钛合金锻造技术

合集下载

钛及钛合金锻造生产工艺规程

钛及钛合金锻造生产工艺规程

钛及钛合金锻造生产工艺规程一、工艺概述钛及钛合金锻造是将钛或钛合金坯料在高温下施加变形力,使其产生塑性变形,形成所需形状和尺寸的零部件的过程。

钛及钛合金锻造具有优良的力学性能、高温性能和耐腐蚀性能,广泛应用于航空航天、船舶、汽车、医疗器械等领域。

二、设备与工具1.锻造设备:采用电加热气氛式锻造炉,确保工件均匀受热、高效加热,并配备锻模、锻锤等相关设备。

2.检测设备:采用超声波探伤仪、拉伸试验机、金相显微镜等设备,对锻造工件进行质量检测。

3.工具:锻造过程中需要使用锻造锤、锻模、顶座、夹具等工具,确保工件形状和尺寸的准确度。

三、工艺流程1.准备工作:将钛或钛合金坯料进行清洗,去除表面污物和氧化物,并切割成适当的尺寸。

2.预热:将坯料放入电加热气氛式锻造炉中,进行预热处理,提高其可塑性。

预热温度一般为坯料转变温度的70%~80%。

3.锻造:将坯料放入锻模中,并在锻锤的作用下进行锤击变形。

根据零部件的形状和尺寸要求,可采用自由锻造、模锻或多次锻造等方法。

4.退火处理:经过锻造后的工件可能存在组织变化和残余应力,需进行退火处理消除变形和应力。

一般采用快速退火或等温退火,使工件组织回复正常状态。

5.表面处理:根据零部件的使用要求,进行必要的表面处理,如酸洗、抛光等,提高表面质量和光洁度。

6.检验测试:对锻造后的工件进行超声波探伤、拉伸试验和金相显微镜检测,确保其力学性能和质量符合要求。

7.包装与交付:对合格的工件进行包装,并及时交付给用户或下一道工序进行加工。

四、操作要点1.材料选择:选择优质的钛或钛合金坯料,确保其化学成分和力学性能符合要求。

2.温度控制:控制锻造炉的加热温度、保温时间和冷却速度,保证工件在整个锻造过程中温度的均匀性。

3.锻造力度:控制锤击力度和锤击次数,使坯料均匀受力,确保其形状和尺寸的准确度。

4.锻造后处理:根据工件形状和尺寸的要求,进行适当的退火处理,消除变形和应力。

5.质量检测:对锻造后的工件进行超声波探伤、拉伸试验和金相显微镜检测,确保其质量和力学性能符合要求。

钛合金成型方法

钛合金成型方法

钛合金成型方法钛合金是一种具有优异性能的金属材料,被广泛应用于航空航天、船舶制造、汽车制造等领域。

钛合金的成型方法对于其性能和应用起着至关重要的作用。

本文将介绍几种常用的钛合金成型方法。

一、锻造成型锻造是一种常用的钛合金成型方法,其通过对钛合金进行加热,然后施加压力使其改变形状。

锻造可以分为自由锻造和模锻造两种方式。

自由锻造是将钛合金材料放置在锻模中,通过锤击或压力使其改变形状。

模锻造是将加热后的钛合金放置在预先设计好的模具中,通过模具施加压力,使其得到所需的形状。

锻造成型可以在较高温度下进行,有利于提高钛合金的塑性和成形性能,得到良好的成品。

二、轧制成型轧制是一种常用的钛合金板材成型方法。

通过将加热后的钛合金坯料放置在轧机中,通过辊轧的方式使其改变形状。

轧制成型可以得到具有一定厚度和宽度的钛合金板材,广泛应用于航空航天领域的结构件制造。

轧制成型的优点是可以大批量生产,成本相对较低,但对于板材的厚度和宽度有一定限制。

三、拉伸成型拉伸是一种常用的钛合金线材成型方法。

通过将加热后的钛合金坯料放置在拉伸机中,施加拉力使其变形成线材。

拉伸成型可以得到直径较小且长度较长的钛合金线材,广泛应用于航空航天、医疗器械等领域。

拉伸成型的优点是可以得到高强度的线材,但对于线材的直径和长度也有一定限制。

四、挤压成型挤压是一种常用的钛合金型材成型方法。

通过将加热后的钛合金坯料放置在挤压机中,通过挤压头施加压力使其变形成型材。

