪些是初级通路?哪些是回路?哪些是简单回路?哪些是初级回路?(1)a,b,c,d,b,e;(2)a,b,e,d,b,a;(3)a,d,c,e,b;(4)d,b,a,c,e;(5)a,b,c,d,e,b,d,c;(6)a,d,b,e,c,b,d;(7)c,d,a,b,c;(8)a,b,c,e,b 解答:(1)构成通路,且为初级通路,因为点不重复(2)构成了回路,但是不为简单回路和初级回路,因为有重复的边(a,b) (3)构成了初级通路,因为点不重复;(4)不构成通路,因为边(a,c)不存在;(5)构成通路,但是不为简单通路和初级通路,因为有重复的边(d,c) (6)构成了回路,但是不为简单回路和初级回路,因为有重复的边(d,b) (7)构成了初级通路;(8)简单通路,但是不为初级通路,有重复边。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)
解答:
(1)
(2)
38、针对图7.14中的每个哈斯图,写出集合以及偏序关系的表达式。
解答:
(a)集合为 ,
偏序关系为
(b)集合为 ,
偏序关系为
(c)集合为 ,
偏序关系
40、分别画出下列偏序集 的哈斯图,并找出A的极大元、极小元、最大元和最小元。
(1) ,
(2)
解答:
(1)哈斯图为
极小元为 ,极大元为 ,无最大元、最小元
(2)
(3)
11、 是 上的二元关系,对于 定义集合
显然 。如果 且令
求 。
解答:
13、设 , 。求 , , , , , , , , .
解答:
16、设 , 为 上的关系,其中
, 。求 , , , 。
解答:
20、给定 , 上的关系
(1)画出 的关系图。
(2)说明 的性质。
解答:
(1)
(2)R具有反自反性,反对称性,传递性
解答:
19、设 是从N到N的函数,且
(1)求
(2)说明 是否为单射、满射、双射?
解答:
(1)
(2)为满射,但是不为单射。
20、设 ,
(1)说明 是否为单射和满射,说明理由。
(2) 的反函数是否存在,如果存在,求出 的反函数;
(3)求 。
解答:
(1) 时, ,所以为单射;
而对 ,不存在 ,使得 ,所以不为满射。
(2)不存在反函数,因为不是双射函数;
(3)
22、对于以下集合A和B,构造从A到B的双射函数。
(1)
(2)
(3)
(4)
解答:
(1)
(2)
(3)
(4)
4、判断下列函数中哪些是满射?哪些是单射?哪些是双射?
(2)
(4) ,
(6)
解答:(2)单射;(3)满射;(4)既不为单射也不为满射。
5、设 , ,判断下列命题的真假。
(1) 是从X到Y的二元关系,但不是X到Y的函数。
(3) 是从X到Y的满射,但不是单射。
解答:(1)真;(3)假
15、设 , 为A上的等价关系,且 ,求自然映射 。
作业答案:集合论部分
P90:习题六
5、确定下列命题是否为真。
(2)
(4)
(6)
解答:(2)假(4)真(6)真
8、求下列集合的幂集。
(5)
(6)
解答:
(5)集合的元素彼此互不相同,所以 ,所以该题的结论应该为
(6)
9、设 , , , ,求下列集合。
(1)
(2)
解答:
(1)
(2)
31、设A,B,C为任意集合,证明
画出R的关系图,并求出A中各元素的等价类。
解答:关系图为
等价类 ;
30、设 ,在 上定义二元关系R,
。
(1)证明R为 上的等价关系。
(2)确定由R引起的对 的划分。
解答:
(1)证明:
①自反性: ,由于 ,所以 ;
②对称性:
有 ,所以
因此
③传递性:
有 , ,所以
因此 。
(2)等价类有
37、对于下列集合与整除关系画出哈斯图。
(2)哈斯图为
极小元为 ,极大元为 ,无最大元、最小元
41、 ,R为整除关系, ,在偏序集 中求B的上界、下界、最小上界和最大下界。
解:下界即为公约数,2,3,4的公约数只有1,所以下界为1,最大下界也为1;
下界即为公倍数,2,3,4的公倍数只有12,所以上界为1,最大上界也为12;
P141:习题八
21、设 ,图7.11给出12种A上的关系,对于每种关系写出相应的关系矩阵,并说明它所具有的性质。
解答:
(a) ,具有自反性。
(b) ,具有反对称性和传递性。
(c) ,具有自反性,对称性和传递性。
23、设R的关系图如图7.12所示,试给出 , 和 的关系图。
25、设 ,R是A上的等价关系,且R是A上所构成的等价类为 。
(2)不是,由于 集合较小,
①自反性:
②对称性,
但是传递性不满足, ,但是 。
(3)是,满足对称性、传递性,但是不满足自反性
取 ,但是 不为奇数,所以 。
(5)满足
①自反性:
②对称性:
③传递性:
下面证明
若 ,则 ,所以
若 ,则 ,所以
所以 ,同理可证,
所以
所以 。因此满足传递性。
27、设 A上的等价关系
(1)求 。
(2)求
(3)求 传递闭包。
解答:
(1)
(2)由于等价关系满足对称性,所以
所以
(3)由于等价关系满足传递性,所以传递闭包为其自身,即
26、对于给定的A和R,判断R是否为A上的等价关系。
(1)A为实数集, 。
(2) , 。
(3) , 为奇数。
(5) ,
解答:
(1)不是,不满足自反性、对称性、传递性。
证明:
34、设A,B为集合,证明:如果 ,则 。
证明:(反证法)
设 ,则 ,
所以 ;
所以
但是 。
与 矛盾。
37、设A,B,C为任意集合,证明: 。
证明:
对任意 ,由于 ,所以 且 所以
因此, 。
P121:习题七
5、设A,B为任意集合,证明
若 ,则 。
证明:
所以有
9、设 ,列出下列关系R
(2)
(3)
解答: