音频指标测试说明

音频指标测试说明
音频指标测试说明

用 TEXIO VA-2230A 音频分析仪

测试有关指标的说明

、测量环境:

1、EXIO VA-2230A:左、右声道输入端通过 BNC头各接一根带夹头的信号线。

2、被

测试的MP3播放器内:存放有下列 9个测试音文件:OdB— 1KHz—左/右声道、

0 dB — 1KHz—左声道、0 dB — 1KHz—右声道、0 dB — 20Hz—左/ 右声道、

0 dB — 100Hz—左 / 右声道、0 dB — 10KHz—左 / 右声道、0 dB — 10KHz—左声

道、

0 dB — 10KHz—右声道、-60 dB — 1KHz—左/ 右声道

3、耳塞:左 / 右双声道标准耳塞—16/32 欧—线上露出铜芯便于在线带负载测量。、各项指标的测量方法:

总述:循环按下输入通道选择键CH能够选择打开哪个通道的输入。从绿色指示灯的亮与否,能判断出左、右通道的输入是否打开。

有几个按键是复合键,如:先按下 SHIFT 键,再按下 S/N 键,就实现了按下RATIO 键的功能(后面直接称为按下 RATIO 键,其它类同);同理有:

SHIFT+DISTN=SINAD, SHIFT+AC-V=DC-V, SHIFT+GEN=OPT, SHIFT+F1=F6,

SHIFT+F2=F7, SHIFT+F3=F8, SHIFT+F4=F9, SHIFT+F5=F10。

按下某 ITEM 键(如 SYSTEM键 GEN键、AC-V键、DISTN 键、S/N 键、RATIO 键、SINAD键、DC-V键、OPT键),屏幕上会出现层叠状菜单,可以通过分别按△键、▽键、左向三角键、右向三角键选择某一项子菜单,再通过按屏幕下的功能键F1-F5实现设置

选择或按数字键(以按ENT键结束)填入数据。这里用

到一种表示方法:左 /右向三角键选择的层菜单数字 -△/▽键选择的子菜单数字。例

如,4-2表示某ITEM下第4层中的子菜单2。

测试时,应该将MP3的输出音量调到最大值。各项音频指标测量方法分述如下:

1 、基准输出电平:

A. 接好左/右声道测量线路,播放 0dB— 1KHz—左/右声道测试音文件;

B. 按下AC-V键,选择相应的设置。这一项中最关键的设置有:

子菜单4-2即INPUT,应该按功能键 F1选择100K Q,按F3选择UNBAL 子菜单5-2

即UNIT,应该按F3选择单位 V。

C .读取屏幕上显示的左 /右声道电平值,单位为 V。

2、通道不平衡度:

A. 接好左/右声道测量线路,播放 0dB— 1KHz—左/右声道测试音文件;

B. 按下RATIO键,选择相应的设置。这一项中最关键的设置有:

子菜单4-2即INPUT,应该按功能键 F1选择100K Q,按F3选择UNBAL 子菜单5-2

即UNIT,应该按功能键 F1选择dBV;

C. 在看到左声道稳定在某一个值时,找到子菜单

4-2即INPUT,按下功能键F6

选择L/R或F7选择R/L。屏幕上就会出现通道不平衡度的dBV值。

3、音频失真加噪声( LPF+20KHZ):

A. 接好左/右声道测量线路,播放 0dB— 1KHz—左/右声道测试音文件;

B. 按下DISTN键。注意连续按此键时,

THD+N THD HD三种状态会不断循环,当屏幕上出现THD+N犬态字样时,就要停止按DISTN键。

C.这一项中最关键的设置有:

子菜单4-2即INPUT,应该按功能键 F1选择100K Q,按F3选择UNBAL 子菜单5-2

即UNIT,应该按功能键 F1选择dBV,再按F7键选择% 子菜单6-3即LPF,应该按

F3选择20KHZ计权。

子菜单5-1即AVGS可以按功能键 F3/F4/F5/F6选择N次测量的平均值。屏幕上就会出现左/右声道的音频失真加噪声的dBV值。

4、串音(注意是最大音量)

A. 先接好左/右声道测量线路,播放 OdB— 1KHz—左声道测试音文件;

B. 按下AC-V键,选择相应的设置。这一项中最关键的设置有:

子菜单4-2即INPUT,应该按功能键 F1选择100K Q,按F3选择UNBAL 子菜单5-

2即UNIT,应该按F1选择单位dBV;

C. 将屏幕上显示的左声道值减去右声道值(带符号运算),就得到1KHz的L T R串

音值;

D. 循环步骤A-C,只是将播放的测试音文件改为OdB— 1KHz—右声道,将屏幕上显示的右声道值减去左声道值,就得到1KHz的R T L串音值;

E. 循环步骤 A-D,只是将播放的测试音文件先后改为0dB— 10KHz—左声道、

0dB— 10KHz—右声道,就可得到10KHz的L T R串音值和10KHz的R T L串音值。

5、音频信噪比( LPF+2OKHZ)

A. 先接好左/右声道测量线路,播放 0dB— 1KHz-左/右声道测试音文件;

B. 按下S/N键,选择相应的设置。这一项中最关键的设置有:

子菜单4-2即INPUT,应该按功能键 F1选择100K Q,按F3选择UNBAL 子菜单5-

2即UNIT,应该按F3选择单位dBV;

子菜单6-3即LPF,应该按F3选择20KHZ计权。

C. 播放一段时间后按 MP3的暂停键。读取屏幕上的左 /右声道的信噪比值。备注:信

号源是无声

6、音频信噪比(A计权):

A. 先接好左/右声道测量线路,播放 0dB— 1KHz-左/右声道测试音文件;

B. 按下S/N键,选择相应的设置。这一项中最关键的设置有:

子菜单4-2即INPUT,应该按功能键 F1选择100K Q,按F3选择UNBAL 子菜单5-

2即UNIT,应该按F3选择单位dBV;

子菜单6-2即PSQ应该按F2选择A计权。

C. 播放一段时间后按 MP3的暂停键。读取屏幕上的左 /右声道的信噪比值。备注:信

号源是无声

7 、音频幅频响应:

A. 接好左/右声道测量线路,(选择NORMT效)先播放0dB— 1KHz—左/右声道测试音

文件;

B. 按下AC-V键,选择相应的设置。这一项中最关键的设置有:

子菜单4-2即INPUT,应该按功能键 F1选择100K Q,按F3选择UNBAL 子菜单5-

2即UNIT,应该按F1选择单位dBV;

C. 当屏幕上显示的信号电平值稳定下来时,选择子菜单4-1即HOME并按功能键F1,这时仪器将当前的信号电平作为0电平参考值,显示出来的信号

电平值都是相对这个电平而言的;

FLUKE测试报告参数详解

Fluke DTX系列六类双绞线测试参数说明: 1、插入损耗:是指发射机与接收机之间,插入电缆或元件产生的信号损耗,通常指衰减。插入损耗以接收信号电平的对应分贝(db)来表示。对于光纤来说插入损耗是指光纤中的光信号通过活动连接器之后,其输出光功率相对输入光功率的比率的分贝数。 2、NEXT(近端串扰):是指在与发送端处于同一边的接收端处所感应到的从发送线对感应过来的串扰信号。在串扰信号过大时,接收器将无法判别信号是远端传送来的微弱信号还是串扰杂讯。 3、PSNEXT(综合近端串扰):实际上是一个计算值,而不是直接的测量结果。PSNEXT 是在每对线受到的单独来自其他三对线的NEXT 影响的基础上通过公式计算出来的。PSNEXT 和FEXT(随后介绍)是非常重要的参数,用于确保布线系统的性能能够支持象千兆以太网那样四对线同时传输的应用。 4、ACR(衰减串扰比):表示的是链路中有效信号与噪声的比值。简单地将ACR 就是衰减与NEXT 的比值,测量的是来自远端经过衰减的信号与串扰噪声间的比值。例如有一位讲师在教师的前面讲课。讲师的目标是要学员能够听清楚他的发言。讲师的音量是一个重要的因素,但是更重要的是讲师的音量和背景噪声间的差别。如果讲师实在安静的图书馆中发言,即使是低声细语也能听到。想象一下,如果同一个讲师以同样的音量在热闹的足球场内发言会是怎样的情况。讲师

将不得不提高他的音量,这样他的声音(所需信号)与人群的欢呼声(背景噪声)的差别才能大到被听见。这就是ACR。ACR=衰减的信号-近端串扰的噪音 5、PSACR(综合衰减串扰比):反映了三对线同时进行信号传输时对另一对线所造成的综合影响。它只要用于保证布线系统的高速数据传输,即多线对传输协议。 6、ELFEXT(等效远端串扰):是远端串扰损耗与线路传输衰减的差值,以db 为单位。是信噪比的另一种方式,即两个以上的信号朝同一方向传输时的情况。 7、PSELFEXT(综合平衡等级远端串扰):表明三对线缆处于通信状态时,对另一对线缆在远端所造成的干扰。 8、RL(回波损耗):电信号在遇到端接点阻抗不匹配时,部分能量会反射回传送端。回波损耗表征了因阻抗不匹配反射回来的能量的大小,回波损耗对于全双工传输的应用非常重要。

音频指标简介及测试原理方法

音频指标测试均是针对有输入和输出的设备而言,就是声音信号经过了一个通道以后,输出与输入之间的差别。两者差别越小那么性能越好,而且在一般情况下声音经过某一个通道或某一系统后,一般都有对原信号的放大和衰减。 信噪比、失真率、频率响应这三个指标是音响器材的“基础指标”或“基本特性”,我们在评价一件音响器材或者一个系统水准之前,必须先要考核这三项指标,这三项指标中的任何一项不合格,都说明该器材或者系统存在着比较重大的缺陷 1、信噪比SNR(Signal to Noise Ratio): (1)简单定义:狭义来讲是指放大器的输出信号的电压与同时输出的噪声电压的比,常常用分贝数表示,设备的信噪比越高表明它产生的杂音越少。一般来 说,信噪比越大,说明混在信号里的噪声越小,声音回放的音质量越高,否 则相反。信噪比一般不应该低于70dB,高保真音箱的信噪比应达到110dB以 上。音频信噪比是指音响设备播放时,正常声音信号强度与噪声信号 强度的比值 (2)计算方法:信噪比的计量单位是dB,其计算方法是10LG(PS/PN),其中Ps 和Pn分别代表信号和噪声的有效功率,也可以换算成电压幅值的比率关系:20LG(VS/VN),Vs和Vn分别代表信号和噪声电压的“有效值”。 (3)测量方法:信噪比通常不是直接进行测量的,而是通过测量噪声信号的幅度换算出来的,通常的方法是:给放大器一个标准信号,通常是0.775Vrms 或2Vp-p@1kHz,调整放大器的放大倍数使其达到最大不失真输出功率或幅度(失真的范围由厂家决定,通常是10%,也有1%),记下此时放大器的输出幅Vs,然后撤除输入信号,测量此时出现在输出端的噪声电压,记为Vn,再根据SNR=20LG(Vn/Vs)就可以计算出信噪比了. 或者是10LG(PS/PN),其中Ps和Pn分别代表信号和噪声的有效功率 计权:这样的测量方式完全可以体现设备的性能了。但是,实践中发现,这种测量方式很多时候会出现误差,某些信噪比测量指标高的放大器,实际听起来噪声比指标低的放大器还要大。经过研究发现,这不是测量方法本身的错误,而是这种测量方法没有考虑到人的耳朵对于不同频率的声音敏感性是不同的,同样多的噪声,如果都是集中在几百到几千Hz,和集中在20KHz以上是完全不同的效果,后者我们可能根本就察觉不到. 这样就引入了权的概念。噪声中对人耳影响最大的频段“权”最高,而人耳根本听不到的频段的“权”为0。这种计算方式被称为“A计权”,已经称为音响行业中普遍采用的计算方式。 2 、频响范围: (1)频率响应是指在振幅允许的范围内音响系统能够重放的频率范围,以及在此范围内信号的变化量称为频率响应。 (2)测试方法:要求输入信号幅值为一个固定值(要在动态范围之内,音响设备我们可以取100mv)。当输入信号为正常频率时(不能有失真,可以定位1KZ),记录这个时候的输出电压的大小V1。然后开始逐渐降低输入信号的频率,当降低到一定程度时,输出信号的幅值会开始减小。继续降低频率,直到输出电压为0.707V1

