2018年珠海市香洲区八年级上数学期末试卷

合集下载

2017-2018学年广东省珠海市香洲区八年级(上)期末数学试卷(解析版)

2017-2018学年广东省珠海市香洲区八年级(上)期末数学试卷(解析版)

8. (3 分)如图,已知点 A、D、C、F 在同一直线上,AB=DE,AD=CF,且∠B=∠E= 90°,判定△ABC≌△DEF 的依据是( )
第 1 页(共 14 页)
A.SAS 9. (3 分)分式 A.不变 C.是原来的 5 倍
B.ASA
C.AAS
D.HL )
中的 m、n 的值同时扩大到原来的 5 倍,则此分式的值( B.是原来的 D.是原来的 10 倍
2 2 2 2思想是数学解题中常见的一种思想方法,请你解答下列 问题: (1)根据材料 1,把 x ﹣6x+8 分解因式. (2)结合材料 1 和材料 2,完成下面小题: ①分解因式: (x﹣y) +4(x﹣y)+3; ②分解因式:m(m+2) (m +2m﹣2)﹣3. 24. (9 分)如图,在△ABC 中,∠ACB=90°,AC=BC,E 为 AC 边的中点,AD⊥AB 交 BE 延长线于点 D,CF 平分∠ACB 交 BD 于点 F,连接 CD. 求证: (1)AD=CF; (2)点 F 为 BD 的中点.
2 2 2
25. (9 分)如图,在平面直角坐标系中,点 A 的坐标是(a,0) (a>0) ,点 C 是 y 轴上的 一个动点, 点 C 在 y 轴上移动时, 始终保持△ACP 是等边三角形, 当点 C 移动到点 O 时,
第 4 页(共 14 页)
得到等边△AOB(此时点 P 与点 B 重合) . (1)点 C 在移动的过程中,当等边三角形 ACP 的顶点 P 在第三象限时(如图所示) ,求 证:△AOC≌△ABP; (2)若点 P 在第三象限,BP 交 x 轴于点 E,且∠ACO=20°,求∠PAE 的度数和 E 点 的坐标; (3)若∠APB=30°,则点 P 的横坐标为 .

广东省珠海市香洲区2017-2018第一学期期末考试八年级数学试卷(含答案)

广东省珠海市香洲区2017-2018第一学期期末考试八年级数学试卷(含答案)

广东省珠海市香洲区2017-2018第一学期期末考试八年级数学试卷一、选择题(每小题3分,共30分)1、下列四个手机APP图标中,是轴对称图形的是()A、B、C、D、2、下列图形中具有稳定性的是()A、正方形B、长方形C、等腰三角形D、平行四边形3、下列长度的三根木棒能组成三角形的是()A、1 ,2 ,4B、2 ,2 ,4C、2 ,3 ,4D、2 ,3 ,64、已知某细菌直径长约0.0000152米,那么该细菌的直径长用科学计数法可表示为()A、152×105米B、1.52×10﹣5米C、﹣1.52×105米D、1.52×10﹣4米5、下列运算正确的是()A、(a+1)2=a2+1B、a8÷a2=a4C、3a·(-a)2=﹣3a3D、x3·x4=x76、如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A、AB=2BDB、AD⊥BCC、AD平分∠BACD、∠B=∠C第6题第8题7、如果(x+m)与(x-4)的乘积中不含x的一次项,则m的值为()A、4B、﹣4C、0D、18、如图,已知点A、D、C、F在同一直线上,AB=DE,AD=CF,且∠B=∠E=90°,判定△ABC≌△DEF的依据是()A、SASB、ASAC、AASD、HL中的m、n的值同时扩大到原来的5倍,则此分式的值()9、分式+A、不变B、是原来的C、是原来的5倍D、是原来的10倍10、如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A、90°-αB、αC、90°+αD、360°-α二、填空题(每小题4分,共24分)有意义,则x的取值范围为。

11、若分式+12、分解因式:m2-3m=。

13、若点A(2,m)关于y轴的对称点是B(n,5),则mn的值是。

14、若正多边形的一个内角等于135°,那么这个正多边形的边数是。

珠海市八年级上期末考试数学试卷有答案 -精选

珠海市八年级上期末考试数学试卷有答案 -精选

珠海市017-2018第一学期期末考试八年级数学试卷一、选择题(每小题3分,共30分)1、下列四个手机APP图标中,是轴对称图形的是()A、B、C、D、2、下列图形中具有稳定性的是()A、正方形B、长方形C、等腰三角形D、平行四边形3、下列长度的三根木棒能组成三角形的是()A、1 ,2 ,4B、2 ,2 ,4C、2 ,3 ,4D、2 ,3 ,64、已知某细菌直径长约0.0000152米,那么该细菌的直径长用科学计数法可表示为()A、152×105米B、1.52×10﹣5米C、﹣1.52×105米D、1.52×10﹣4米5、下列运算正确的是()A、(a+1)2=a2+1B、a8÷a2=a4C、3a·(-a)2=﹣3a3D、x3·x4=x76、如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A、AB=2BDB、AD⊥BCC、AD平分∠BACD、∠B=∠C第6题第8题7、如果(x+m)与(x-4)的乘积中不含x的一次项,则m的值为()A、4B、﹣4C、0D、18、如图,已知点A、D、C、F在同一直线上,AB=DE,AD=CF,且∠B=∠E=90°,判定△ABC≌△DEF的依据是()A、SASB、ASAC、AASD、HL中的m、n的值同时扩大到原的5倍,则此分式的值()9、分式2+C、是原的5倍D、是原的10倍A、不变B、是原的1510、如图,在四边形ABCD 中,∠A+∠D=α,∠ABC 的平分线与∠BCD 的平分线交于点P ,则∠P=( )A 、90°-12α B、12α C、90°+12α D、360°-α二、填空题(每小题4分,共24分) 11、若分式x x+2有意义,则x 的取值范围为 。

12、分解因式:m 2-3m = 。

13、若点A (2,m )关于y 轴的对称点是B (n ,5),则mn 的值是 。

★试卷3套精选★珠海市2018届八年级上学期数学期末学业质量监测试题

★试卷3套精选★珠海市2018届八年级上学期数学期末学业质量监测试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,AOB α∠=,点P 是AOB ∠内的一定点,点,M N 分别在OA OB 、上移动,当PMN ∆的周长最小时,MPN ∠的值为( )A .90α+B .1902α+C .180α-D .1802α-【答案】D 【分析】过P 点作角的两边的对称点,在连接两个对称点,此时线段与角两边的交点,构成的三角形周长最小.再根据角的关系求解.【详解】解:过P 点作OB 的对称点1P ,过P 作OA 的对称点2P ,连接12PP ,交点为M,N ,则此时PMN 的周长最小,且△1P NP 和△2PMP 为等腰三角形.此时∠12P PP =180°-α;设∠NPM=x°,则180°-x°=2(∠12P PP -x°) 所以 x°=180°-2α 【点睛】求出M,N 在什么位子△PMN 周长最小是解此题的关键.2.如图,//AB CD ,以点A 为圆心,小于AC 长为半径作弧,分别交AB 、AC 于E 、F 两点,再分别以,E F 为圆心,大于12EF 的长为半径画弧,两弧交于点G ,作射线AG ,交CD 于点H ,若ACD ∠120=︒,则AHD ∠的度数为( )A .150︒B .115︒C .120︒D .160︒【答案】A 【分析】先由平行线的性质得出,180CHA HAB ACD CAB ∠=∠∠+∠=︒,进而可求出CAB ∠的度数,再根据角平分线的定义求出HAB ∠的度数,则CHA ∠的度数可知,最后利用180AHD CHA ∠=︒-∠求解即可.【详解】∵//AB CD∴,180CHA HAB ACD CAB ∠=∠∠+∠=︒120ACD ∠=︒180********CAB ACD ∴∠=︒-∠=︒-︒=︒∵AH 平分CAB ∠1302HAB CAB ∴∠=∠=︒ 30CHA ∴∠=︒180150AHD CHA ∴∠=︒-∠=︒故选:A .【点睛】本题主要考查平行线的性质和角平分线的画法及定义,掌握平行线的性质和角平分线的画法及定义是解题的关键.3.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将()2101,()21011换算成十进制数应为:()21021011202124015=⨯+⨯+⨯=++=;()32102101112021212802111=⨯+⨯+⨯+⨯=+++=.按此方式,将二进制()21001换算成十进制数和将十进制数13转化为二进制的结果分别为( ) A .9,()21101B .9, ()21110C .17,()21101D .17,()21110【答案】A【分析】首先理解十进制的含义,然后结合有理数混合运算法则及顺序进一步计算即可.【详解】将二进制()21001换算成十进制数如下:()3210210011202021280019=⨯+⨯+⨯+⨯=+++=;将十进制数13转化为二进制数如下:1326÷=……1,623÷=……0,321÷=……1,∴将十进制数13转化为二进制数后得()21101,故选:A.【点睛】本题主要考查了有理数运算,根据题意准确理解十进制与二进制的关系是解题关键.4.利用形如()a b c ab ac +=+这个分配性质,求(32)(5)x x +-的积的第一步骤是( ) A .(32)(32)(5)x x x +++-B .3(5)2(5)x x x -+-C .231310x x --D .231710x x -- 【答案】A【分析】把3x+2看成一整体,再根据乘法分配律计算即可.【详解】解:(32)(5)x x +-的积的第一步骤是(32)(32)(5)x x x +++-.故选:A .【点睛】本题主要考查了多项式乘多项式的运算,把3x+2看成整体是关键,注意根据题意不要把x-5看成整体. 5.下列计算正确的是( )A .(21b )﹣2=b 4B .(﹣a 2)﹣2=a 4C .00=1D .(﹣12)﹣2=﹣4 【答案】A 【分析】直接利用分式的基本性质、负整数指数幂的性质、零指数幂化简得出答案.【详解】A 、222421()()b b b ---==,此项正确 B 、2222411()()a a a --==-,此项错误 C 、000=,此项错误D 、2121()(2)42----=-=,此项错误故选:A .【点睛】本题考查了分式的基本性质、负整数指数幂的性质、零指数幂,熟记各性质与运算法则是解题关键.6.下列各组数中,是勾股数的是()A.7,8,9B.6,8,11C.5,12,14D.3,4,5【答案】D【分析】满足a2+b2=c2的三个正整数,称为勾股数,由此求解即可.【详解】A、∵72+82≠92,∴此选项不符合题意;B、∵62+82≠112,∴此选项不符合题意;C、∵52+122≠142,此选项不符合题意;D、∵42+32=52,∴此选项符合题意.故选:D.【点睛】此题考查了勾股数,说明:①三个数必须是正整数,例如:2.5、6、6.5满足a2+b2=c2,但是它们不是正整数,所以它们不是够勾股数.②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.③记住常用的勾股数再做题可以提高速度.如:3,4,5;6,8,10;5,12,13;…7.以下列各组数为边长,能组成一个三角形的是()A.3,4,5 B.2,2,5 C.1,2,3 D.10,20,40【答案】A【解析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:A、3+4>5,能组成三角形;B、2+2<5,不能组成三角形;C、1+2=3,不能组成三角形;D、10+20<40,不能组成三角形.故选:A.【点睛】此题主要考查三角形的三边关系,解题的关键是熟知三角形任意两边之和大于第三边,任意两边之差小于第三边.8.如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于()A.80°B.70°C.60°D.50°【答案】C【分析】根据在△ABC中,AB=AC,∠A=20°求出∠ABC的度数,再根据线段垂直平分线的性质可求出AE=BE,即∠A=∠ABE=20°即可得出答案.【详解】在△ABC中,AB=AC,∠A=20°,所以∠ABC=80°,因为DE垂直平分AB,所以AE=BE,所以∠ABE=∠A=20°,所以∠CBE=80°-20°=60°,所以答案选C.【点睛】本题主要考查线段的垂直平分线及等腰三角形的性质.关键是熟练掌握线段的垂直平分线上的点到线段的两个端点的距离相等.9.(2016河南2题)某种细胞的直径是0.00000095米,将0.00000095用科学记数法表示为()A.79.510-⨯B.89.510-⨯C.70.9510-⨯D.89510-⨯【答案】A【详解】略10.如图,在平面直角坐标系中,直线AC:y=kx+b与x轴交于点B(-2,0),与y轴交于点C,则“不等式kx+b≥0的解集”对应的图形是()A.射线BD上的点的横坐标的取值范围B.射线BA上的点的横坐标的取值范围C.射线CD上的点的横坐标的取值范围D.线段BC上的点的横坐标的取值范围【答案】A【分析】根据图象即可得出不等式kx+b≥0的解集,从而判断出结论.【详解】解:由图象可知:不等式kx+b≥0的解集为x≤-2∴“不等式kx+b≥0的解集”对应的图形是射线BD上的点的横坐标的取值范围故选A.【点睛】此题考查的是根据一次函数的图象和不等式,求自变量的取值范围,掌握利用一次函数的图象,解一元一次不等式是解决此题的关键.二、填空题11.要使分式12x+有意义,则x的取值范围为_____.【答案】x≠﹣2【解析】根据分式有意义的条件可得x+2≠0,解这个不等式即可求出答案.【详解】由题意可知:x+2≠0,∴x≠﹣2,故答案为x≠﹣2.【点睛】本题考查分式有意义的条件,解题的关键是正确理解分式有意义的条件:分母不为0. 12.已知a 2+b 2=18,ab=﹣1,则a+b=____.【答案】±1.【分析】根据题意,计算(a+b)2的值,从而求出a+b 的值即可.【详解】(a+b)2=a 2+2ab+b 2= (a 2+b 2)+2ab=18﹣2=16,则a+b=±1.故答案为:±1.【点睛】本题考查了代数式的运算问题,掌握完全平方公式和代入法是解题的关键.13与0.1_____0.1.(填“>”、“=”、“<”) 【答案】>【解析】∵11120.52222-=-= 20> , ∴202> , ∴10.52> ,故答案为>.14.3 的算术平方根是_____;-8 的立方根是_____.-2【分析】根据算术平方根和立方根的定义直接计算即可求解.【详解】3 8- 2=-.,2-.【点睛】本题考查了算术平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数,正的平方根即为它的算术平方根.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,1的立方根是1. 15.已知点E F G H 、、、分别为四边形ABCD 的边AB BC CD DA 、、、的中点,=AC BD ,且AC 与BD 不垂直,则四边形EFGH 的形状是__________.【答案】菱形【分析】根据三角形的中位线定理和菱形的判定,可得顺次连接对角线相等的四边形各边中点所得四边形是菱形.【详解】如图,∵E 、F 、G 、H 分别是线段AB 、BC 、CD 、AD 的中点,∴EH 、FG 分别是△ABD 、△BCD 的中位线,EF 、HG 分别是△ACD 、△ABC 的中位线,根据三角形的中位线的性质知,EH=FG=12BD ,EF=HG=12AC , 又∵AC=BD ,∴EH=FG=EF=HG ,∴四边形EFGH 是菱形.故答案为:菱形.【点睛】此题考查三角形中位线定理和菱形的判定,解题关键在于掌握判定定理.16.已知关于x 的方程4433x m m x x ---=--无解,则m=________. 【答案】-3或1【分析】分式方程去分母转化为整式方程()348m x m +=+,分两种情况:(1)()348m x m +=+无实数根,(2)整式方程()348m x m +=+的根是原方程的增根,分别求解即可.【详解】去分母得:()()434x x m m ---+=-,整理得()348m x m +=+,由于原方程无解,故有以下两种情况:(1)()348m x m +=+无实数根,即30m +=且480m +≠,解得3m =-;(2)整式方程()348m x m +=+的根是原方程的增根, 即4833m m +=+,解得1m =; 故答案为:3m =-或1m =.【点睛】此题考查了分式方程无解的条件,分式方程无解,有两种情况,①整式方程本身无解;②整式方程有解,但使得分式方程的最简公分母为零(即为增根).17.计算:(31)(2)x x ++=_______.【答案】2372x x ++【分析】根据多项式乘以多项式的法则计算即可【详解】解:22(31)(2)3+6++2=3+7+2++=x x x x x x x故答案为:2372x x ++【点睛】本题考查了多项式乘以多项式,熟练掌握法则是解题的关键三、解答题18.某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元,求这两次各购进这种衬衫多少件?【答案】两次分别购进这种衬衫30件和15件.【解析】试题分析:设第一批衬衫每件进价为x 元,则第二批每件进价为(x ﹣10)元.根据第二批该款式的衬衫,进货量是第一次的一半,列出方程即可解决问题.试题解析:设第一批衬衫每件进价为x 元,则第二批每件进价为(x ﹣10)元. 由题意:450012100210x x ⨯=-, 解得:x=150,经检验x=150是原方程的解,且符合题意,4500150=30件,210015010-=15件, 答:两次分别购进这种衬衫30件和15件.19.(1)计算:111x x x+--; (2)先化简,22()224x x x x x x -÷-+-,再选择一个你喜欢的x 代入求值. 【答案】 (1)1;(2)x+6, 当x=1时,原式=1(答案不唯一)【分析】(1)通分后,进行加减运算,即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【详解】(1)原式=xx x 111=11x x -- =1(2)原式=()()()()()()2222222x x x x x x x x x +---+-+=26x x x+ =x+6,当x=1时,原式=1.【点睛】本题考查了分式的加减法、分式的化简求值,解题的关键是注意通分、约分,以及分子分母的因式分解. 20.三角形三条角平分线交于一点.【答案】对【解析】试题分析:根据三角形的角平分线的性质即可判断,若动手操作则更为直观.三角形三条角平分线交于一点,本题正确.考点:角平分线的性质点评:熟练掌握基本图形的性质是学好图形问题的基础,因而此类问题在中考中比较常见,常以填空题、选择题形式出现,属于基础题,难度一般.21.解二元一次方程组32929x y x y -=⎧⎨+=⎩ 【答案】92x =,94y =. 【分析】利用加减消元法求解可得.【详解】32929x y x y -=⎧⎨+=⎩①②, ①+②,得418x =,92x ∴=, 把92x =代入②,得9292y +=, 解得94y =, 所以原方程的解为9294x y ⎧=⎪⎪⎨⎪=⎪⎩. 【点睛】本题主要考查解二元一次方程组,熟练掌握解二元一次方程组的两种消元方法是解题的关键.22.先化简,再求值(1)()2232()()x y xy y y x y x y --÷-+-,其中3x =,12y(2)2222111121x x x x x x +++⎛⎫⋅-+ ⎪-+-⎝⎭,其中67x =- 【答案】(1)3;(2)713- 【分析】(1)根据去括号与合并同类项的法则将代数式化简,然后把给定的值代入计算即可. (2)根据分式的混合运算法则把原式化简,把给定的值代入计算即可.【详解】(1)解:原式=2222(2)()x xy y x y ----2xy =-, 当13,2x y ==-时,上式=123()2-⨯⨯-3=; (2)解:原式=2(2)(1)11(1)(1)(2)1x x x x x x x +++--+-+- 111x x x x +=--- 11x =- 当67x =-时,上式=1761317=---. 【点睛】本题考查的是分式的化简求值、整式的混合运算,解题的关键是注意运算顺序以及符号的处理. 23.如下图所示,在直角坐标系中,第一次将△OAB 变换成11OA B ,第二次将11OA B 变换成22OA B ,第三次将22OA B △变换成33OA B ,已知A(1,2),1A (2,2),2A (4,2)3A (8,2),B(2,0),1B (4,0),2B (8,0),3B (16,0).(1)观察每次变换前后的三角形有何变化,找出规律,按此规律再将33OA B 变换成44OA B ,则4A 的坐标为 ,4B 的坐标为 .(2)可以发现变换过程中123A ,A ,A ……A n 的纵坐标均为 .(3)按照上述规律将△OAB 进行n 次变换得到n n OA B △,则可知A n 的坐标为 , n B 的坐标为 .(4)线段n OA 的长度为 .【答案】(1)(16,2);(32,0);(2)2;(3)(2n ,2);(2n+1,0);(4224+n 【分析】(1)根据A 1、A 2、A 3和B 1、B 2、B 3的坐标找出规律,求出A 4的坐标、B 4的坐标;(2)根据A 1、A 2、A 3的纵坐标找出规律,根据规律解答;(3)根据将△OAB 进行n 次变换得到△OA n B n 的坐标变化总结规律,得到答案;(4)根据勾股定理计算.【详解】(1)∵A 1(2,2),A 2(4,2)A 3(8,2),∴A 4的坐标为(16,2),∵B 1(4,0),B 2(8,0),B 3(16,0),∴B 4的坐标为(32,0),故答案为:(16,2);(32,0);(2)变换过程中A 1,A 2,A 3……A n 的纵坐标均为2,故答案为:2;(3)按照上述规律将△OAB 进行n 次变换得到△OA n B n ,则可知A n 的坐标为(2n ,2),B n 的坐标为(2n+1,0)故答案为:(2n ,2);(2n+1,0);(4)∵A n 的横坐标为2n ,B n ﹣1的横坐标为2n ,∴A n B n ﹣1⊥x 轴,又A n 的纵坐标2,由勾股定理得,线段OA n ()2222n +224+n ,224+n【点睛】本题考查的是坐标与图形、图形的变换、图形的变化规律,正确找出变换前后的三角形的变化规律、掌握勾股定理是解题的关键.24.如图,四边形ABCD 中,AB=4,BC=3,AD=13,CD=12,∠B=90°,求该四边形的面积.【答案】1.【解析】试题分析:由AB=4,BC=3,∠B=90°可得AC=2.可求得S △ABC ;再由AC=2,AD=13,CD=4,可得△ACD 为直角三角形,进而求得S △ACD ,可求S 四边形ABCD =S △ABC +S △ACD .解:在Rt △ABC 中,AB=4,BC=3,则有AC==2.∴S △ABC =AB•BC=×4×3=3.在△ACD 中,AC=2,AD=13,CD=4.∵AC 2+CD 2=22+42=139,AD 2=132=139.∴AC 2+CD 2=AD 2,∴△ACD 为直角三角形,∴S △ACD =AC•CD=×2×4=6.∴S 四边形ABCD =S △ABC +S △ACD =3+6=1.考点:勾股定理;勾股定理的逆定理.25.如图,(1)写出顶点C 的坐标;(2)作ABC 关于y 轴对称的111A B C △;(3)若点()2,A a b 与点A 关于x 轴对称,求a-b 的值【答案】(1)(-2,-1);(2)作图见解析;(1)1【分析】(1)根据平面直角坐标系写出即可;(2)利用网格结构找出点A 、B 、C 关于y 轴对称的点A 1、B 1、C 1的位置,然后顺次连接即可;(1)根据关于x 轴对称的点的横坐标相同,纵坐标互为相反数求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:(1)点C(−2,−1);(2)如图所示,111A B C ∆即为所求作的三角形;(1)()2,A a b 与点A 关于x 轴对称,A 的坐标是(1,2),则点()21,2A -,所以,a=1,b=−2,所以,a−b=1−(−2)=1+2=1.【点睛】本题考查轴对称变换作图,掌握轴对称图形的性质为解题关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .【答案】D【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A 、不是轴对称图形,故A 不符合题意;B 、不是轴对称图形,故B 不符合题意;C 、不是轴对称图形,故C 不符合题意;D 、是轴对称图形,故D 符合题意.故选D.【点睛】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 2.已知一次函数y kx b =+,y 随着x 的增大而减小,且0kb <,则它的大致图象是( ) A . B .C .D .【答案】B【分析】根据y 随着x 的增大而减小可知k 0<,一次函数从左往右为下降趋势,由0kb <可得0b >,一次函数与y 轴交于正半轴,综合即可得出答案.【详解】解:∵y 随着x 的增大而减小,∴k 0<,一次函数从左往右为下降趋势,∴0b >∴一次函数与y 轴交于正半轴,可知它的大致图象是B 选项故答案为:B .【点睛】本题考查了一次函数图象,掌握k ,b 对一次函数的影响是解题的关键.3.如图,观察图中的尺规作图痕迹,下列说法错误的是( )A .DAE EAC ∠=∠B .C EAC ∠=∠C .//AE BCD .DAE B ∠=∠【答案】A 【分析】由作法知,∠DAE=∠B ,进而根据同位角相等,两直线平行可知AE ∥BC ,再由平行线的性质可得∠C=∠EAC.【详解】由作法知,∠DAE=∠B ,∴AE ∥BC ,∴∠C=∠EAC ,∴B 、C 、D 正确;无法说明A 正确.故选A.【点睛】本题主要考查了尺规作图,平行线的性质与判定的综合应用,熟练掌握平行线的性质与判定方法是解答本题的关键.解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.4.一个直角三角形的三边长为三个连续偶数,则它的三边长分别是( )A .2,4,6B .4,6,8C .3,4,5D .6,8,10【答案】D【分析】根据连续偶数相差是2,设中间的偶数是x ,则另外两个是x-2,x+2根据勾股定理即可解答.【详解】解:根据连续偶数相差是2,设中间的偶数是x ,则另外两个是x-2,x+2根据勾股定理,得 (x-2)2+x 2=(x+2)2,x 2-4x+4+x 2=x 2+4x+4,x 2-8x=0,解得x=8或0(0不符合题意,应舍去),所以它的三边是6,8,1.故选:D .【点睛】本题考查了一元二次方程的应用及勾股定理,注意连续偶数的特点,能够熟练解方程.5.实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .a ﹣c >b ﹣cB .a+c <b+cC .ac >bcD .a c b b < 【答案】B【分析】先由数轴观察a 、b 、c 的正负和大小关系,然后根据不等式的基本性质对各项作出正确判断.【详解】由数轴可以看出a <b <0<c ,因此,A 、∵a <b ,∴a ﹣c <b ﹣c ,故选项错误;B 、∵a <b ,∴a+c <b+c ,故选项正确;C 、∵a <b ,c >0,∴ac <bc ,故选项错误;D 、∵a <c ,b <0,∴a cb b >,故选项错误. 故选B.【点睛】此题主要考查了不等式的基本性质及实数和数轴的基本知识,比较简单.6.在2(1)1y k x k =++-中,若y 是x 的正比例函数,则k 值为( )A .1B .1-C .±1D .无法确定【答案】A【分析】先根据正比例函数的定义列出关于k 的方程组,求出k 的值即可. 【详解】函数()2y k 1x k 1=++-是正比例函数, 210k 10k +≠⎧∴⎨-=⎩, 解得k 1=,故选A .【点睛】本题考查的是正比例函数的定义,正确把握“形如(0)=y kx k =≠的函数叫正比例函数”是解题的关键. 7.芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约有1.11111211千克,用科学记数法表示为( )A .2.11×11-6千克B .1.211×11-5千克C .21.1×11-7千克D .2.11×11-7千克【答案】A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×11-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的1的个数所决定.【详解】1.11111211=62.0110-⨯故选A .8.如图,在△ABC 中,AB=AC=5,BC=6,点M 为BC 的中点,MN ⊥AC 于点N ,则MN 等于( )A .125B .95C .65D .165【答案】A【分析】连接AM ,根据等腰三角形三线合一的性质得到AM ⊥BC ,根据勾股定理求得AM 的长,再根据在直角三角形的面积公式即可求得MN 的长.【详解】解:连接AM ,∵AB=AC ,点M 为BC 中点,∴AM ⊥CM (三线合一),BM=CM ,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt △ABM 中,AB=5,BM=3,∴根据勾股定理得:AM=22AB BM - = 2253-=4,又S △AMC =12MN•AC=12AM•MC , ∴MN=·AM CM AC= 125. 故选A .【点睛】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.9.下列图标中轴对称图形的个数是( )A .1个B .2个C .3个D .4个【答案】C 【解析】①、②、③是轴对称图形,④是中心对称图形.故选C.点睛:本题考查了轴对称图形和中心对称图形的识别.在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形。