挤压成型可以得到具有复杂截面形状的钛合金型材,广泛应用于航空航天、汽车制造等领域。

挤压成型的优点是可以得到高精度的型材,但对于型材的尺寸和形状也有一定限制。

钛合金成型方法包括锻造成型、轧制成型、拉伸成型和挤压成型。

不同的成型方法适用于不同的钛合金产品,可以根据实际需求选择合适的成型方法。

钛合金的成型过程需要严格控制温度、压力和速度等参数,以确保最终产品的质量和性能。

随着科技的不断进步,钛合金成型方法也在不断发展,为钛合金材料的应用提供了更多可能性。

钛合金锻造技术解答

钛合金锻造技术解答

30
15
12
-
6
-
1000
80
50
-
注:玻璃润滑剂是由玻璃粉、稳定剂、固结剂以及水构成的悬浮液
2008-09-09
钛合金锻造基础
锻造设备类型与应变速率的关系
锻 造 设 备
液压 慢速液压
10-2~ 1
锻锤 机械压力 (快速)
10~ 200
1~ 30
10-4~ 10-2
平均应变速率/s-1
2008-09-09
2008-09-09
钛合金的常用术语
原始β晶粒
α集束
2008-09-09
钛合金的常用术语
其他术语参见GB8755-1988
谢谢!
2008-09-09
钛合金锻造基础
变形量控制 变形量: 钛合金的临界变形2—12%,实际控制应 在15—20%以上; 变形30—40%,可细化 组织;60—70%以上可将粗针状组织细 化转变为球状组织
与热效应综合考虑
2008-09-09
钛合金锻造基础
清理
{
氧化皮的清除 α壳层的清除
喷砂
可清除0.13~0.76mm厚的锈皮,喷砂设备:装有磨料的 滚筒、喷丸或喷砂装置
自由锻、挤压、平锻、快锻、精锻
β区加热,足够变形量,变形先小后大, 防止裂纹和局部变形。
2008-09-09
常用开坯设备
钛合金的生产流程
2008-09-09
钛的基本特征
钛元素的基本特征
(1) 密度(纯钛密度介于铝 和铁之间。 (2) 导热性差,导热率仅 为铁的1/6,铝的1/15。 (3) 摩擦系数较大。 (4) 热膨胀系数较低。 (5) 弹性模量较低。 (6) 无磁性。

钛合金锻造工艺及其锻件的应用

钛合金锻造工艺及其锻件的应用

钛合金锻造工艺及其锻件的应用摘要:近年来,钛合金因其高的比强度、优异的耐腐蚀性、良好的生物相容性等优点,迅速发展成为具有强大生命力的新型关键结构材料,被广泛应用于航空航天、军事工业、石油化工以及医疗卫生等领域。

从工业价值和资源寿命的发展前景来看,它仅次于铁、铝而被誉为正在崛起的“第三金属”。

本文分析了钛合金锻造工艺及其锻件的应用关键词:钛合金;锻造;V应用1钛合金锻造工艺1.1α+β锻造α+β锻造即常规锻造,是在相变点以下30~50℃加热、变形(见图1),常规锻造一般得到的是等轴组织(α等+β转)。

其钛合金锻件具有高的塑性和室温强度,但是高温性能和断裂韧性不好,如图2为TC11钛合金经过常规锻造后的高倍组织图。

常规锻造由于研究较深入,操作简单易行,且成本较低,因此应用广泛。

在(α+β)区变形过程中同时发生β晶粒和α片形状的变化,β晶粒被压扁,沿金属流动方向拉长、破碎,晶界附近与晶内α相间的差别逐渐消失。

当变形程度超过60%~70%后,己没有任何可见的片状组织痕迹了。

在一定温度和变形程度下发生再结晶,且α相的再结晶先于β相的再结晶,再结晶后的α晶粒,呈扁球形状,没有再结晶的α晶粒形状为盘状、杆状或纤维状。

侯会喜研究了TC6钛合金在(α+β)两相区锻造时,变形温度的高低对锻件初生α相含量的影响。

变形温度越低,初生α相的含量就越多。

由于锻件的室温力学性能和高温力学性能与初生α相的含量密切相关,因此,为了确保(α+β)两相合金具有最好的综合性能,在进行TC6合金锻造时,必须严格控制变形温度,使等轴初生相颗粒的总含量在15%~45%。