功放机指标测试方法概要

文件名称:功放机电性能测试方法指引 文件编号:TPPEAV201105090001 版本号:A0版 受控状态: 是□否□ 拟制: 批准: 日期: 注: 1.目的 ——使QC岗位所有人员能按标准进行岗位操作,以便满足岗位能力要求;——使各岗位QC操作方法统一,避免操作方法不规范导致失误。 2.适用范围 ——使用于本厂所有质量管理人员及在岗QC。

功放机电性能测试方法指引 一、各声道额定输出功率测试方法: 1.测试所用基本设备仪器: 音频信号源负载盒双针毫伏表调压器 双踪示波器失真测试仪 2.测试条件: ~220V电压8Ω负载1KHz/500mv正弦波信号 各仪器按要求连接好。 3.测试步骤:(以主声道为例,其它声道测试方法同) a.将主音量逐步加大,看示波器上的波形有0.7%失真为宜,然后读出 双针毫伏表各指针此时所得到的伏度数;(要求主高音、低音、平 衡居中) b.此时双针毫伏表上各指针所得到的伏度数即为主声道额定输出伏度 (毫伏表上有两个读数具体到主左、右声道时可根据接仪器时的接 线而定); c.具体的输出功率再进行换算,我们在生产中只测出各声道额定输出 伏度即可; d.名词解释额定输出功率:也叫最大不失真输出功率,将被测功 放机置于~220V电压、8Ω负载、1KHz/500mv正弦波信号下将 音量逐步加大,看示波器上的波形有0.7%失真时读出双针毫伏表 各指针此时所得到的伏度数,然后进行换算所得到的功率。

e.毫伏表的量程根据各声道的输出功率而定,这样能准确反映测量值, 误差小,同时避免损坏仪器。 二、主左、右声道串音测试方法: 1.测试所用基本设备仪器: 音频信号源负载盒双针毫伏表调压器 双踪示波器 2.测试条件: ~220V电压8Ω负载1KHz/500mv正弦波信号 各仪器按要求连接好。 3.测试步骤:(要求主高音、低音、平衡居中) a.将主声道置于额定输出功率,读出左声道现在的dB数,记为L1【此 时L1的dB数计算方法为:若毫伏表在“30V/+30dB”档位,毫伏表 显示的左声道指针在-7dB,那么L1的读数为+30dB+(-7dB) =23dB】; b.然后拔掉左声道的输入信号,此时毫伏表上左声道的指针读数基本 为0,再逆时针旋转控制左声道的毫伏表量程钮,直到能读取毫伏 表左声道指针显示dB数为宜,此时的读数记为L2【此时L2的dB 数计算方法为:若毫伏表在“100mv/-20dB”档位,毫伏表显示的左 声道指针在-8dB,那么L2的读数为-20dB+(-8dB)= -28dB】; c. L1的绝对值加L2的绝对值即为右声道串左声道的声道串音(R/L) 【按a 、b两点给出的数据计算R/L=23 dB的绝对值+(-28dB) 的绝对值】;

线路参数测试方法

高感应电压下用SM501测试线路参数的方法 湖南省送变电建设公司调试所邓辉邓克炎 0引言 超高压输电线路工频参数测试时,经常遇到感应电压很高的情况,不能用仪器直接测试, 否则仪器被感应电压击穿损坏。本文根据厂家仪器给出的原理接线进行了改接,通过理论分析,实际测试,数据证实,此种方法确实有效可行。 1SM501的介绍: SM501线路参数测试仪,是专门用于输电线路工频参数测试的仪器。该仪器电路设计精巧,思路独特,使得其性能优越,功能强大,体积小,重量轻。该仪器内部采用先进的A/D同步交流采样及数字信号处理技术,成功的解决了多路信号在市电条件下同步测量和计算的难题。仪器操作简单方便,数据准确可靠,可完全取代传统仪表的测量方法,可显示并记录用户关心的所有测量数据,可作为现场高精度交流指示仪表使用。该仪器测试线路参数与传统仪表测试线路参数比较,减轻劳动强度,工作效率大大提高。 1.1SM501的主要功能与特点: (1)可测量输电线路的正序阻抗,线间阻抗,零序阻抗,线地阻抗,正序电容,线间电冰箱容,零序电容,线地电容,互感阻抗,电压,电流,功率,电阻,电抗,阻抗角,频率等参数。 (2)全部数据均在统一周期内同步测量,保证在市电条件下测量结果的准确性和合理性。

(3)在仪器允许的测量范围内可直接测量,超出测量范围时可外接一次电压互感器和电流互感器。 (4)可锁定显示数据并存储或打印全部测量结果,本仪器内置不掉电存储器,可长期保持测量数据并可随时查阅。 (5)全部汉字菜单及操作提示,直观方便。 1.2主要技术指标; (1)基本测量精度:电流、电压、阻抗0.2级,功率0.5级 (2)电压测量范围:AC 0-450V 电流测量范围:AC 0-50A 2为什么要对输电线路进行参数测试: 输电线路短距离也有几公里,长距离的有几十至几百公里,输电线路长距离的架设,中途的换位,变电站两端相位有时出现差错,输电线路的正序阻抗,线间阻抗,零序阻抗,线地阻抗,正序电容,线间电容,零序电容,线地电容,互感阻抗,电阻,电抗,阻抗角等实际与理论计算值不一至。 以上这些参数的准确对继电保护的整定至关重要,这些参数如果有误,保护不能正确动作,距离保护不能准确测距,甚至误动或不动,对电力设备造成直接经济损失。为了保证输电线路进行参数测试的准确,保定市超人电子有限公司研制了一种比较智能的参数测试仪那就是SM501。 3几种典型的参数测试: 3.1 输电线路正序阻抗的测试: 将线路末端三相短路悬浮。当测试电压和测试电流都不超过本测试仪器允许输入范围时,按图1接法测量。当测试电压和测试电流超过本测试仪器允许输入范围必须外接电压互感器和电流互感器,按图2接法测量。在仪器测试项目菜单中

音频测试方法

STB音频测试操作手册 STB音频测试项目和指标 表1音频测试指标

测试信号 表2 0.33:01测试序列

在音频测试时,首先很重要的要对测试项目所对应的测试信号要十分清楚。目前测音频的指标用的信号基本上是CCITT0.33:01测试序列的各种码流,在.33测试序列中包含了表1所提到的所有测试指标用到的信号,而且每个测试信号都非常短,只有1秒,而我们测不同的指标要Freeze不同的曲线,所以先要十分熟悉每秒要播的信号,然后通过不断操作把自己培养成快手。 测试方法 1音频输出幅度和失真度 测音频输出幅度和失真度用的信号是CCIT0.33:01中的1020Hz,0dBm的信号,VM700T用Audio Analyzer进行测试,下面几个测试项目除了噪声用Audio Spectrum之外,都是用Audio Analyzer进行测试的。在1.020kHz,0dBu信号出现时,按Freeze,然后读出Level和THD+N的值,Level值为左右声道中较小的 值,失真度为左右声道中较大的那个。本例子中Level=-0.03dBu,失真度=0.016%.

2 音频幅频特性 测音频幅频特性时测试信号从1020Hz, -12dBm开始,到15000Hz,-12dBm,VM700T要在1020Hz,0dBm后,点击Erase Plot软键,清除屏幕上之前的打点,然后在信号跑到15000Hz,-12dBm时,按Freeze,可以得到幅频特性曲线。如下图所示。 得到的曲线看似平,但是通过放大后可以得到一根曲线,如下图。通过移动得到1kHz时的电平,记下该值A=-12.026dBu.

MOSFET参数及其测试方法

参数类别(物理特征): 1、漏源电压系列 1.1、V(BR)DSS:漏源击穿电压 1.2、dV(BR)DSS/dTJ:漏源击穿电压的温度系数1.3、VSD:二极管正向(源漏)电压 1.4、dV/dt:二极管恢复电压上升速率 2、栅源电压系列 2.1、VGS(TH):开启电压 2.2、dVGS(TH)/dTJ:开启电压的温度系数 2.3、V(BR)GSS:漏源短路时栅源击穿电压 2.4、VGSR:反向栅源电压 3、其它电压系列 3.1、Vn:噪声电压 3.2、VGD:栅漏电压 3.3、Vsu:源衬底电压 3.4、Vdu:漏衬底电压 3.5、Vgu:栅衬底电压 二、电流类参数 1、漏源电流系列 1.1、ID:最大DS电流 1.2、IDM:最大单脉冲DS电流 1.3、IAR:最大雪崩电流 1.4、IS:最大连续续流电流 1.5、ISM:最大单脉冲续流电流 1.6、IDSS:漏源漏电流 2、栅极电流系列 2.1、IGSS:栅极驱动(漏)电流 2.2、IGM:栅极脉冲电流 2.3、IGP:栅极峰值电流

三、电荷类参数 1、Qg:栅极总充电电量 2、Qgs:栅源充电电量 3、Qgd:栅漏充电电量 4、Qrr:反向恢复充电电量 5、Ciss:输入电容=Cgs+Cgd 6、Coss:输出电容=Cds+Cgd 7、Crss:反向传输电容=Cgd 四、时间类参数 1、tr:漏源电流上升时间 2、tf:漏源电流下降时间 3、td-on:漏源导通延时时间 4、td-off:漏源关断延时时间 5、trr:反向恢复时间 五、能量类参数 1、PD:最大耗散功率 2、dPD/dTJ:最大耗散功率温度系数 3、EAR:重复雪崩能量 4、EAS:单脉冲雪崩能量 六、温度类参数 1、RJC:结到封装的热阻 2、RCS:封装到散热片的热阻 3、RJA:结到环境的热阻 4、dV(BR)DSS/dTJ:漏源击穿电压的温度系数 5、dVGS(TH)/dTJ:开启电压的温度系数 七、等效参数 1、RDSON:导通电阻 2、Gfs:跨导=dID/dVGS 3、LD:漏极引线电感 4、LS:源极引线电感

音频测试项目及其主要参数和标准

手机音频测试中常见测试标准与测试项目 (2012-3-30 14:17) 在多技术集成的复杂电磁环境中,越来越多的外界干扰影响着音频的实际使用效果,然而终端产品(如手机)的音频质量是影响用户体验的关键因素,针对近期众多客户咨询音频测试的情况,摩尔实验室(MORLAB)的工程师依据相关标准,跟广大读者解析国内外音频测试的常见主要要求。 音频测试的主要标准: 国内标准:GB/T 15279-2002 YD/T 1538-2011 国外标准加拿大CS-03 Part VIII 美国FCC Part68 欧洲标准EN50332/300903 国际标准TIA-968/810/920和3GPP TS 51.010-1系列等等 测试项名词解析: SLR-发送响度评定值: SLR(Sending loud rating)是计算发射方向的绝对响度,以此判定话音信号是否适合听众,它是一种基于目标单音测量来表示发送频率响应的方法,灵敏度单位为dBv/Pa。根据ITU-T P.79公式 计算频段4至17频段的SLR。并m=0.175,和ITU-T P.79中的发送加权因子。

RLR-接收响度评定值: RLR (Receive Loudness Rating)是计算接收方向的绝对响度, 以此判定话音信号是否适合听众,它是一种基于目标单音测量来表示接收频率响应的方法。灵敏度单位为dBPa/v。根据ITU-T P.79的公式λ 根据标准3GPP TS 26.131,当手机接收响度固定时,STMR应该在13dB到23dB之间。λ 根据标准STMR只能用TYPE1 或者TYPE3.2低泄漏型人工耳来进行测量。λ SSFR-发送灵敏度/频率响应: SSFR(Sending sensitivity frequency response)发送灵敏度/频率响应指解码器输出与人工嘴的输入声压之比。λ 用人工嘴在嘴参考点(MRP)送一个声压为-4.7dBPa的纯单音。测量并评估系统模拟器语音解码器的响应输出声压值。λ 计算测量频率响应到上或下容限的偏移,由对最大最小偏移的均值移动整条曲线, 然后进行极限检测,如果移动后的曲线在极限曲线范围内,输出PASS,否则输出FAIL. 在每个频率点都要进行极限检测。λ

运算放大器主要参数测试方法说明1

通用运算放大器主要参数测试方法说明 1. 运算放大器测试方法基本原理 采用由辅助放大器(A)与被测器件(DUT)构成闭合环路的方法进行测试,基本测试原理图如图1所示。 图1 辅助放大器应满足下列要求: (1) 开环增益大于60dB; (2) 输入失调电流和输入偏置电流应很小; (3) 动态范围足够大。 环路元件满足下列要求: (1) 满足下列表达式 Ri·Ib<Vos R<Rid R·Ib >Vos Ros<Rf<Rid R1=R2 R1>RL 式中:Ib:被测器件的输入偏置电流; Vos:被测器件的输入失调电压; Rid:被测器件的开环差模输入电阻; Ros:辅助放大器的开环输出电阻; (2) Rf/ Ri值决定了测试精度,但须保证辅助放大器在线性区工作。

2.运算放大器测试适配器 SP-3160Ⅲ数/模混合集成电路测试系统提供的运算放大器测试适配器便是根据上述基本原理设计而成。它由运放测试适配板及一系列测试适配卡组成,可以完成通用单运放、双运放、四运放及电压比较器的测试。运算放大器适配器原理图如附图所示。 3.测试参数 以OP-77G为例,通用运算放大器主要技术规范见下表。

3.1 参数名称:输入失调电压Vos (Input Offset Voltage)。 3.1.1 参数定义:使输出电压为零(或规定值)时,两输入端间所加的直流补偿 电压。 3.1.2 测试方法: 测试原理如图2 所示。 图2 (1) 在规定的环境温度下,将被测器件接入测试系统中; (2) 电源端施加规定的电压; (3) 开关“K4”置地(或规定的参考电压); (4) 在辅助放大器A的输出端测得电压Vlo; (5) 计算公式: Vos=(Ri/(Ri+Rf))*VLo 。 3.1.3编程举例:(测试对象:OP-77G,测试系统:SP3160) ----测试名称:vos---- 测量方式:Vos Bias 1=-15.000 V Clamp1=-10.000mA Bias 2=15.000 V Clamp2=10.000mA 测量高限=0.0001 V 测量低限=____ V 测量延迟:50mS 箝位延迟:50mS SKon=[0,4,11,12,13,19,23,27] 电压基准源2电压=0V 电压基准源2量程+/-2.5V 电压基准源3电压=0V 电压基准源3量程+/-2.5V 测试通道TP1 测量单元DCV DCV量程:+/-2V

音频CTA测试指标

手机音频测试的测试项如下: 1、Sending sensitivity/frequency response发送灵敏度/频率响应 2、Sending loudness rating发送响度评定值(SLR) 3、Receiving sensitivity/frequency response接收灵敏度/频率响应 4、Receiving loudness rating接收响度评定值(RLR)最大音量下测试 5、Side Tone Masking Rating (STMR)侧音掩蔽评定值(STMR) 6、Stability margin稳定度储备 7、Distortion Sending发送失真 以上测试项又分为几种测试情况,如手持,头戴,桌面等。下面只取其一种情况。 1、Sending sensitivity/frequency response发送灵敏度/频率响应 测试目标如下: 频率 (Hz) 上限 (dB) 下限 (dB) 100 -12 200 0 300 0 -12 1000 0 -6 2000 4 -6 3000 4 -6 3400 4 -9 4000 0 问题:发送灵敏度/频率响应的物理含义是什么,根据什么来的,测这个值有什么作用。其上下限取值的依据是什么,量化到电压,其值大概是多少? 2、Sending loudness rating发送响度评定值(SLR) 测试目标如下: ?SLR在8 +/- 3 Db 问题:发送响度评定值的物理含义是多少。取值8 +/- 3 Db的依据是什么,测这个值有什么作用。要达到一个什么标准,人感觉起来是个什么响度 3、Receiving sensitivity/frequency response接收灵敏度/频率响应 测试目标如下: ?频率 (Hz) 上限 (dB) 下限 (dB) 100 -12 200 0 300 2 -7 500 * -5 1000 0 -5 3000 2 -5 3400 2 -10 4000 2 问题:接收灵敏度/频率响应的物理含义是什么,根据什么来的,测这个值有什么作用。其上下限取值的依据是什么,量化到电压,其值大概是多少?为什么与发送灵敏度/频率响应差别。 4、Receiving loudness rating接收响度评定值(RLR)最大音量下测试 测试目标如下: RLR在2 +/- 3 dB

音频性能测试指引

音频性能测试用例 一、仪器设备: VA-2230音频分析仪;负载(4欧或8欧);32欧耳机负载 二、准备工作: 2.1、对即将测试的机器升级最新软件,并确认喇叭和耳机均可以正常输出。 2.2、将测试用音频文件拷贝到机器中, 2.3、接线:左声道的两个红线分别接喇叭(或耳机)的左声道输出,其余两根黑线接 主板上的地。右声道的两个红线分别接喇叭(或耳机)的右声道输出的,其余两 根黑线接主板上的地。以上测试需保证喇叭和耳机均已连接标准的负载。 三、初始设置: 3.1、打开 VA-2230 音频分析仪,待仪器预热 15 分钟后进行以下测试 3.2、按 VA-2230 音频分析仪的←↑按钮或→↓按钮,选中 Input 将输入耦合阻抗设定为: 10KΩ, 耦合方式设定为: balance(即平衡模式)如下图: 注意:数字功放选择balance(即平衡模式),模拟功放选择unbalance(即非平衡模式)。 3.3、按 VA-2230 音频分析仪的←↑按钮或→↓按钮, 选中 SP,并将其设定为 Slow, 将 SS 设定为 1.5s; 四、各测试项测试方法及步骤: 3.1、最大输出功率 A、按 VA-2230 音频分析仪的←↑按钮或→↓按钮,将 HPF,PSO 设置为 OFF,LPF 设置为20KHz(模拟功放LPF要设置为OFF)。

B、播放机器中的《08-1KHz-0dB》音频文件,并将音量调到最大。按音频分析仪(中部上端)的AC-V按钮,音频分析仪屏幕左上方若出现ACV,表明已经选中,调节按钮选中UNIT 项,按钮F3 切换为V。此时屏幕上显示的为左右声道输出的有效值。最大输出功率必须满足总谐波失真的指标,如果总谐波失真超标,需将音量调小重新确 认最大输出幅值。总谐波失真测试方法见3.4。 注:屏幕左上方会显示Freq=1000Hz,或者频率很接近1000Hz。如果此处未显示出数字,说明设置有误。 C、输出功率=输出幅值 /负载阻抗。 D、标准:不要超过喇叭或耳机的额定功率

参数测试

1)采用非电量的电测法有以下优点:1、可以将各种不同的被测参数转换成相同的电量。 便于使用相同的测量和记录仪表。2、各种参数转换成电量后,可以进行远距离传送,便于远距离操、控制和显示。也便于同自动化仪表连用,组成调节控制系统。3、采用这种方法可以对参数进行动态测量,并记录其瞬时值和变化过程,便于进行动态分析研究。4、易于同许多后续的通用数据处理仪器连用,便于对测量结果进行运算处理。2)非电量电测测试系统应由几部分组成?被测参数、敏感元件、信号变换器、信号传输、 信号测量、测试结果的显示、自动记录运算分析、生产过程控制系统。 3)灵敏度是变换器每单位输入量的输出量,用s表示s=y/x。 4)电阻式变换器——划线电阻式变换器三种用法:串联可变电阻式、电位计式、电桥式。 5)电阻变化量: 6)电感式变换器按照作用原理可分为:自感式、互感式、和压磁式。 7)电感变换器差动形式: 8)电容式变换器分类:改换极板有效面积、改换极板间距离、改变介电常数。 9)压电效应:某些晶体,在一定方向上受到外力作用而产生应变时,在它的表面上将产生 电荷(或电压)。逆压电效应:这些晶体在电场作用下将产生机械变形。 10)压电晶体的接法及特点:并联接发:电荷量为单片的两倍,电容量也为两倍,输出电压 与单片相同,并联接法由于电容量大,时间常数也大,所以适合慢信号的测量。并联接法电荷转换灵敏度高,故一般采用电荷输出方式。串联接法:输出电荷与单片相同,而总电容为单片的二分之一。则输出电压为单片的两倍。特点是电容小。电压转换灵敏度高。适用于变化较快信号的测量,并宜采用电压输出的形式。 11)磁电式变换器类型有:可动线圈磁电式变换器、改变磁阻的磁电式变换器。 12)霍尔效应原理:在霍尔元件平面的垂直方向加一磁场,其磁感应强度为B,在1、2平 面通以电流I。由于在洛伦磁力的作用下,电荷将向一侧偏移,并在该侧形成电荷积累,这样就在霍尔元件平面内垂直于电流方向形成一个电场,当通过的电荷所受电场作用力与洛伦磁力相等时,该侧面电荷的积累不再增加,于是在3、4平面间形成一个稳定电势U,称为霍尔电势,这种现象称为霍尔效应。 13)电桥输出形式:平衡输出电桥和不平衡输出电桥。 14)等臂电桥 15)交流电桥的特殊作用:调幅作用,公式。若应变为正时,输出电压与载波电压同相位, 当应变为负时,输出电压与载波电压相位相差180. 16)电桥的加减特性:电桥相邻桥臂有异号,或相对桥臂有同号的电桥变化时,电桥能相加; 而相邻桥臂有同号或相对桥臂有异号的电阻变化时,电桥能相减。 17)布片和组桥。方法:单臂、半桥、全桥。目的:1、除去其他因素的影响和干扰,测出 需要的信号。2、提高电桥对被测量信号的转换灵敏度。3、减小电桥测量的非线性误差。 18)布片和组桥的几点规律:1、为了减小非线性误差和实现温度补偿,通常采用相邻臂工 作或全桥工作的布片组桥方式,即半桥接法和全桥接法。2、在电桥相邻臂工作时,布片要使被测信号在两应变片中有相反的符号改变。电桥四臂工作时,布片须使被测信号在相邻臂有同号、相对臂有异号变化。3、各种干扰信号在布片时,必须使它们与被测信号有相反的符号改变。即在相邻桥臂有同号、相对臂有异号变化,这样才能在组桥中被抵消。4、可以利用串联应变片构成的不等臂对称电桥,在一个桥臂中利用加减特性,来消除干扰因素。 19)静态应变测量电桥:工作程序:首先将读书桥各可变电阻器调至零位,使电桥平衡。如 果不平衡,调节测量电桥的平衡调节装置,使放大器输出指标表回到零。这时测量桥与读书桥出于平衡状态,此时进行应变测量,如R1和R2有静态应变时,表示电表偏移。

音频测试指标与测试经验

FTA音频测试及测试经验 厦门厦新移动通讯有限公司研发中心测试部厦门海沧新阳工业区厦新电子城 361022 狄德海 didehai@https://www.360docs.net/doc/7717681370.html, Tel: 86-0592-*******-3274

1. 音频测试项目 在FTA音频测试中音频测试的项目有30.1,30.2,30.3,30.4,30.5.1,30.6.2,30.7.1参考 GSM11.10注意事项所有的测试项目应在同一天的测试时间里通过但每一项的测试可以有多次测试直到测试通过为止 30.1发送频率响应Sending Frequency Response 30.1.1 定义 发送灵敏度/频率响应用DB表示是指输入测试单音频时数字音频接口DAI的输出电平以PCM比特流代表与仿真嘴中的输入声压之比 30.1.2 指标 发送灵敏度/频率响应MRP-?DAI应处于表1给出的框罩内 在对数频率/线形DB灵敏度坐标上对表1中的间断点之间画直线得到一个框罩如图1 模板如下 表1 发送灵敏度/频率响应