┃精选3套试卷┃2018届珠海市八年级上学期数学期末学业质量检查模拟试题

┃精选3套试卷┃2018届珠海市八年级上学期数学期末学业质量检查模拟试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO∶S△BCO∶S△CAO等于()A.1∶1∶1 B.1∶2∶3 C.2∶3∶4 D.3∶4∶5【答案】C【分析】由于三角形的三条角平分线的交点为三角形的内心,则点O为△ABC的内心,又知点O到三边的距离相等,即三个三角形的高相等,利用三角形的面积公式知,三个三角形的面积之比即为对应底边之比.【详解】解:由题意知,点O为△ABC的内心,则点O到三边的距离相等,设距离为r,则S△ABO=12AB·r,S△BCO=12BC·r,S△CAO=12AC·r,∴S△ABO∶S△BCO∶S△CAO=12AB·r:12BC·r:12AC·r=AB:BC:AC=20:30:40=2:3:4,故选:C.【点睛】本题考查三角形的角平分线的性质、三角形的内心、三角形的面积公式,关键是熟知三角形的三条角平分线相交于一点,这一点是该三角形的内心.2.根据下列条件,只能画出唯一的△ABC的是()A.AB=3 BC=4 B.AB=4 BC=3 ∠A=30°C.∠A=60°∠B=45° AB=4 D.∠C=60°AB=5【答案】C【解析】由所给边、角条件只能画出唯一的△ABC,说明当按所给条件画两次时,得到的两个三角形是全等的,即所给条件要符合三角形全等的判定方法;而在四个选项中,当两个三角形分别满足A、B、D三个选项中所列边、角对应相等时,两三角形不一定全等;当两个三角形满足C选项中所列边、角对应相等时,三角形是一定全等的.故选C.3.某班级的一次数学考试成绩统计图如图,则下列说法错误的是( )A .得分在70~80分的人数最多B .该班的总人数为40C .人数最少的得分段的频数为2D .得分及格(≥60分)的有12人【答案】D 【解析】试题分析:A 、得分在70~80分之间的人数最多,有14人,此选项正确;B 、该班的总人数为4+12+14+8+2=40人,此选项正确;C 、得分在90~100分之间的人数最少,有2人,频数为2,此选项正确;D 、及格(≥60分)人数是12+14+8+2=36人,此选项错误.故选D .点睛:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.4.若3a b +=,则226a b b -+的值为( )A .3B .6C .9D .12【答案】C【解析】∵a+b=3,∴a 2-b 2+6b=(a+b)(a-b)+6b=3(a-b)+6b=3a-3b+6b=3a+3b=3(a+b)=9,故选C.5.ABC ∆中,260,C B AE ∠=∠=︒是中线,AD 是角平分线,AF 是高,则下列4个结论正确的是( ) ①ABE ACE S S ∆∆=②15EAD FAD ∠=∠=︒③=AE BE CE AC ==④:::ABD ACD S S BD DC AB AC ∆∆==A .①②③B .①②④C .①②③④D .②③④【答案】C 【解析】根据中线、高线、角平分线的性质结合等边三角形、直角三角形的性质依次判断即可求解.【详解】∵AE 是中线,∴ABE ACE S S ∆∆=,①正确;∵260C B ∠=∠=︒,∴30B ∠=︒,90BAC ∠=︒又AE 是中线,∴AE=CE=BE,∴△ACE 为等边三角形,∴60EAC ∠=︒∵AD 是角平分线,∴1452DAC BAC ∠=∠=︒ ∴15EAD ∠=︒又∵AF 是高∴9030FAC C ∠=︒-∠=︒∴15FAD CAD FAC ∠=∠-∠=︒故15EAD FAD ∠=∠=︒,②正确;∵AE 是中线,△ACE 为等边三角形,∴=AE BE CE AC ==,③正确;作DG ⊥AB,DH ⊥AC ,∵AD 是角平分线∴DG=DH ,∴ABD S ∆=12×BD×AF=12×AB×DG ,ACD S ∆=12CD×AF=12×AC×DH , ∴:::ABD ACD S S BD DC AB AC ∆∆==,④正确;故选C .【点睛】此题主要考查直角三角形的判定与性质,解题的关键是熟知中线、高线、角平分线的性质结合等边三角形、直角三角形的性质.6.如图,△ABC 是等边三角形,AD 是BC 边上的高,E 是AC 的中点,P 是AD 上的一个动点,当PC 与PE的和最小时,∠CPE的度数是()A.30°B.45°C.60°D.90°【答案】C【分析】连接BE,则BE的长度即为PE与PC和的最小值.再利用等边三角形的性质可得∠PBC=∠PCB=30°,即可解决问题;【详解】解:如连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵△ABC是等边三角形,∴∠BCE=60°,∵BA=BC,AE=EC,∴BE⊥AC,∴∠BEC=90°,∴∠EBC=30°,∵PB=PC,∴∠PCB=∠PBC=30°,∴∠CPE=∠PBC+∠PCB=60°,故选:C.【点睛】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.7.下列图形中,∠1与∠2不是同位角的是()A.B.C.D.【答案】B【分析】同位角是“F”形状的,利用这个判断即可.【详解】解:观察A、B、C、D,四个答案,A、C、D都是“F”形状的,而B不是.故选:B【点睛】本题考查基本知识,同位角的判断,关键在于理解同位角的定义.8.已知点P关于x轴对称点的坐标是(-1,2),则点P的坐标为( )A.(1,2) B.(1,-2) C.(2,-1) D.(-1,-2)【答案】D【解析】关于x轴对称的点,横坐标相同,纵坐标互为相反数.【详解】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,∴点P关于x轴对称点的坐标是(-1,2),则点P的坐标为(-1,-2).故选:D.【点睛】解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数.9.2014年6月3日中央新闻报道,为鼓励居民节约用水,北京市将出台新的居民用水收费标准:若每月每户居民用水不超过4m3,则按每立方米2元计算;若每月每户居民用水超过4m3,则超过部分按每立方米4.5元计算(不超过部分仍按每立方米2元计算).现假设该市某户居民用水x m3,水费为y元,则y 与x的函数关系式用图象表示正确的是()A.B.C.D .【答案】C【详解】由题意知,y 与x 的函数关系为分段函数.2(04)4.510(4)x x y x x ≤<⎧=⎨-≥⎩故选C .考点:1.一次函数的应用;2.一次函数的图象.10.如图,在△ABC 中,∠ABC=90°,∠C=20°,DE 是边AC 的垂直平分线,连结AE ,则∠BAE 等于( )A .20°B .40°C .50°D .70°【答案】C 【分析】根据三角形内角和定理求出∠BAC ,根据线段垂直平分线的性质求出CE=AE ,求出∠EAC=∠C=20°,即可得出答案.【详解】∵在△ABC 中,∠ABC=90°,∠C=20°,∴∠BAC=180°−∠B−∠C=70°,∵DE 是边AC 的垂直平分线,∠C=20°,∴CE=AE ,∴∠EAC=∠C=20°,∴∠BAE=∠BAC−∠EAC=70°−20°=50°,故选C.【点睛】此题考查线段垂直平分线的性质,解题关键在于掌握其性质.二、填空题11.若代数式x 2+kx+25是一个完全平方式,则k=_____.【答案】10±.【分析】利用完全平方公式的结构特征判断即可得到k 的值.【详解】解:∵225x kx ++是一个完全平方式,∴()21510k =±⨯⨯=±,.故答案为:10【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.12.如图,在△ABC中,∠ABC=∠ACB,AB的垂直平分线交AC于点M,交AB于点N.连接MB,若AB =8,△MBC的周长是14,则BC的长为____.【答案】1【解析】根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AM=BM,然后求出△MBC的周长=AC+BC,再代入数据进行计算即可得解.【详解】∵M、N是AB的垂直平分线∴AM=BM,∴△MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC,∵AB=8,△MBC的周长是14,∴BC=14-8=1.故答案为:1.【点睛】线段垂直平分线的性质, 等腰三角形的性质.13.在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE= cm.【答案】1.【解析】∵∠ACB=90°,∴∠ECF+∠BCD=90°.∵CD⊥AB,∴∠BCD+∠B=90°.∴∠ECF=∠B,在△ABC和△FEC中,∵∠ECF=∠B,EC=BC,∠ACB=∠FEC=90°,∴△ABC≌△FEC(ASA).∴AC=EF.∵AE=AC﹣CE,BC=2cm,EF=5cm,∴AE=5﹣2=1cm.14.分解因式:a2b2﹣5ab3=_____.【答案】ab2(a﹣5b).【分析】直接提取公因式ab2,进而得出答案.【详解】解:a2b2﹣5ab3=ab2(a﹣5b).故答案为:ab2(a﹣5b).【点睛】本题考查因式分解提公因式法,关键在于熟练掌握提公因式法.15.如果Rt△ABC是轴对称图形,且斜边AB的长是10cm,则Rt△ABC的面积是_____cm1.【答案】15【分析】根据题意可得,△ABC是等腰直角三角形,根据斜边AB是10cm,求出直角边的长,最后根据三角形面积公式得出答案即可.【详解】解:∵Rt△ABC是轴对称图形,∴△ABC是等腰直角三角形,∵斜边AB的长是10cm,∴直角边长为2×10=522(cm),∴Rt△ABC的面积=1×52?52=252(cm1);故答案为:15.【点睛】本题主要考察了勾股定理以及轴对称图形的性质,根据题意得出△ABC是等腰直角三角形是解题的关键. 16.如图,在平面直角坐标系中,长方形OABC的顶点O在坐标原点,顶点A、C分别在x、y轴的正半轴上:OA=3,OC=4,D为OC边的中点,E是OA边上的一个动点,当△BDE的周长最小时,E点坐标为_____.【答案】 (1,0)【分析】本题是典型的“将军饮马”问题,只需作D关于x轴的对称点D′,连接D′B交x轴于点E,如图,则此时△BDE的周长最小,易得点B和D′坐标,故可利用待定系数法求出直线BD'的解析式,然后求直线BD'与x轴的交点即得答案.【详解】解:如图,作D关于x轴的对称点D′,连接D′B交x轴于点E,连接DE,则DE= D′E,此时△BDE 的周长最小,∵D 为CO 的中点,∴CD =OD =2,∵D 和D′关于x 轴对称,∴D′(0,﹣2),由题意知:点B (3,4),∴设直线BD'的解析式为y =kx+b ,把B (3,4),D′(0,﹣2)代入解析式,得:342k b b +=⎧⎨=-⎩,解得,22k b =⎧⎨=-⎩, ∴直线BD'的解析式为y =2x ﹣2,当y =0时,x =1,故E 点坐标为(1,0).故答案为:(1,0).【点睛】本题考查的是利用待定系数法求直线的解析式和两线段之和最小问题,属于常考题型,熟练掌握求解的方法是解题关键.17.如图,已知点()0,1A .规定“把点A 先作关于x 轴对称,再向左平移1个单位”为一次变化.经过第一次变换后,点A 的坐标为_______;经过第二次变换后,点A 的坐标为_____;那么连续经过2019次变换后,点A 的坐标为_______.【答案】(1,1)-- (2,1)- (2019,1)--【分析】根据轴对称判断出点A 关于x 轴对称后的位置,此时横坐标不变,纵坐标互为相反数,然后再向左平移1个单位长度便可得到第一次变换后的点A 的坐标;按照同样的方式可以找到第二次变换后的点A 的坐标;然后再通过比较横纵坐标的数值,可以发现点A 在每一次变换后的规律,即可求出经过2019次变换后的点A 的坐标.【详解】点A 原来的位置(0,1)第一次变换:()()0, 11,1→-→--(0,1),此时A 坐标为(1,1)--; 第二次变换: →→(-1,-1)(-1,1)(-2,1),此时A 坐标为(2,1)-第三次变换: (2,1)-→→(-2,-1)(-3,-1),此时A 坐标为(3,1)-- ……第n 次变换:点A 坐标为(,(1))nn --所以第2019次变换后的点A 的坐标为(2019,1)--.故答案为:(1,1)--;(2,1)-;(2019,1)--【点睛】本题考查的知识点是轴对称及平移的相关知识,平面直角坐标系中四个象限的点的横、纵坐标的符号是解题中的易错点,必须特别注意.