1.2等温锻造等温锻造是一种先进的加工工艺,可以使钛合金等难变形材料在相对恒温的变形温度下,以极低的变形速率,一次成形得到形状复杂的精密锻件。

采用该工艺成形的锻件仅需少量的机械加工即可装配使用,材料利用率高,且由于工艺可控性好,变形均匀,锻件的组织性能更加稳定和均匀,批量生产时,具有显著的经济效益。

钛合金叶片工艺流程,锻造,热处理,切削

钛合金叶片工艺流程,锻造,热处理,切削

钛合金叶片工艺流程,锻造,热处理,切削1.首先,进行钛合金叶片的锻造工艺,以增加其强度和耐热性。

First, the forging process of titanium alloy blades is carried out to increase their strength and heat resistance.2.锻造完成后,需要进行热处理工艺,以消除内部应力并提高其耐腐蚀性能。

After forging, the heat treatment process is required to eliminate internal stress and improve its corrosion resistance.3.热处理包括加热和冷却,以改善材料的晶粒结构和机械性能。

The heat treatment includes heating and cooling toimprove the material's grain structure and mechanical properties.4.随后,进行钛合金叶片的切削加工,以获得精确的形状和尺寸。

Subsequently, the titanium alloy blades are machined to obtain precise shapes and dimensions.5.切削过程需要精确控制刀具的速度和进给量,以确保加工质量。

The cutting process requires precise control of toolspeed and feed rate to ensure machining quality.6.在切削过程中,需要使用适当的冷却液来降低温度并延长刀具寿命。

During the cutting process, appropriate coolant is usedto reduce temperature and extend tool life.7.切削完成后,需要进行表面处理工艺,以增强钛合金叶片的耐磨性和表面光洁度。

钛合金热锻工艺

钛合金热锻工艺

钛合金热锻工艺
钛合金热锻工艺是一种利用热量使钛合金材料软化,便于塑形的加工技术。

这种工艺涉及将钛合金加热到一定的高温,然后在锻压设备的帮助下进行成形。

由于钛合金具有高强度、低密度和良好的耐腐蚀性,因此在航空航天、汽车、医疗器械等行业中被广泛使用。

热锻工艺的关键步骤如下:
1. 材料准备:选取适当的钛合金材料,并根据最终产品的要求切割成合适的尺寸。

2. 加热:将钛合金坯料放入加热炉中,加热至锻造温度,这个温度通常略高于钛合金的相变温度(α+β/β转变温度)。

正确的加热温度和保温时间对于获得良好的锻件质量至关重要。

3. 预热模具:为了减少模具与高温钛合金之间的温差,防止过快的冷却导致材料硬化,模具也需要预热到适当的温度。

4. 锻造:将加热好的钛合金坯料置于锻压机的模具中,通过施加压力使其变形,达到预定的形状和尺寸。

这一过程可能需要多次进行,包括开模锻造和闭模锻造。

5. 冷却:锻造完成后,钛合金部件需要缓慢冷却以防止内部应力集中和裂纹产生。

6. 后续处理:锻件可能需要进一步的热处理(如退火、
固溶处理和时效处理)来优化其显微组织结构和力学性能。

7. 检测和检验:最后,锻件要经过严格的质量检测,包括尺寸检查、无损探伤和力学性能测试等,以确保符合设计和应用要求。

热锻工艺的优势在于可以制造出结构复杂的钛合金部件,但也存在一些挑战,如钛合金在高温下的氧化问题,以及由于材料导热性差导致的模具寿命问题。

因此,在实际操作中,还需要采取一定措施保护材料和模具,例如使用防护润滑层减少摩擦和磨损。

钛合金材料的熔炼与制备

钛合金材料的熔炼与制备
铸造法制备钛合金的优点是工艺成熟、成本低,但材 料强度和耐腐蚀性相对较低。
轧制成形法
轧制成形法是通过将钛合金坯 料在轧机上轧制加工成形的制 备方法。
该方法适用于制备薄板、薄带 、棒材等钛合金材料,广泛应 用于航空、船舶、化工等领域 。
轧制成形法制备钛合金的优点 是材料性能优异、加工精度高 ,但工艺复杂、成本高。
钛合金材料的熔炼与制备

