气相色谱顶空进样器的参数优化(精)

合集下载

气相色谱仪的顶空操作步骤

气相色谱仪的顶空操作步骤

气相色谱仪的顶空操作步骤气相色谱仪(Gas Chromatograph, GC)是一种常用的分离和分析仪器,在化学、药学、食品、环境等领域有广泛应用。

GC的顶空技术是一种样品前处理技术,用于提取和浓缩无机和有机挥发性化合物。

本文将详细介绍气相色谱仪的顶空操作步骤。

一、实验准备1.1检查仪器:确保GC仪器处于正常工作状态,如气源是否充足,连管是否完好等。

1.2准备样品:准备待分析的样品,保证样品质量好,并满足分析的要求。

1.3准备标准溶液:如果需要进行定量分析,需要准备相应的标准溶液。

1.4准备顶空瓶:准备干净的顶空瓶,检查瓶子是否干燥、无污染。

二、顶空操作步骤2.1设置仪器参数:根据样品性质和分析要求,设置好仪器参数,如流速、恒温箱温度等。

2.2连接顶空瓶:使用气密连接装置将顶空瓶连接到色谱柱或分析装置的进样口上。

2.3开启气源:打开压缩空气、氮气或其他推进气体供应,确保气源的压力稳定。

2.4调整气源流量:根据仪器的要求和实际情况,调整气源的流量,一般情况下,推进气体的流量应为10-20 mL/min。

2.5检查顶空瓶:检查顶空瓶的密封性,确保没有样品泄漏。

三、样品顶空操作3.1放入样品:将待分析的样品放入顶空瓶中,一般情况下,样品量应为1-2 mL。

3.2封闭顶空瓶:将顶空瓶的盖子紧密封闭,保证瓶内不会发生任何泄漏。

3.3预冷:将顶空瓶放入恒温箱中,预冷至所需温度。

预冷的温度根据样品的挥发性和分析要求而定,一般为常温或低于常温。

3.4按压释放:在样品预冷的同时,按压释放顶空瓶内的气体,使样品中的挥发性化合物蒸发到顶空瓶的顶部空气中。

3.5等待蒸发:等待一定时间,使得样品中的挥发性化合物充分蒸发到空气中。

3.6采样:使用GC仪器的自动进样装置,将顶空瓶中的顶空气体采样进GC柱进行分析。

四、分析与结果4.1进样条件设置:根据分析要求,设置好GC仪器的进样条件,包括温度、流速、进样方式等。

4.2分析过程:开启色谱仪,进行样品分析。

对气相色谱仪顶空进样器进行安装和调节

对气相色谱仪顶空进样器进行安装和调节

对气相色谱仪顶空进样器进行安装和调节对气相色谱仪顶空进样器进行安装和调节北京中仪宇盛科技有限公司顶空进样器作为气相色谱仪分析挥发性物资具有无比的优越性。

不仅可以免除冗长繁琐的样品前处理过程,避免有机溶剂对分析造成的干扰、减少对色谱柱及进样口的污染,而且具有进样量准确、重现性好等优点。

该仪器可以和国内外各种型号的气相色谱仪相连接。

1、调节载气系统压力和流量打开载气(气体发生器??或钢瓶)和压缩空气开关后,首先调低色谱仪载气系统的柱头压力到0.01Mpa,再把顶空进样器的进样针插入气相色谱仪的注样口内(用随机支架固定进样针套管),然后通过调节顶空进样器前面板的稳压阀来满足色谱仪所需的柱流量;对于毛细管柱系统,当使用内径小于0.32mm的毛细管柱时,色谱仪应采用分流进样模式;对于配备电子流量/电子压力(EFC/EPC)控制的气相色谱仪,推荐色谱仪使用恒流模式,然后根据色谱仪的柱头压力来调节顶空进样器载气压力,并使其稍高于色谱仪柱头压力即可。

2、设定色谱仪工作状态根据分析的样品种类设定气相色谱仪分析条件(汽化室温度、色谱柱温度、检测器温度)。

3、设定顶空进样器柱温箱、阀箱、管路温度打开顶空进样器的电源开关,电气系统自检后,通过按键盘上的“样品”、“阀箱”、“管路”、数字键以及“输入”键,根据分析要求分别输入需要的样品、阀箱、管路的温度值(为避免样品在传输时发生冷凝现象),阀箱、管路温度高于样品温度20-25℃)。