三、解答题18.如图,△ABC 是等腰三角形,AB=AC ,点D 是AB 上一点,过点D 作DE ⊥BC 交BC 于点E ,交CA 延长线于点F .(1)证明:△ADF 是等腰三角形;(2)若∠B=60°,BD=4,AD=2,求EC 的长【答案】(1)见解析;(2)EC=4,理由见解析【分析】(1)由AB=AC ,可知∠B=∠C ,再由DE ⊥BC 和余角的性质可推出∠F=∠BDE ,再根据对顶角相等进行等量代换即可推出∠F=∠FDA ,于是得到结论;(2)由题意根据解直角三角形和等边三角形的性质即可得到结论.【详解】解:(1)AB AC =,B C ∴∠=∠,又DE BC ⊥,90FEC DEB ∴∠=∠=︒,∴90BDE B ∠=︒-∠,90F C ∠=︒-∠,∴BDE F ∠=∠,又BDE ADF ∠=∠,ADF F ∴∠=∠,AF AD ∴=.(2),60AB AC B =∠=︒,AB BC AC ∴==,又4,2BD AD ==,6AB ∴=,在Rt DEB ∆中,60,4B BD ∠=︒=,122BE BD ∴==, 4EC ∴=.【点睛】本题主要考查等腰三角形的判定与性质和余角的性质以及对顶角的性质等知识点,解题的关键根据相关的性质定理通过等量代换进行分析.19.(1)化简2422x x x+-- (2)先化简,再求值221111x x x ⎛⎫÷+ ⎪--⎝⎭,其中x 为整数且满足不等式组11622x x --⎧⎨+≥⎩>. 【答案】(1)x+1;(1)1x x +,当x=﹣1时,原式=1. 【分析】(1)根据分式的混合运算顺序和运算法则计算可得;(1)先根据分式的混合运算顺序和运算法则化简原式,解不等式组求出不等式组的整数解,从中找到符合分式的整数,代入计算可得.【详解】(1)原式2422x x x =--- 242x x -=- ()()222x x x +-=- =x+1;(1)原式()()2111x x x x x =÷+-- ()()211x x x =+-•1x x- 1x x =+,解不等式组11622x x --⎧⎨+≥⎩>①②解不等式①得x <1;解不等式②得x ≥-1;∴不等式组的解集是﹣1≤x <1,所以该不等式组的整数解为﹣1、﹣1、0、1,因为x≠±1且x≠0,所以x=﹣1, 则原式221-==-+1. 【点睛】本题主要考查分式的化简求值与解不等式组,解题的关键是熟练掌握分式的混合运算顺序和运算法则及解不等式组的能力.20.计算:(1)2(2)4()x y y x y -+-.(2)[](21)(4)(2)(2)ab ab ab ab ab +--+-÷.【答案】(1)2x ;(2)7ab -.【分析】(1)根据完全平方公式和单项式乘以多项式的法则分别计算各项,再合并同类项即可;(2)原式中括号内分别根据多项式乘以多项式的法则和平方差公式计算,合并同类项后再根据多项式除以单项式的法则计算即得结果.【详解】解:(1)22222(2)4()4444x y y x y x xy y xy y x -+-=-++-=;(2)[](21)(4)(2)(2)ab ab ab ab ab +--+-÷()22222844a b ab ab a b ab ⎡⎤=-+---÷⎣⎦22222744a b ab a b ab ⎡⎤=---+÷⎣⎦ ()227a b ab ab =-÷7ab =-.【点睛】本题考查了整式的混合运算,属于基础题型,熟练掌握整式混合运算的法则是解题关键.21.如图,已知点B 、F 、C 、E 在一条直线上,BF=EC ,AB ∥ED ,AB=DE .求证:∠A=∠D .【答案】证明见解析【分析】由BF EC =,可得BC EF =,由已知AB ∥ED ,可得∠B =∠E ,易证ABC DEF △≌△,即可证得结论.【详解】证明:∵BF EC =,∴BF FC EC FC +=+,即BC EF =.∵AB ∥ED ,∴∠B =∠E ,在ABC 与DEF 中,AB DE B E BC EF ⎧⎪∠=∠⎨⎪=⎩=,∴ABC DEF SAS ≌(), ∴∠A =∠D【点睛】本题考查了全等三角形的判定与性质以及平行线的性质.解题的关键是“等边加等边仍为等边”证得BC EF =.22.解方程:11x =-233x x - +1. 【答案】x=1.2【分析】根据分式方程的解法去分母、移项、合并同类项、化系数为1,检验即可解答.【详解】解:去分母得:3=2x+3x ﹣3,移项合并得:5x=6,解得:x=1.2经检验x=1.2是分式方程的解.【点睛】本题考查了分式方程的解法,解出后要检验是否是增根.23.如图,在△ABC 中,点D ,E 分别在边AC ,AB 上,BD 与CE 交于点O .给出下列3个条件:①∠EBO=∠DCO ;②AE=AD ;③OB=OC .(1)上述三个条件中,由哪两个条件可以判定ΔABC是等腰三角形?(用序号写出所有成立的情形)(2)请选择(1)中的一种情形,写出证明过程.【答案】(1)①②与①③,②③(写前两个或写三个都对)(2)见解析【分析】(1)由①②;①③.两个条件可以判定△ABC是等腰三角形,(2)先求出∠ABC=∠ACB,即可证明△ABC是等腰三角形.【详解】(1)①②与①③或②③(写前两个或写三个都对)(2)选①③证明如下,∵OB=OC,∴∠OBC=∠OCB,∵∠EBO=∠DCO,又∵∠ABC=∠EBO+∠OBC,∠ACB=∠DCO+∠OCB,∴∠ABC=∠ACB,∴△ABC是等腰三角形.【点睛】本题主要考查了等腰三角形的判定,解题的关键是找出相等的角求∠ABC=∠ACB.24.如图,已知:∠BDA = ∠CEA,AE = AD.求证:∠ABC =∠ACB.【答案】见解析【分析】由已知条件加上公共角相等,利用ASA得到△ABD与△ACE全等,利用全等三角形对应边相等即可得证.【详解】在△ABD和△ACE中,A A AD AEBDA CEA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABD ≌△ACE (ASA ),∴AB=AC ,∴∠ABC =∠ACB .【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键. 25.如图,△ABC 中,∠ACB =90°,∠A =40°,CD 、BE 分别是△ABC 的高和角平分线,求∠BCD 、∠CEB 的度数.【答案】∠BCD =40°,∠CEB =65°.【分析】在Rt △ABC 中求得∠ABC=50°,在由CD ⊥AB ,即∠BDC=90°知∠BCD=40°,根据BE 平分∠ABC 知∠CBE=12∠ABC=25°,由∠CEB=90°-∠CBE 可得答案. 【详解】∵在△ABC 中,∠ACB =90°,∠A =40°,∴∠ABC =50°,∵CD ⊥AB ,∴∠BDC =90°,∴∠BCD =40°,∵BE 平分∠ABC ,∴∠CBE =12∠ABC =25°, ∴∠CEB =90°﹣∠CBE =65°.【点睛】本题主要考查三角形内角和定理,解题的关键是掌握三角形的内角和定理及角平分线的定义.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.等腰三角形一腰上的高与另一腰的夹角为45°,则其顶角为( )A .45°B .135°C .45°或67.5°D .45°或135°【答案】D【解析】①如图,等腰三角形为锐角三角形,∵BD ⊥AC ,∠ABD=45°,∴∠A=45°,即顶角的度数为45°.②如图,等腰三角形为钝角三角形,∵BD ⊥AC ,∠DBA=45°,∴∠BAD=45°,∴∠BAC=135°.故选:D.2.若22a b +=1ab =,则33a b ab -的值为( )A .22±B .22C .2±D .42【答案】C【分析】将原式进行变形,3322()()()a b ab ab a b ab a b a b -=-=+-,然后利用完全平方公式的变形22()()4a b a b ab -=+-求得a-b 的值,从而求解.【详解】解:∵3322()()()a b ab ab a b ab a b a b -=-=+- ∴332()a b b ab a =--又∵22()()4a b a b ab -=+-∴22()414a b -=-⨯=∴2a b -=±∴33(2)a b ab =±=±-故选:C .【点睛】本题考查因式分解及完全平方公式的灵活应用,掌握公式结构灵活变形是解题关键.3.一个正多边形的内角和为900°,那么从一点引对角线的条数是( )A .3B .4C .5D .6 【答案】B【分析】n 边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n ,就得到关于边数的方程,从而求出边数,再求从一点引对角线的条数.【详解】设这个正多边形的边数是n ,则(n-2)•180°=900°,解得:n=1.则这个正多边形是正七边形.所以,从一点引对角线的条数是:1-3=4.故选B【点睛】本题考核知识点:多边形的内角和.解题关键点:熟记多边形内角和公式.4.下列各式从左到右的变形属于分解因式的是( )A .()()2111a a a -+=- B .()()2422x x x -=-+ C .()()243223x x x x x -+=+-+ D .211()x x x x-=- 【答案】B【分析】根据因式分解的是多项式,分解的结果是积的形式,进行判断即可.【详解】A. ()()2111a a a -+=-,不是因式分解,不符合题意; B. ()()2422x x x -=-+,是运用平方差公式进行的因式分解,符合题意; C. ()()243223x x x x x -+=+-+,最后结果不是乘积的形式,不属于因式分解,不符合题意; D. 211()x x x x-=-,不是在整式范围内进行的分解,不属于因式分解,不符合题意.故选:B【点睛】本题考查了因式分解的定义,把一个多项式化为几个整式的积的形式,这样的式子变形叫做把这个单项式因式分解,理解因式分解的定义是解决此类问题的关键.5.如图,在Rt △ABC 中,∠C =90°,AC =9,BC =12,则点C 到AB 的距离是( )A .365B .1225C .94D .334【答案】A【分析】首先根据勾股定理求出斜边AB 的长,再根据三角形等面积法求出则点C 到AB 的距离即可.【详解】设点C 到AB 距离为h .在Rt ABC ∆中,90C ∠=︒,∴222AC BC AB +=∵9AC =,12BC = ∴2215AB AC BC =+= ∵1122∆==ABC S AC BC AB h ∴12936==155⨯h . 故选:A .【点睛】本题考查勾股定理应用,抓住三角形面积为定值这个等量关系是解题关键.6.若一个三角形的两边长分别为5和7,则该三角形的周长可能是( )A .12B .14C .15D .25【答案】C【分析】先根据三角形三条边的关系求出第三条边的取值范围,进而求出周长的取值范围,从而可的求出符合题意的选项.【详解】∴三角形的两边长分别为5和7,∴2<第三条边<12,∴5+7+2<三角形的周长<5+7+12,即14<三角形的周长<24,故选C.【点睛】本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.7.若2()(3)x px q x -+-展开后不含x 的一次项,则p 与q 的关系是A .3p q =B .30q p +=C .30p q +=D .3q p =【答案】B【分析】利用多项式乘多项式法则计算,令一次项系数为1求出p 与q 的关系式即可.【详解】2()(3)x px q x -+-=x 3−3x 2−px 2+3px +qx−3q =x 3+(−p−3)x 2+(3p +q )x−3q , ∵结果不含x 的一次项,∴q +3p =1.故选:B .【点睛】此题考查了多项式乘多项式,熟练掌握法则是解本题的关键.8.如图,在ABC ∆中,AB AC =,APB APC ∠≠∠,求证:PB PC ≠.当用反证法证明时,第一步应假设( )A .AB AC ≠B .PB PC = C .APB APC ∠=∠D .B C ∠≠∠【答案】B 【分析】根据反证法的概念,即可得到答案.【详解】用反证法证明时,第一步应假设命题的结论不成立,即:PB PC =.故选B .【点睛】本题主要考查反证法,掌握用反证法证明时,第一步应假设命题的结论不成立,是解题的关键. 9.在△ABC 中和△DEF 中,已知BC=EF ,∠C=∠F ,增加下列条件后还不能判定△ABC ≌△DEF 的是( ) A .AC=DFB .∠B=∠EC .∠A=∠D D .AB=DE 【答案】D【解析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理进行判断即可.