CONTENCT

• 钛合金的简介 • 钛合金的熔炼技术 • 钛合金的制备技术 • 钛合金的加工工艺 • 钛合金的发展趋势与展望
01
钛合金的简介
钛合金的定义
钛合金是由纯钛元素与一些其他元素(如铝、锡、钼、钒等)通 过合金化处理得到的金属材料。
钛合金是以钛为基础加入其他元素组成的合金,其特点是密度小 、比强度高、耐腐蚀性好、高温性能好、无磁性等。
体育用品
由于钛合金轻质高强,被广泛应用于高尔夫球杆 、自行车架等体育用品的制造。
02
钛合金的熔炼技术
电弧熔炼法
总结词
利用电弧产生的高温熔化金属或合金的方法。
详细描述
电弧熔炼法是钛合金制备中常用的熔炼技术之一,通过电极间产生的电弧产生高温,将钛合金原料熔化为液态, 再通过冷却凝固得到钛合金材料。该方法具有熔炼温度高、熔炼速度快、生产效率高等优点,但同时也存在能耗 高、电极易损耗等缺点。
回收再利用
开展钛合金废料的回收、 再生和再利用工作,降低 生产成本,同时减少环境 污染。
规模化生产
通过扩大生产规模,实现 规模效益,降低单位产品 的生产成本。
THANK YOU
感谢聆听
详细描述
悬浮熔炼法是一种新型的熔炼技术,利用磁场或电场使钛合金原料在非接触状态下熔化为液态,再通 过冷却凝固得到钛合金材料。该方法具有熔炼温度高、熔炼速度快、可去除杂质等优点,但同时也存 在设备成本高、技术难度大等缺点。

TC11钛合金材料β锻造工艺研究

TC11钛合金材料β锻造工艺研究

TC11钛合金材料β锻造工艺研究第一章:引言(1)TC11钛合金材料的重要性及应用领域(2)β锻造工艺的研究现状及意义(3)本文的主要工作及研究内容第二章:TC11钛合金材料β锻造性能分析(1)TC11钛合金的组织结构及物理性能分析(2)β锻造对TC11钛合金材料组织结构和性能的影响评估第三章:TC11钛合金材料β锻造工艺研究(1)β锻造工艺的原理及流程(2)应选用的工艺参数及其对β锻造的影响研究(3)β锻造操作中应注意的事项第四章:试验分析与结果(1)β锻造试验设计及操作规程(2)试验样品的金相结构分析及力学性能测试结果(3)试验结果分析及对β锻造工艺的优化建议第五章:结论与展望(1)本文研究的主要结论及启示(2)β锻造工艺在TC11钛合金材料制备中的应用前景及展望第一章:引言(1)TC11钛合金材料的重要性及应用领域TC11是一种α+β型钛合金,具有良好的强度、韧性、高温抗氧化性和耐腐蚀性,在航空航天、船舶制造、化工等领域得到广泛应用。