4、放置样品瓶当温度达到设定值后,,稳定10分钟,,再将密封好的装有样品的顶空瓶放入印有号码的加热筒中,平衡30分钟。

顶空瓶内的样品量一般不要超过顶空瓶容量的1/2,当样品的恒温温度高于100℃时,请注意选择合适的溶剂,以免瓶内压力过高造成密封垫漏气或瓶子破损。

同时,请带手套拿取瓶子以免烫伤。

5、吹洗取样针拿住取样针管, 同时按下面板上的“吹洗”键,吹洗气将吹洗取样系统中的空气或上次取样的残余气(此时,吹洗状态灯红色亮),再次按面板上的“吹洗”键,吹洗电磁阀关闭(此时,吹洗状态灯红色灭)。

气相色谱仪配套用顶空自动进样器技术参数

气相色谱仪配套用顶空自动进样器技术参数

气相色谱仪配套用顶空自动进样器技术参数
购置仪器设备名称:气相色谱仪配套用顶空自动进样器(进口)
仪器设备(不针对某一特定品牌)的主要性能指标及技术参数(包括仪器设备主体及必要配件等的主要性能指标和技术参数):
一、详细配置清单如下
二、主要功能:
2.1用途:用于液体和固体样品的前处理,以方便利用气相色谱仪的液体和固体样品中的微量挥发性和半挥发性有机化合物进行定性、定量分析。

2.2总体要求:
*电源:220V±10%,50Hz
工作温度:10℃~45℃
工作相对湿度:≤80%
技术参数:
*3.1可与各种型号的气相色谱仪联用,无控制信号传输障碍。

*3.2进样精度:水中乙醇的测定RSD≤1.5%(N=10)
*3.3气路控制为电子气路控制
*3.4提取方式:可采用多次顶空提取,可延长取样时间,增加取样量。

3.5样品震动方式:两级震荡。

*3.6定量环:温度范围(50-190)℃灵敏度为1℃;定量环体积:配备0.5mL、1.0mL镍管定量环;进样量精度:进样量相对标准偏差小于1%
3.7传输线:温度范围(50-190)℃,灵敏度为1℃;材料:镍材。

*3.8自动进样器瓶位总数不少于44位,顶空瓶体积20ml和10mL可选。

*3.9系统应可同时加热至少5个样品瓶,温度范围(50-190)℃,灵敏度为1℃。

专家论证意见。

气相色谱仪-顶空自动进样器性能确认方法的建立

气相色谱仪-顶空自动进样器性能确认方法的建立

冯雪,李帅,刘华,李婷婷,赵琳,苍鹏,耿雪莹,杨红育*(长春生物制品研究所有限责任公司,吉林长春 130012)摘 要:建立气相色谱仪-顶空自动进样器性能确认的新方法。

根据《气相色谱仪检定规程》提供的方法,结合《中国药典》及欧洲官方药品控制实验室网络《质量保证文件》的要求,总结气相色谱仪-顶空自动进样器性能确认参数,建立该仪器性能确认检测方法。

检测结果与性能确认参数比较,结果符合实际。

关键词:气相色谱仪;顶空自动进样器;性能确认中图分类号:TH833 文献标志码:AEstabishment of GC-Headspace sampler Performance Qualification MethodFengXue,LiShuai, Liu Hua, Li Ting-ting,Zhao Lin, CangPeng,GengXue-ying,Yang Hong-yu*(Changchun Institute of Biological Products Co.,Ltd.,Jilin Changchun 130012)Abstract: A new method for the performance qualification of GC-Headspace sampler was established. According to the method provided by the Verification Regulation of Gas Chromatographs, combined with the requirement of Chinese Pharmacopoeia and OMCL Network of the Council of EuropeQuality Assurance Document,PQofGC-Headspace sampler was established by summarying the parameters level of the instrument.The detection results accord the reality.Keywords: GC; Headspace sampler;Performance qualification气相色谱仪是利用试样中各组分在色谱柱中气相和固定相间的分配及吸附系数不同,由载气把气体试样或气化后的试样带入色谱柱中进行分离,并通过检测器进行检测的仪器。