【详解】解:如图:A, 根据SAS 即可推出△ABC≌△DEF,;B. 根据ASA即可推出△ABC≌△DEFC.根据AAS即可推出△ABC≌△DEF;D, 不能推出△ABC≌△DEF;故选D.【点睛】本题考查了全等三角形的判定的应用, 注意: 全等三角形的判定定理有SAS,ASA,AAS,SSS.10.下列图案中,不是轴对称图形的是()A.B.C.D.【答案】B【解析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.二、填空题11.若n边形的每一个外角都是72°,则边数n为_____.【答案】5【解析】试题分析:n边形的每一个外角都是72°,由多边形外角和是360°,可求得多边形的边数是5.⊥于D.若A(4,0),B(m,3),C(n,-5),12.如图,直线BC经过原点O,点A在x轴上,AD BC则AD BC=______.【答案】32【分析】作三角形的高线,根据坐标求出BE、OA、OF的长,利用面积法可以得出BC•AD=1.【详解】解:过B作BE⊥x轴于E,过C作CF⊥y轴于F,∵B(m,3),∴BE=3,∵A(4,0),∴AO=4,∵C(n,-5),∴OF=5,∵S△AOB=12AO•BE=12×4×3=6,S△AOC=12AO•OF=12×4×5=10,∴S△AOB+S△AOC=6+10=16,∵S△ABC=S△AOB+S△AOC,∴12BC•AD=16,∴BC•AD=1,故答案为:1.【点睛】本题考查了坐标与图形性质,根据点的坐标表示出对应线段的长,面积法在几何问题中经常运用,要熟练掌握;本题根据面积法求出线段的积.13.若22m n x y --与423m n x y +是同类项,则3m n -的立方根是 .【答案】2.【解析】试题分析:若22m n x y --与423m n x y +是同类项,则:4{22m n m n -=+=,解方程得:2{2m n ==-.∴3m n -=2﹣3×(﹣2)=8.8的立方根是2.故答案为2.考点:2.立方根;2.合并同类项;3.解二元一次方程组;4.综合题.14.已知4y +与3x -成正比例,且5x =时4y =,则当5y =时,x 的值为______.【答案】214【分析】先将正比例函数表达式设出来,然后用待定系数法求出表达式,再将y=5代入即可求出x 的值.【详解】∵4y +与3x -成正比例∴设正比例函数为4(3)y k x +=-∵5x =时4y =∴44(53)k +=-∴4k =44(3)y x ∴+=-当5y =时,544(3)x +=-解得214x = 故答案为:214. 【点睛】本题主要考查待定系数法和求自变量的值,掌握待定系数法求出函数的表达式是解题的关键. 15.如图,在Rt ABC ∆中,90C ∠=︒,AD 平分CAB ∠交BC 于点D ,BE AD ⊥于点E .若28DBE ∠=︒,则∠=CAB _______________.【答案】56°【分析】根据三角形内角和定理证明∠DBE=∠DAC ,再根据角平分线的定义即可解决问题.【详解】∵∠C=∠E=90°,∠ADC=∠BDE ,∴∠DBE=∠DAC=28°.∵AD 平分∠CAB ,∴∠CAB=2∠CAD=2×28°=56°.故答案为:56°.【点睛】本题考查了三角形内角和定理,角平分线的定义等知识,解答本题的关键是熟练掌握基本知识,属于中考常考题型.16.若不等式(1)(1)a x a +>+的解集为1x <,则a 满足________.【答案】1a <-【分析】根据(1)(1)a x a +>+的解集为1x <,列不等式求解即可.【详解】解:∵(1)(1)a x a +>+的解集为1x <,∴a+1<0,∴1a <-.故答案为1a <-.【点睛】本题考查了根据不等式解集的情况求参数,根据题意列出关于a 的不等式是解答本题的关键.17.计算:2201901(1)(3π-⎛⎫-+--= ⎪⎝⎭_____________. 【答案】2【分析】根据有理数的乘方、负整数指数幂和零指数幂等知识点进行计算.【详解】原式=﹣2+9﹣2=2.故答案为:2.【点睛】本题考查了零指数幂、负整数指数幂和乘方的运算.负整数指数幂为相应的正整数指数幂的倒数;任何非0数的0次幂等于2.三、解答题18.在解分式方程33122x x x-=---时,小马虎同学的解法如下: 解:方程两边同乘以()2x -,得331x -=-移项,得313x =-+解得5x =你认为小马虎同学的解题过程对吗?如果不对,请你解这个方程.【答案】不对,1x =【分析】观察解方程过程,找出错误步骤,再写出正确解答即可.【详解】解:方程两边同乘以()2x -,得33(2)x x -=---移项得:323x x +=-++解得:1x =经检验:1x =是原分式方程的解所以小马虎同学的解题不对,正确的解是1x =.【点睛】本题考查解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解方程一定注意要验根.19.(1)已知3x=2y=5z≠0,求23x y z x y z++-+的值; (2)某市政工程计划将安装的路灯交给甲、乙两家灯饰厂完成,已知甲厂生产100个路灯与乙厂生产150个路灯所用时间相同,且甲厂比乙厂每天少生产10个路灯,问甲、乙两家工厂每天各生产路灯多少个?【答案】(1)58;(2)甲工厂每天生产20个路灯,乙工厂每天生产30个路灯.【分析】(1)设3x=2y=5z=30a (a≠0),用含a 的代数式表示x ,y ,z ,进而即可求解;(2)设甲工厂每天生产x 个路灯,则乙工厂每天生产(x+10)个路灯,根据“甲厂生产100个路灯与乙厂生产150个路灯所用时间相同”,列出分式方程,即可求解.【详解】(1)∵3x=2y=5z≠0,∴设3x=2y=5z=30a (a≠0),∴x=10a ,y=15a ,z=6a , ∴231030185810156x y z a a a x y z a a a++++==-+-+; (2)设甲工厂每天生产x 个路灯,则乙工厂每天生产(x+10)个路灯, 依题意,得:10015010x x =+,解得:x=20, 经检验,x=20是分式方程的解,且符合题意,x+10=30,答:甲工厂每天生产20个路灯,乙工厂每天生产30个路灯.【点睛】本题主要考查分式的求值以及分式方程的实际应用,解题的关键是:(1)用同一个字母表示出x ,y ,z ;(2)根据等量关系,列出分式方程.20.如图,在矩形ABCD 中,E 、F 分别是边AB 、CD 上的点,AE=CF ,连接EF 、BF ,EF 与对角线AC 交于点O ,且BE=BF ,∠BEF=2∠BAC .(1)求证:OE=OF ;(2)若BC=23,求AB 的长.【答案】(1)证明见解析;(2)1.【解析】试题分析:(1)根据△AEO 和△CFO 全等来进行说明;(2)连接OB ,得出△BOF 和△BOE 全等,然后求出∠BAC 的度数,根据∠BAC 的正切值求出AB 的长度.试题解析:(1)∵四边形ABCD 是矩形,∴AB ∥CD ∴∠OAE=∠OCF ∠OEA=∠OFC ∵AE=CF ∴△AEO ≌△CFO ∴OE=OF(2)连接BO ∵OE=OF BE=BF∴BO ⊥EF 且∠EBO=∠FBO ∴∠BOF=90°∵四边形ABCD 是矩形∴∠BCF=90°∵∠BEF=2∠BAC ∠BEF=∠BAC+∠EOA∴∠BAC=∠EOA AE=OE∵AE=CF OE=OF∴OF=CF 又∵BF=BF∴Rt △BOF ≌Rt △BCF∴∠OBF=∠CBF∴∠CBF=∠FBO=∠OBE∵∠ABC=90° ∠OBE=30°∴∠BEO=10° ∠BAC=30°∵tan ∠BAC=BC AB ∴tan30°23323=∴AB=1. 考点:三角形全等的证明、锐角三角函数的应用.21.先化简:2222421121x x x x x x x ---÷+--+,然后在不等式2x ≤的非负整数解中选择一个适当的数代入求值.【答案】21x +;2.【解析】先将后面的两个式子进行因式分解并约分,然后计算减法,根据题意选择x=0代入化简后的式子即可得出答案.【详解】解:原式=()()()()222121112x x x x x x x ---⋅++-- =()21211x x x x --++ =21x + 2x ≤的非负整数解有:2,1,0,其中当x 取2或1时分母等于0,不符合条件,故x 只能取0∴将x=0代入得:原式=2【点睛】本题考查的是分式的化简求值,注意选择数时一定要考虑化简前的式子是否有意义.22.如图,在平面直角坐标系中,,A B 两点的坐标分别是点()0,A a ,点(),0B b ,且,a b 满足:2102550a a b -++-=.(1)求ABO ∠的度数;(2)点D 是y 轴正半轴上A 点上方一点(不与A 点重合),以BD 为腰作等腰Rt BDC ∆,090DBC ∠=,过点C 作CE x ⊥轴于点E .①求证:DBO BCE ∆≅∆;②连接AC 交x 轴于点F ,若4=AD ,求点F 的坐标.【答案】(1)45°;(2)①见解析;②(﹣2,0).【分析】(1)先根据非负数的性质求得a 、b 的值,进而可得OA 、OB 的长,进一步即可求出结果; (2)①根据余角的性质可得∠ODB=∠CBE ,然后即可根据AAS 证得结论;②根据全等三角形的性质和(1)的结论可得BO=CE 以及OE 的长,然后即可根据AAS 证明△AOF ≌△CEF ,从而可得OF=EF ,进而可得结果.【详解】解:(1)∵2102550a a b -++-=,即()2550a b -+-=, ∴a -5=0,b -5=0,∴a=5,b=5,∴AO=BO=5,∵∠AOB=90°,∴∠ABO=∠BAO=45°;(2)①证明:∵90DBC ∠=︒,∴∠DBO+∠CBE=90°,∵∠ODB+∠DBO=90°,∴∠ODB=∠CBE ,∵∠BOD=∠CEB=90°,BD=CB ,∴DBO BCE ∆≅∆(AAS );②∵DBO BCE ∆≅∆,∴DO=BE ,BO=CE ,∵AO=BO=5,AD=4,∴OE=AD=4,CE=5,∵∠AOF=∠CEF ,∠AFO=∠CFE ,AO=CE=5,∴△AOF ≌△CEF (AAS ),∴OF=EF ,∵OE=4,∴OF=2,∴点F 的坐标是(﹣2,0).【点睛】本题以平面直角坐标系为载体,主要考查了非负数的性质、等腰直角三角形的判定和性质、全等三角形的判定与性质等知识,属于常考题型,熟练掌握等腰直角三角形和全等三角形的判定与性质是解题关键. 23.如图,点,,,A B C D 在一条直线上,且AB CD =,若12∠=∠,EC FB =.求证:E F ∠=∠.【答案】证明见解析.【分析】由∠1=∠2,根据补角的性质可求出DBF ACE ∠=∠,根据AB=CD 可得AC DB =,根据SAS 推出ACE DBF ∆≅∆,根据全等三角形的性质即可得出答案.【详解】∵01DBF 180∠∠+=,02ACE 180∠∠+=.又∵12∠∠=,∴DBF ACE ∠∠=,∵AB CD =,∴AB BC CD BC +=+,即AC DB =,在ΔACE 和ΔDBF 中,EC FB ACE DBF AC DB =⎧⎪∠=∠⎨⎪=⎩∴()ΔACE ΔDBF SAS ≅,∴E F ∠∠=.【点睛】本题考查了全等三角形的性质和判定,能证明ACE DBF ∆≅∆是解此题的关键.24.某校运动会需购买A ,B 两种奖品,若购买A 种奖品3件和B 种奖品2件,共需60元;若购买A 种奖品5件和B 种奖品3件,共需95元.(1)求A 、B 两种奖品的单价各是多少元?(2)学校计划购买A 、B 两种奖品共100件,购买费用不超过1150元,且A 种奖品的数量不大于B 种奖品数量的3倍,设购买A 种奖品m 件,购买费用为W 元,写出W (元)与m (件)之间的函数关系式.求出自变量m 的取值范围,并确定最少费用W 的值.【答案】(1)A 奖品的单价是10元,B 奖品的单价是15元;(2)当购买A 种奖品1件,B 种奖品25件时,费用W 最小,最小为2元.【解析】试题分析:(1)设A 奖品的单价是x 元,B 奖品的单价是y 元,根据条件建立方程组求出其解即可;(2)根据总费用=两种奖品的费用之和表示出W 与m 的关系式,并有条件建立不等式组求出x 的取值范围,由一次函数的性质就可以求出结论.试题解析:(1)设A 奖品的单价是x 元,B 奖品的单价是y 元,由题意,得3260{5395x y x y +=+=, 解得:1015x y =⎧⎨=⎩. 答:A 奖品的单价是10元,B 奖品的单价是15元;(2)由题意,得W=10m+15(100-m )=-5m+1500∴()515001150{? 3100m m m -+≤≤-,。