如在航空航天领域中,TC11钛合金是最重要的结构材料之一,可以用于制造飞机主框架、座舱壁板、发动机零件等。

因为它具有高强度、高刚性和良好的耐热、耐腐蚀性,它成为制造军机、商用飞机和火箭发动机等的重要材料。

在化工领域中,TC11钛合金具有较好的耐腐蚀性,可以用于制造酸碱介质下的换热器、炉子等设备。

由此可见,TC11钛合金材料在现代制造业中具有不可替代的重要性。

(2)β锻造工艺的研究现状及意义β锻造是一种新型的成形工艺,其特点是制品有较高的塑性变形能力、施力均匀、成形精度高,可制造较大的变形量和复杂的几何形状硬件件。

目前,β锻造已经在航空航天领域获得广泛应用,如制造发动机零件、涡轮叶片等。

与传统锻造相比,β锻造可以在控制变形量的同时提高成形精度和产品的性能。

因此,研究TC11钛合金材料的β锻造工艺,有助于提高制品的成形质量,提高产品性能,进一步拓宽TC11钛合金的应用领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
2008-09-09
钛合金的分类
.
2008-09-09
钛合金的分类
钛合金类型对性能的影响
α、 α +β、 β钛合金的性能差异
性能
α
β
α+β
性能
α
β
α+β
密度
+
+
-
腐蚀性能 ++
+
+/-
强度
-
+
++ 氧化性能 ++
+/-
-
塑性
-/+
+
+/-
可焊性
+
+/-
-
断裂韧性
+
-/+
+/- 冷成形性
--
-
-/+
提高强度,保持较高塑性,无共析或包析反应
Fe Mn: β共析元素,强化效果明显。
Cr Co 在α和β相中均有限溶解,在β中溶解度更大
Ni Cu 均存在共析反应,影响组织稳定和蠕变性能。
Si H 注意H的双重作用。.
2008-09-09
钛的主要合金元素
钛的合金化原理
3、 中性元素:对β转变温度无显著影响。
Kroll:镁还原 Hunter:钠还原
海绵钛
●海绵钛根据杂质 含量的不同,可分 为0级、1级、2级等 不同等级。0级海绵 钛杂质含量最低。
.
2008-02-18
钛合金的生产流程
2 钛锭的熔炼及缺陷
惰 性 气 体 保 护 下 的 电 渣 重 熔 炉
VAR
飞机和发动机使用的 钛合金一般要经过2~3 次熔炼。(增加熔炼次 数可使成分均匀化)
1.7
35
17
7.5
4.8
将坯料浸入悬浮液内浸涂 护毛坯,防止氧化和气体污染
6
54
5
8.5
27.5
5
-
用刷子刷到坯料表面 ➢具有良好的隔热性能,使毛坯
从炉子转移到模具以及在变形
玻璃No.
玻璃润滑剂在下述温度下的黏度 800℃ 900℃ 1000℃ 1050℃ 1100℃
用喷雾器喷到坯料表面 过程中减少能量损失
润滑
玻璃粉编
氧化物含量

SiO2
Al2O2
B2O2
Na2O
CaO
1
57~61
-
17~18 18~20 4~5
MgO -
模锻钛合金用润滑剂的基本要求 2
61
3
1
15
6
-
3
40
5
35
5
5
-
➢在整个变形过程中能够形成牢
4
55
14
13
2
16
-
涂润滑剂的方法 固而连续的保护膜
5
➢在加热和变形过车工中能够保
34
在α和β中均有较大溶解度,固溶强化。
Zr Hf: Ti的同族元素,提高α强度和热强性,
强化效果低于Al,但对塑性的影响小。
Sn Mg:主要固溶强化α相,也可视为α 稳定元素。
Ce La:稀土元素,提高高温拉伸和热稳定性。
研究热点
.
2008-09-09
4种基本类型
钛合金的典型组织
等轴组织
等轴初生α相和β转变 组织均匀分布。两相区 中部加热/变形所获得 的。强度、塑性、疲劳 性能突出。
蠕变强度
43;+ 好,+ 较好,-- 差,- 较差 钛合金的性能主要取决于两相的排列方式、体积分数以及各自的性能。
.
2008-09-09
钛合金锻造基础
钛合金组织与变形温度、变形程度的关系
β 区变形
α+β 区变形
β → α+β 区变形
.
2008-09-09
钛合金锻造基础
.
2008-09-09
➢不与毛坯和模具的表面发生化
1
136400 5234
784
-
185
学作用 ➢容易涂到毛坯表面,并便于使
2
106795 0
50030
6507
-
1327
该工序机械化
3
437350 22690 3156
-
708
➢容易从锻件表面清除,能在较
4
-
100000 10000 7400
4500
长时间保持润滑性能
5
-
间隙元素偏析 低指A氧l、、氮V、偏碳析等间也隙元叫素软的偏富集析区,严重时形
成化合物,硬度高,危害大,也叫硬偏析、α偏
高硬表析度面。Al降或一偏低剖旦析,面发偏形现析成,区亮整为条炉等,报轴一废组般织单,件报α废相。增多。锻件
由于α稳定元素Al较多而形成的偏析。 200X 也形成亮条,硬度偏高。单件报废。
700
1200
1700
Temperature (ºC)
.
2008-09-09
钛合金相图
钛的合金化原理
中性型 Zr Hf Sn
α稳定化型
Al Ga Ge ON C
β同晶型
β共析型
β稳定化型
Mo V Nb Ta
.
Fe Mn Cr Co Ni Cu Si H
2008-02-18
钛的合金化原理
完整的 Ti-Al合金相图
30
15
12
-
6
-
1000
80
50
-
注:玻璃润.滑剂是由玻璃粉、稳定剂、固结剂以及水构成的悬浮液
2008-09-09
钛合金锻造基础
锻造设备类型与应变速率的关系
锻 造 设 备
液压
慢速液压
10-2~ 1
锻锤 机械压力 (快速)
10~ 200
1~ 30
10-4~ 10-2
平均应变速率/s-1
.
2008-09-09
酸洗
清除α壳层
表 溶液成分及有关参数
熔盐除锈 溶清液号除氧化皮溶,液并类型随之酸洗溶去液成除分α壳层 操作温度/℃
时间/min
熔盐除锈 1号溶液
清洗
中和酸洗 122号溶液
3
60%~
90%N2OH,其
余N2NO3和
除锈 中和
清洗15%NHa5N2%CO3O~3溶号3酸于溶洗液
425~清510洗
室温
酸洗
进刀量mm/周 0.2~0.3
扒皮去α层
15000~20000
无α层
适于切割直径小于60mm的棒材,切割效率高,但砂
片Ra=寿0.6命3~较2.5短
0.08~0.1
mm