GC优化

GC优化
优化前色谱图空气峰面积面积1万以上干扰峰的个数面积10万以上干扰峰的个数基线漂移值噪音优化前4629472234150299478优化后1972981369287前后比值235233035330图1
GC-ECD检测器方法优化
顶空进样-气相色谱-ECD检测器是公司今年新购进的仪器,于1月上旬刚刚 装机完毕。实验中发现ECD检测器,空白溶剂图谱中,除了溶剂峰以为会 出现一个较大的谱峰。经查阅文献,该峰可能为空气中O2的峰。由于实验 室空气中有较多的挥发性气体,也使得空白溶剂图谱中的噪音较高,对于 检测限度较低的残留溶剂非常不利。经过方法优化后,有效的降低了空气 峰的干扰(峰面积降低约23倍),更重要的是使噪音减低了300多倍;从 而使检测灵敏度提升2个数量级以上。
空气峰和较多的干扰峰
图1:优化前色谱图
较高的基线噪音
较大的漂移值
较小的空气峰,极少干扰峰,低漂移值,低噪音
图2:优化后色谱图
优化前 优化后 前后比值
空气峰面积 4629472 197298 23.5
面积1万以上 干扰峰的个数 23 1 23
面积10万以上 干扰峰的个数 5 1 5
基线漂移值 415029 1369 Байду номын сангаас03.5
噪音 9478 28.7 330
图1:优化前的色谱图 (纵坐标放大5倍)
图2:优化后的色谱图 (纵坐标放大100倍后, 噪音仍然很低)