珠海市香洲区八年级上期末考试数学试卷有答案

珠海市香洲区八年级上期末考试数学试卷有答案

广东省珠海市香洲区第一学期期末考试八年级数学试卷一、选择题(每小题 3分,共30分)F 列四个手机 APP 图标中,是轴对称图形的是()1、 2、3、 4、5、 6、7、 9、 A 、下列图形中具有稳定性的是() A 、正方形B 、长方形C 、等腰三角形下列长度的三根木棒能组成三角形的是()A 、1 , 2 , 4 已知某细菌直径长约A 、152 >05 米 下列运算正确的是()2 2 A 、 (a+1) =a + 1(x + m ) 与 4 如图,已知点的依据是() SAS Zmi 中的 m + n如果A 、 A 、 分式不变lei平行四边形B 、2 , 2 , 4C 、2 , 3 , 40.0000152米,那么该细菌的直径长用科学计数法可表示为 B 、1.52 >0「5米 C 、— 1.52 >05米 D 、 1.52 >10 ,6() 4米82423 347B 、a -^a = a c 、3a (-a) =_3a D 、x x = x第6题第(X —4)的乘积中不含 B 、- 4 D 、C 、F 在同一直线上, C 、 x 的一次项,则 m 的值为() 0 D 、1 AB = DE , AD = CF ,且/ B = Z E = 90 °,判定△ ABC DEFB 、ASAn 的值同时扩大到原来的C 、A AS D 、 HL5倍,则此分式的值1B 、是原来的5C 、是原来的5倍D 、是原来的10倍10、如图,在四边形 1A 、90 ° —尹ABCD 中,/ A + Z D = a / ABC 的平分线与/ BCD 的平分线交于点 P ,则/ P =()1 90 °+-a D 、360 °— a24分,共24分) 二、填空题(每小题 11、 若分式—有意义,则x 的取值范围为。

x + 2212、 分解因式:m — 3m =。

13、 若点A (2, m )关于y 轴的对称点是 B (n , 5),则mn 的值是。

2018-2019学年广东省珠海市香洲区八年级(上)期末数学试卷(解析版)

2018-2019学年广东省珠海市香洲区八年级(上)期末数学试卷(解析版)

2018-2019学年广东省珠海市香洲区八年级(上)期末数学试卷一、选择题(本大题10小题,每小题3分,共30分)每小题给出四个选项在只有一个是正确的,请把答题卡上对应题目所选的选修涂黑。

1.下列图形中,不是轴对称图形的是()A.B.C.D.2.下列长度的三条线段,能组成三角形的是()A.3,4,8B.6,7,8C.5,6,11D.1,4,73.点A(2,﹣1)关于x轴对称的点B的坐标为()A.(2,1)B.(﹣2,1)C.(2,﹣1)D.(﹣2,﹣1)4.若分式有意义,则x的取值范围是()A.x≠0B.x≠1C.x≠﹣1D.x取任意实数5.下列计算正确的是()A.a2+a3=a5B.(a2)3=a6C.a6÷a2=a3D.2a×3a=6a6.如图,AB=CD,AE⊥BC,DF⊥BC,垂足分别为E,F,CE=BF,下列结论错误的是()A.∠C=∠B B.DF∥AE C.∠A+∠D=90°D.CF=BE7.下列多项式能用完全平方公式进行因式分解的是()A.a2﹣1B.a2+4C.a2+2a+1D.a2﹣4a﹣48.如果把分式中的x,y都扩大3倍,那么分式的值()A.扩大3倍B.不变C.缩小3倍D.扩大2倍9.如图,在△ABC中,∠B=50°,∠A=30°,CD平分∠ACB,CE⊥AB于点E,则∠DCE的度数是()A.5°B.8°C.10°D.15°10.如图,设k=(a>b>0),则有()A.0<k<B.<k<1C.0<k<1D.1<k<2二、填空题(本大题共6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上。