Frequency (Hz) Upper Limit (dB) Lower Limit (dB) 100 -12 200 0 300 0 -12 1000 0 -6 2000 4 -6 3000 4 -6 3400 4 -9 4000 0 30.1.3 测试方法 a) 将手机装在LRGP中耳承密合于仿真耳的刃形边缘上 b) 用仿真嘴在嘴参考点MRP送一个声压为 – 47dBPa的纯单音 c) MS的DAI连接SS操作模式为音频设备及A/D D/A的测试 d) 在100Hz~4000Hz频段内用1/2倍频间隔进行测试 e) 在各个频率测DAI处PCM比特流代表的输出电平 30.2 发送响度评定值Sending Loudness Rating SLR 30.2.1 定义 SLR是一种基于客观单音测试的表示发送频率响应的方法 30.2.2 指标 8 3 DB 经验低dB值对应大的响度5dB对应最大的响度11dB代表最小的响度测试时通过调整手 机的麦克风到人工嘴的距离使测试的值达到标准如果比标准值大则需调小手机麦克风 到人工嘴的距离若比标准值小则调大其距离 30.3 接收频率响应Receiving Frequency Response 30.3.1 定义 接收灵敏度/频率响应用DB表示是指仿真耳中的输出声压与DAI处PCM比特流代表的输入 电平之比 30.3.2 指标 接收灵敏度/频率响应DAI至ERP应处于表2给出的框罩内 在对数频率/线形DB灵敏度坐标上对下表中的间断点之间画直线得出框罩 *的极限处于间断点之间所画的直线上 30.3.3 测试方法 a) 将手机装在LRGP中耳承应密合于仿真耳的刃行边缘上 b) MS的DAI连接SS工作模式为音响设备与A/D D/A的测试 c) SS通过DAI给MS发送一个相当于-16 dBm0纯单音的PCM比特流 d) 在100HZ~40000HZ频段以1/2倍频间隔进行测试

音频产品测试方法

音频产品测试方法 一、FM指标测试方法 (1KHz 22.5% DEV) (1) 30dB实用灵敏度 (USABLE SENSITIVITY S/N:30dB) 先将机器收正为90MHz(98MHz、106MHz),电平(LEVEL)打在正常dB数(40左右),音量收细至0dB处,然后去掉信号(即打下ON/OFF钮)再扭毫伏表三下,(即30dB,每扭一下为10dB),然后调信号发生器的电平(LEVEL),使没信号时的指针与有信号的指针重复(若没重复也不能超过1个dBm),最后电平(LEVEL)显示的dB数就是此机的-30dB实用灵敏度。 (2) 3%失真灵敏度 (I.F.H. SENSITIVITY 75KHz DEV 3%T.H.D.) 先将机器收正为90MHz(98MHz、106MHz),调制度打在75%,将失真仪打在DIST、10%(-20dB)文件,然后分别调整音量电位器和发生器的电平(LEVEL)dB数,使失真仪指针指在3%的位置(不可超过3%的位置,正常应在3%内波动),这时发生器的电平(LEVEL)dB数就是此机的3%失真灵敏度(例如:电平(LEVEL)dB数为11,那么3%失真灵敏度就是11)。 (3)-3dB极限灵敏度 (-3dB LIMITING SENSITIVITY) 先将机器收正为98MHz,电平(LEVEL)打在66dB数,音量收细至0dB处,然后减少发生器的电平(LEVEL)dB数,到毫伏表指针减少3个dB时停,此时的电平(LEVEL)dB数就是此机-3dB 的极限灵敏度。 (4)信噪比 (S/N RATIO @1mV INPUT) 先将机器收正为98MHz,电平(LEVEL)打在66dB,音量收细至0dB处,然后去掉信号(即打下ON/OFF钮)再打毫伏表,每扭一下为10dB,但毫伏表指针不能超过0dB,最后看指针指数是多少,再加上一共所打毫伏表的次数(每档为10dB),(例:你一共打了三次指针指数为6,那么信噪比就是30+6=36dB)。就是此机的信噪比值。 (5) 中频抑制 (IF REJECTION 600KHz) 将机器收正为90MHz,先测出实用灵敏度的dB数,再将FREQ 90MHz转为10.7MHz(FM中频),然后调节电平(LEVEL)dB数,使指针指在2V时所显示的dB数减去实用灵敏度的dB数就是中频抑制的值。 (6) 中频频率 (INTERMEDIATE FREQUENCY) 先测出中频抑制,然后微调信号发生器的FUNCTION钮,将波形调到最正(最靓)时,发生器所显示的频率就是中频频率(例:发生器显示:10.69、那么中频频率就是10.69) (7) 假(镜)象抑制 (IMAGE REJECTION) 将机器收正为106.0MHz(AM收1400KHz),先测出实用灵敏度的dB数,然后将信号发生器频率改为127.4MHz(10.7x2+106=127.4MHz;但考虑到106.0有的地方有电台,所以一般用105.9MHz;10.7x2+105.9=127.3MHz),然后调节电平(LEVEL)dB数,使指针指在2V,再用此dB数减去实用灵敏度的dB数就是假(镜)象抑制的值。(AM应输入0.455x2+1400=2310KHz) (8) AM限幅(抑制);(AM SUPPRESSION)

ADC参数解释和关键指标

第五章 ADC静态电参数测试(一) 翻译整理:李雷 本文要点: ADC的电参数定义 ADC电参数测试特有的难点以及解决这些难题的技术 ADC线性度测试的各类方法 ADC数据规范(Data Sheet)样例 快速测试ADC的条件和技巧 用于ADC静态电参数测试的典型系统硬件配置 关键词解释 失调误差Eo(Offset Error):转换特性曲线的实际起始值与理想起始值(零值)的偏差。 增益误差E G(Gain Error):转换特性曲线的实际斜率与理想斜率的偏差。(在有些资料上增益误差又称为满刻度误差) 线性误差Er(Linearity Error):转换特性曲线与最佳拟合直线间的最大偏差。(NS公司定义)或者用:准确度E A(Accuracy):转换特性曲线与理想转换特性曲线的最大偏差(AD 公司定义)。 信噪比(SNR): 基频能量和噪声频谱能量的比值。 一、 ADC静态电参数定义及测试简介 模拟/数字转换器(ADC)是最为常见的混合信号架构器件。ADC是一种连接现实模拟世界和快速信号处理数字世界的接口。电压型ADC(本文讨论)输入电压量并通过其特有的功能输出与之相对应的数字代码。ADC的输出代码可以有多种编码技术(如:二进制补码,自然二进制码等)。 测试ADC器件的关键是要认识到模/数转换器“多对一”的本质。也就是说,ADC的多个不同的输入电压对应一个固定的输出数字代码,因此测试ADC有别于测试其它传统的模拟或数字器件(施加输入激励,测试输出响应)。对于ADC,我们必须找到引起输出改变的特定的输入值,并且利用这些特殊的输入值计算出ADC的静态电参数(如:失调误差、增益误差,积分非线性等)。 本章主要介绍ADC静态电参数的定义以及如何测试它们。 Figure5.1:Analog-to-Digital Conversion Process. An ADC receives an analog input and outputs the digital codes that most closely represents then input magnitude relative to full scale. 1.ADC的静态电参数规范