优化气相色谱仪方法的步骤与技巧

优化气相色谱仪方法的步骤与技巧

优化气相色谱仪方法的步骤与技巧气相色谱仪是一种常用的分析仪器,广泛应用于化学、生物、环境等领域。

然而,为了获得准确和可靠的分析结果,优化气相色谱仪方法是至关重要的。

本文将介绍一些优化气相色谱仪方法的步骤与技巧,帮助读者更好地运用这一仪器。

首先,优化气相色谱仪方法的第一步是选择适当的色谱柱。

色谱柱是气相色谱仪的核心部件,直接影响到分析结果的准确性和灵敏度。

在选择色谱柱时,需要考虑样品的性质、目标化合物的特性以及分析要求。

例如,对于挥发性化合物的分析,常使用非极性柱,而对于极性化合物的分析,则需要选择极性柱。

此外,还需考虑柱的长度、内径和填充物等因素,以满足分析的需求。

其次,优化气相色谱仪方法的第二步是调整进样量和进样方式。

进样量的选择应根据目标化合物的浓度和色谱柱的容量来确定。

进样量过大可能导致色谱峰形变宽或峰形不对称,进样量过小则可能降低灵敏度。

此外,进样方式也会对分析结果产生影响。

常见的进样方式包括气体进样、液体进样和固体进样等。

不同的进样方式适用于不同的样品类型,需要根据实际情况进行选择。

第三,优化气相色谱仪方法的第三步是调整流动相的流速和组成。

流动相的流速对分离效果和分析时间有着重要影响。

流速过快可能导致分离不完全,流速过慢则可能延长分析时间。

因此,需要根据样品的复杂程度和分析要求来确定最佳的流速。

此外,流动相的组成也是优化方法的重要环节。

常用的流动相包括惰性气体和液体相,其比例和组成需要根据样品和分析要求来确定。

第四,优化气相色谱仪方法的第四步是调整检测器参数。

检测器是气相色谱仪的另一个重要组成部分,直接影响到信号的稳定性和灵敏度。

常见的检测器包括火焰离子化检测器(FID)、电子捕获检测器(ECD)和质谱检测器等。

在调整检测器参数时,需要注意信号峰的基线稳定性、峰形对称性和峰高等因素。

合理调整检测器参数可以提高分析结果的准确性和可靠性。

最后,优化气相色谱仪方法的最后一步是验证和优化分析条件。

气相色谱仪顶空自动进样器原理参数

气相色谱仪顶空自动进样器原理参数

气相色谱仪顶空自动进样器原理参数顶空自动进样器的原理是通过控制样品在高温下的蒸发,将样品中的挥发性成分转化为气态,并将这些气态成分引入GC进行分析。

顶空自动进样器一般由以下几个部分组成:进样室、样品容器、温度控制系统和进样针。

进样室是样品进入顶空自动进样器后的首要位置,它通常由耐高温、耐化学腐蚀的材料制成,如不锈钢。

进样室内有一个样品容器,用于存放待分析样品。

样品容器可以是各种形式的小容量玻璃瓶,通常具有密封性能,以防止样品挥发或外部空气进入。

温度控制系统是顶空自动进样器中的核心部件。

为了将样品中的挥发性成分转化为气态,需要将样品加热到一定温度。

温度控制系统通常由加热系统、温度探测系统和控制系统组成。

加热系统通过提供恒定的加热源,将样品容器加热至设定的温度。

温度探测系统用于监测样品容器内的实际温度,并将这些信息传输给控制系统。

控制系统会根据设定的温度值和实际温度值来控制加热系统的输出,以维持样品容器内的温度在一定范围内。

进样针是样品从样品容器进入顶空自动进样器的通道。

进样针通常由不锈钢制成,具有良好的耐腐蚀性和导热性能。

进样针通过注射器或其他机械手段,将一定体积的样品从样品容器中抽取出来,并喷射到气相色谱仪中进行分析。

顶空自动进样器的参数分为机械参数和操作参数两个方面。

机械参数包括进样室容量、最大工作温度、加热速率等。

进样室容量可以影响样品的进样量和分析的精度,通常根据不同的样品需求选择适当的容量。

最大工作温度是指顶空自动进样器能够达到的最高温度,温度越高,样品中的挥发性成分转化为气态的速率越快。

加热速率是指样品容器加热至设定温度所需的时间,加热速率较快可提高进样效率。

操作参数包括进样体积、进样时间、预注气体流量等。

进样体积是指进样针从样品容器中抽取的样品体积,体积大小会影响分析的灵敏度和线性范围。

进样时间是指进样针从样品容器中抽取样品的时间,时间过短可能导致不完全的样品蒸发,时间过长会延长分析周期。

气相色谱仪顶空自动进样器原理参数

气相色谱仪顶空自动进样器原理参数

气相色谱仪顶空自动进样器原理参数
气相色谱仪顶空自动进样器原理:有一个全面的通电自检程序,样品盘自动定位系统,还有完整的故障报警,故障提示功能。

方便分析中遇到的问题及时处理。

系统预存一套默认分析方法,并允许用户存储多套常用分析方法和混合运行分析方法。

气相色谱仪顶空自动进样器原理参数:
1、样品加热温度控制范围:室温-240℃以增量1℃任设;
2、阀进样系统温度控制范围:室温-220℃以增量1℃任设;
3、样品传送管温度控制范围:室温-220℃以增量1℃任设;
4、温度控制精度:<±0、1℃;
5.顶空瓶工位:16位;20位,27位,120位
6、顶空瓶规格:标准10ml、20ml(其他规格可定制);
7、重复性:RSD<1、5%(和GC性能有关);
8、进样加压范围:0~0、4Mpa(连续可调);
9、仪器尺寸:430mm×330mm×500mm
标签:
气相色谱仪
1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气相色谱顶空进样器的参数优化
静态顶空(SHS)-气相色谱法是一项适合测定固体或基体复杂的液体如:血液、涂料和污泥中挥发性物质的技术。