11.(4分)2﹣1=.12.(4分)如图,△ABC≌△DCB,∠DBC=35°,则∠AOB的度数为.13.(4分)因式分解:a2﹣2a=.14.(4分)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,则∠DBC=度.15.(4分)已知(x+y)2=25,(x﹣y)2=9,则x2+y2=.16.(4分)如图,等边△ABC的周长为18cm,BD为AC边上的中线,动点P,Q分别在线段BC,BD上运动,连接CQ,PQ,当BP长为cm时,线段CQ+PQ的和为最小.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)计算:(2x+y)(2x﹣y)+y(2x+y).18.(6分)如图,在Rt△ABC中,∠C=90°,∠A=30°.(1)尺规作图:作∠B的平分线BD交AC于点D;(不写作法,保留作图痕迹)(2)若DC=2,求AC的长.19.(6分)解方程:.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)先化简,再求值:÷(﹣1),其中x=﹣2018.21.(7分)如图,在△ABC中,点D在BC上,AB=AC=BD,AD=DC,将△ACD沿AD折叠至△AED,AE交BC于点F.(1)求∠C的度数;(2)求证:BF=CD.22.(7分)港珠澳大桥是世界最长的跨海大桥,连接香港大屿山、澳门半岛和广东省珠海市,其中珠海站到香港站全长约55千米,2018年10月24日上午9时正式通车.一辆观光巴士自珠海站出发,25分钟后,一辆小汽车从同一地点出发,结果同时到达香港站.已知小汽车的速度是观光巴士的1.6倍,求观光巴士的速度.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)观察下列式子:0×2+1=12……①1×3+1=22……②2×4+1=32……③3×5+1=42……④……(1)第⑤个式子,第⑩个式子;(2)请用含n(n为正整数)的式子表示上述的规律,并证明:(3)求值:(1+)(1+)(1+)(1+)…(1+).24.(9分)如图,在等腰△ABC中,AB=AC,过点B作BD⊥AB,过点C作CD⊥BC,两线相交于点D,AF平分∠BAC交BC于点E,交BD于点F.(1)若∠BAC=68°,则∠DBC=°;(2)求证:点F为BD中点;(3)若AC=BD,且CD=3,求四边形ABDC的面积.25.(9分)如图,在Rt△ABO中,∠BAO=90°,AO=AB,BO=8,点A的坐标(﹣8,0),点C在线段AO上以每秒2个单位长度的速度由A向O运动,运动时间为t秒,连接BC,过点A 作AD⊥BC,垂足为点E,分别交BO于点F,交y轴于点D.(1)用t表示点D的坐标;(2)如图1,连接CF,当t=2时,求证:∠FCO=∠BCA;(3)如图2,当BC平分∠ABO时,求t的值.2018-2019学年广东省珠海市香洲区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)每小题给出四个选项在只有一个是正确的,请把答题卡上对应题目所选的选修涂黑。

2017-2018学年八年级数学上期末试卷(珠海市香洲区含答案)

2017-2018学年八年级数学上期末试卷(珠海市香洲区含答案)

2017-2018学年八年级数学上期末试卷(珠海市香洲区含答案)广东省珠海市香洲区2017-2018第一学期期末考试八年级数学试卷一、选择题(每小题3分,共30分) 1、下列四个手机APP图标中,是轴对称图形的是() A、 B、 C、 D、 2、下列图形中具有稳定性的是() A、正方形 B、长方形 C、等腰三角形 D、平行四边形 3、下列长度的三根木棒能组成三角形的是() A、1 ,2 ,4 B、2 ,2 ,4 C、2 ,3 ,4 D、2 ,3 ,6 4、已知某细菌直径长约0.0000152米,那么该细菌的直径长用科学计数法可表示为() A、152×105米 B、1.52×10�5米 C、�1.52×105米 D、1.52×10�4米 5、下列运算正确的是() A、(a+1)2=a2+1 B、a8÷a2=a4 C、3a•(-a)2=�3a3 D、x3•x4=x7 6、如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是() A、AB=2BD B、AD⊥BC C、AD平分∠BAC D、∠B=∠C 第6题第8题 7、如果(x+m)与(x-4)的乘积中不含x的一次项,则m的值为() A、4 B、�4 C、0 D、1 8、如图,已知点A、D、C、F在同一直线上,AB=DE,AD=CF,且∠B=∠E =90°,判定△ABC≌△DEF的依据是() A、SAS B、ASA C、AAS D、HL 9、分式2mn/(m+n) 中的m、n的值同时扩大到原来的5倍,则此分式的值() A、不变 B、是原来的1/5 C、是原来的5倍 D、是原来的10倍 10、如图,在四边形ABCD中,∠A+∠D=α,∠ABC 的平分线与∠BCD的平分线交于点P,则∠P=() A、90°-1/2αB、1/2αC、90°+1/2αD、360°-α二、填空题(每小题4分,共24分) 11、若分式x/(x+2)有意义,则x的取值范围为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年度第一学期义务教育阶段质量检测
八年级数学试卷
一、选择题(每小题3分,共30分)
1、下列四个手机APP 图标中,是轴对称图形的是( )
A 、
B 、
C 、
D 、
2、下列图形中具有稳定性的是( )
A 、正方形
B 、长方形
C 、等腰三角形
D 、平行四边形 3、下列长度的三根木棒能组成三角形的是( )
A 、1 ,2 ,4
B 、2 ,2 ,4
C 、2 ,3 ,4
D 、2 ,3 ,6 4、已知某细菌直径长约0.0000152米,那么该细菌的直径长用科学计数法可表示为( )
A 、152×105米
B 、1.52×10﹣5米
C 、﹣1.52×105米
D 、1.52×10﹣
4米 5、下列运算正确的是( )
A 、(a +1)2=a 2+1
B 、a 8÷a 2=a 4
C 、3a ·(-a )2=﹣3a 3
D 、x 3·x 4=x 7 6、如图,△ABC 中,AB =AC ,D 是BC 中点,下列结论中不正确的是( )
A 、A
B =2BD B 、AD ⊥B
C C 、A
D 平分∠BAC D 、∠B =∠C
第6题 第8题
7、如果(x +m )与(x -4)的乘积中不含x 的一次项,则m 的值为( )
A 、4
B 、﹣4
C 、0
D 、1
8、如图,已知点A 、D 、C 、F 在同一直线上,AB =DE ,AD =CF ,且∠B =∠E =90°,判定△ABC ≌△DEF 的依据是( )
A 、SAS
B 、ASA
C 、AAS
D 、HL 9、分式
2mn m +n
中的m 、n 的值同时扩大到原来的5倍,则此分式的值( )
A 、不变
B 、是原来的1
5 C 、是原来的5倍 D 、是原来的10倍 10、如图,在四边形ABCD 中,∠A +∠D =α,∠ABC 的平分线与∠BCD 的平分线交于点P ,则∠P =( )
A 、90°-1
2
α B 、1
2
α C 、90°+1
2
α D 、360°-α
11、若分式x
x+2
有意义,则x的取值范围为。

12、分解因式:m2-3m=。

13、若点A(2,m)关于y轴的对称点是B(n,5),则mn的值是。

14、若正多边形的一个内角等于135°,那么这个正多边形的边数是。

15、如图,A、B、C三点在同一条直线上,∠A=50°,BD垂直平分AE,垂足为D,则∠EBC
的度数为。

16、如图,平面直角坐标系中,等腰三角形△OPQ的顶点P的坐标为(4,3),腰长OP=5,
点Q位于y轴正半轴上,则点Q的坐标为。

三、解答题(每小题6分,共18分)
17、解方程:3
x−2
=2
x
18、在△ABC中,AB=AC,∠ABC=70°
(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写做法)(2)在(1)的条件下,∠BDC=.
19、长方形和正方形按如图的样式摆放,求图中阴影部分的面积。

20、先化简,再求值:(1-
1
a+2
)÷
a2+2a+1
a2−4
,其中a=(2018-π)0
21、台风“天鸽”登录珠海,距离珠海市180千米处的某武警部队立即派车前往救灾,按原计
划速度匀速行驶60千米后,接上级通知,需紧急赶往目的地。

于是以原速度的1.2倍匀速行驶,结果比原计划提前12分钟到达,求原计划的行驶速度。

22、如图,已知Rt△MBN的两条直角边与正方形ABCD的两邻边重合,∠M=30°,O为
AB中点,NO平分∠BNM,EO平分∠AEN。

(1)求证:△MON为等腰三角形
(2)求证:EN=AE+BN
五、解答题(每小题9分,共27分)
23、阅读下列材料:
材料1、将一个形如x2+px+q的二次三项式因式分解时,如果能满足q=mn且p=m+n,则可以把x2+px+q因式分解成(x+m) (x+n)
(1)x2+4x+3=(x+1) (x+3) (2)x2-4x-12=(x-6) (x+2)
材料2、因式分解:(x+y)2+2(x+y)+1
解:将“x+y”看成一个整体,令x+y=A,则原式=A2+2A+1=(A+1)2
再将“A”还原,得:原式=(x+y+1)2
上述解题用到“整体思想”,整体思想是数学解题中常见的一种思想方法,请你解答下列问题:(1)根据材料1,把x2-6x+8分解因式。

(2)结合材料1和材料2,完成下面小题:
①分解因式:(x-y)2+4(x-y)+3;
②分解因式:m(m+2) (m2+2m-2)-3。

24、如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,AD⊥AB交BE延
长线于点D,CE平分∠ACB交BD于点F,连接CD。

求证:(1)AD=CF;
(2)点F为BD的中点。

25、如图,在平面直角坐标系中,点A的坐标是(a,0)(a>0),点C是y轴上的一个动
点,点C在y轴上移动时,始终保持△ACP是等边三角形,当点C移动到点O时,得到等边△AOB(此时点P与点B重合)。

(1)点C在移动的过程中,当等边三角形ACP的顶点P在第三象限时(如图所示),求证:△AOC≌△ABP;
(2)若点P在第三象限,BP交x轴于点E,且∠ACO=20°,求∠PAE的度数和E点的坐标;
(3)若∠APB=30°,则点P的横坐标为。

P。

相关文档
最新文档