50
棒材直径(mm)
Ra=1.25~5
Ra=2.5~10
.
0.1~0.2 0.3~0.4
注:Ra:表面粗糙度。车削加工时必须使用润滑冷却液,供给12~010.58m-0P9a-压09力
2008-09-09
钛合金的典型组织
显微组织对钛合金性能的影响
细小
粗大
性能
片层状
等轴状


弹性模量

+/-(织构)
+
-
强度
-
+
+
-
塑性
-
+
-
+
断裂韧性
+
-
+
-
疲劳裂纹萌生
-
+
-
+
疲劳裂纹扩展
+
-
-
+
蠕变强度
+
-
+
-
超塑性
-
+
+
-
氧化性能
+
-
注: ○ 无影响,+ 性能提高,- 性能降低 钛合金的显微组织以α和β相的尺寸(细小、粗大)及排列方式(片层 状、等轴状)来描述。
钛合金锻造基础
圆盘锯切割 阳极切割
圆盘锯片厚度2~8mm,适宜切割较大棒料,进刀量小, 能获得较洁净的端面
切口宽度不超过3mm,切耗少、生产率低
锤上或水压机切割 需将棒料预热,工业纯钛可冷态剪切
车床上切割
去 除
表5
层 挤压棒材
厚3 度 2 锻棒

钛合金砂车轮切 切割
车切速度mm/min 25000~30000
O N C: 间隙元素,强度提高,塑性下降。脆性威胁,
严格控制含量。
.
2008-09-09
钛的主要合金元素
钛的合金化原理
2、β稳定元素:降低β转变温度,扩大β相区。
固溶强化,提高淬透性和热处理强化效果。
V Mo:β同晶元素,靠近Ti,晶格类型与β-Ti相同。
Nb Ta 与β相无限互溶,在α相中有限溶解。
.
2008-09-09
钛合金的常用术语
原始β晶粒
.
α集束
2008-09-09
钛合金的常用术语
其他术语参见GB8755-1988
谢谢!
.
2008-09-09
钛合金锻造基础
钛合金加热的两个特点:
1)钛低温导热率低,采用表面加热方法时,加热时间相当长 2)提高加热温度时,钛合金会与空气发生强烈反映,在 还原性气氛的油炉中加热时,吸氢强烈
采用分段加热,缩短坯料高温停留时间 电炉加热(或微氧化性气氛下火焰加热),炉底加垫不锈钢钢板
.
2008-09-09
钛合金锻造基础
钛合金锻造基础
相关文档
最新文档