使用SHS时,一般需要将样品置于密封的容器中,在受控的水浴上(中)仔细加热,直至挥发性物质在气液(固)两相中的浓度达到平衡。

欲分析的化合物的浓度在两相之间的分配系数如下式所示:
K = Cl / Cg
其中: Cl和Cg分别为平衡时挥发性物质在液相和气相中的浓度1。

移取气相中整数体积的气体注入气相色谱中。

本文将介绍在一般的分析中选择最优化的参数时所能获得的最大精密度和灵敏度。

讨论的参数如下:
1.样品制备步骤
2.顶空进样器的控制参数:
a.样品平衡时间和平衡时样品的搅拌震荡效果
b.顶空瓶和传输线的温度。

以下所有的比较实验都采用Varian公司的顶空进样器“Genesis”来进行。

此处所讨论的大多数原理都适合简单的顶空气相色谱,即那些使用气密性注射器从密封的顶空瓶中手动抽取气体的进样器。

Genesis自动顶空进样器相比于手动技术能够提供更多的优点。

通过软件用户能够建立四个方法。

用户能够对任何方法中的某个参数进行编辑,而顶空进样器则按照这些参数进行自动设定。

之后气相色谱按照被分析物质的特点进行分析条件的最优化。

另一个优点是自动建立方法,包括自动分析50个样品、每个样品恒定加热以及通过加热的定量环来移取气体,确保结果的重复性。

使用仪器
仪器:带有Varian Genesis自动顶空进样器的Varian3400气相色谱。

安装有SPI进样器和FID检测器。

SHS系统的传输线直接连接到SPI的载气输入口,并由Genesis的流量控制器控制色谱柱的流量。

带有应用功能扩展包的GC Star工作站进行数据采集。

色谱柱:
30m×0.32mm涂有膜厚为0.5µm的聚乙烯醇(DB-WAX)固定液,Varian 货号:
JW-123703-30
30m×0.53mm涂有膜厚为1.5µm的聚甲基硅氧烷(DB-1)固定液,Varian 货号:
JW-125103-20
顶空进样器:
顶空瓶22ml,定量管500µL
影响顶空结果的参数
样品制备:虽然静态顶空对样品的制备要求很低,但仍有些步骤能够提高灵敏度和精密度。

进行顶空分析的样品都含有挥发性物质,所以在进行样品处理时要避免此类物质的损失。

将样品装满容器可以避免挥发损失。

从样品容器中取样之前,需要先对顶空瓶和传输线进行吹扫。

顶空瓶中气液两相的体积比是影响灵敏度的一个参数。

本文只讨论水溶液中的有机物在气液两相的相对浓度,而此参数的影响远超过本文所讨论的内容。

从图一的曲线我们可以看出当分配比(K)很小的时候,气液两相的比例是非常重要的。

随着样品体积的增加,比面积则变小。

因此大体积的样品在传输时就能减少挥发性物质的损失,结果的精密度更佳。

对于那些在水中分配比很高的样品,通过加入盐能够降低分配比进而提高灵敏度(图2)。

另一方面,对于非水溶性的样品如土壤,可以通过加入水将非水溶性的有机物质驱赶到气相中。

由Genesis控制的参数:当样品制备方法建立之后,用户需要权衡Genesis控制的参数。

样品和传输线的温度、平衡时间和平衡时的搅拌效果都是非常重要的。

利用方法优化和Genesis的方法时间特性表,能够对这些参数进行自动研究。

本研究中讨论两个样品——样品1为工业和环境实验室监测的水中有机物,样品2为从肇事司机的血液样本中浓缩出的含有乙醇和正丙醇(内标)的水溶液。

以上分析方法的细节请参见相关的标准。

2,3
表1列出了采用一系列方法测定样品1中挥发性物质的结果。

设定的参数包括:平衡时间(无搅拌)、搅拌时间、阀和传输线温度和样品温度。

从表中可以看出使用搅拌能使响应值更快达到平衡。

另外采用搅拌,总的响应值相比之下也较高。

增加样品温度很明显对水溶性的1,4-二氧六环(高分配比)的响应值有利,但对于TCE(三氯乙烯)和苯则相反,其实这两类物质的气相浓度只与分配比有关而增加样品温度本质上是无影响的。

阀和传输线温度一般稍高于样品温度以免挥发性物质冷凝,但过高的温度不仅无用而且还使三种物质的响应值都下降。

这是因为高温使样品气体体积膨胀,进入定量管的相对浓度变小所致。

图3所示的是在充分的平衡时间的情况下比较搅拌和不搅拌的响应值,可见搅拌的精密度更佳。

总之,复杂基体中的挥发性物质的分配比决定了静态顶空参数的优化方法。

对于所有的样品,在短时间内搅拌能获得最大的灵敏度和精密度。

表1 水中苯(40ppm)、三氯乙烯(TCE 21ppm)和1,4-二氧六环(120ppm)的方法优化数据
参数响应值
苯三氯乙烯 1,4-二氧六环
平衡时间(分钟)
5 931615 90132 2228
15 1002743 95580 2382
25 1063889 96719 2437
35 1041154 93831 2515
搅拌时间(分钟)
0 877172 84787 2149
5 1378595 126735 2441
10 1375029 125684 2486
15 1350010 123436 2508
20 1351027 122405 2475
阀和传输线温度(℃)
150 1363546 124389 2489
175 1268374 115303 2381
200 1166163 104936 2310
225 1111997 99940 2217
样品温度a(℃)
50 1468070 127741 2454 60 1594045 136013 3909 70 1516439 119456 6806 80 1331058 106941 7875。

相关文档
最新文档