最新音频指标测试说明

用TEXIO V A-2230A音频分析仪 测试有关指标的说明 一、测量环境: 1、EXIO VA-2230A:左、右声道输入端通过BNC头各接一根带夹头的信号线。 2、 被测试的MP3播放器内:存放有下列9个测试音文件:0dB—1KHz—左/右声道、 0 dB—1KHz—左声道、0 dB—1KHz—右声道、0 dB—20Hz—左/右声道、 0 dB—100Hz—左/右声道、0 dB—10KHz—左/右声道、0 dB—10KHz—左声道、 0 dB—10KHz—右声道、-60 dB—1KHz—左/右声道 3、耳塞:左/右双声道标准耳塞—16/32欧—线上露出铜芯便于在线带负载测量。 二、各项指标的测量方法: 总述:循环按下输入通道选择键CH,能够选择打开哪个通道的输入。从绿色指示灯的亮与否,能判断出左、右通道的输入是否打开。 有几个按键是复合键,如:先按下SHIFT键,再按下S/N键,就实现了按下RATIO键的功能(后面直接称为按下RATIO键,其它类同);同理有: SHIFT+DISTN=SINAD,SHIFT+AC-V=DC-V,SHIFT+GEN=OPT,SHIFT+F1=F6, SHIFT+F2=F7,SHIFT+F3=F8,SHIFT+F4=F9,SHIFT+F5=F10。 按下某ITEM键(如SYSTEM键、GEN键、AC-V键、DISTN键、S/N键、RATIO键、SINAD键、DC-V键、OPT键),屏幕上会出现层叠状菜单,可以通 过分别按△键、▽键、左向三角键、右向三角键选择某一项子菜单,再通过按 屏幕下的功能键F1-F5实现设置选择或按数字键(以按ENT键结束)填入数据。 这里用到一种表示方法:左/右向三角键选择的层菜单数字-△/▽键选择的子菜 单数字。例如,4-2表示某ITEM下第4层中的子菜单2。 测试时,应该将MP3的输出音量调到最大值。 各项音频指标测量方法分述如下: 1、基准输出电平: A.接好左/右声道测量线路,播放0dB—1KHz—左/右声道测试音文件; B.按下AC-V键,选择相应的设置。这一项中最关键的设置有: 子菜单4-2即INPUT,应该按功能键F1选择100KΩ,按F3选择UNBAL; 子菜单5-2即UNIT,应该按F3选择单位V。 C.读取屏幕上显示的左/右声道电平值,单位为V。 2、通道不平衡度: A.接好左/右声道测量线路,播放0dB—1KHz—左/右声道测试音文件; B.按下RATIO键,选择相应的设置。这一项中最关键的设置有: 子菜单4-2即INPUT,应该按功能键F1选择100KΩ,按F3选择UNBAL; 子菜单5-2即UNIT,应该按功能键F1选择dBV; C.在看到左声道稳定在某一个值时,找到子菜单4-2即INPUT,按下功能键F6选择L/R或F7选择R/L。屏幕上就会出现通道不平衡度的dBV值。 3、音频失真加噪声(LPF+20KHZ): A.接好左/右声道测量线路,播放0dB—1KHz—左/右声道测试音文件; B.按下DISTN键。注意连续按此键时,THD+N、THD、HD三种状态会不断循环,当屏幕上出现THD+N状态字样时,就要停止按DISTN键。 C.这一项中最关键的设置有: 子菜单4-2即INPUT,应该按功能键F1选择100KΩ,按F3选择UNBAL;

滤波器的定义、参数以及测试方法

认证部物料培训 滤波器 主讲人:邹一鸣

一、滤波器的定义 滤波器是一种对信号有处理作用的器件或电路。 主要作用是:让有用信号尽可能无衰减的通过,对无用信号尽可能大的衰减。 滤波器,顾名思义,是对波进行过滤的器件。“波”是一个非常广泛的物理概念,在电子技术领域,“波”被狭义地局限于特指描述各种物理量的取值随时间起伏变化的过程。该过程通过各类传感器的作用,被转换为电压或电流的时间函数,称之为各种物理量的时间波形,或者称之为信号。因为自变量时间‘是连续取值的,所以称之为连续时间信号,又习惯地称之为模拟信号(Analog Signal)。随着数字式电子计算机(一般简称计算机)技术的产生和飞速发展,为了便于计算机对信号进行处理,产生了在抽样定理指导下将连续时间信号变换成离散时间信号的完整的理论和方法。也就是说,可以只用原模拟信号在一系列离散时间坐标点上的样本值表达原始信号而不丢失任何信息,波、波形、信号这些概念既然表达的是客观世界中各种物理量的变化,自然就是现代社会赖以生存的各种信息的载体。信息需要传播,靠的就是波形信号的传递。信号在它的产生、转换、传输的每一个环节都可能由于环境和干扰的存在而畸变,有时,甚至是在相当多的情况下,这种畸变还很严重,以致于信号及其所携带的信息被深深地埋在噪声当中了。 滤波,本质上是从被噪声畸变和污染了的信号中提取原始信号所携带的信息的过程。 二、滤波器的分类 滤波器按所处理的信号分为模拟滤波器和数字滤波器 模拟滤波器可以分为声表滤波器和介质滤波器 三、声表滤波器的原理及特点 声表面波滤波器是利用石英、铌酸锂、钛酸钡晶体具有压电效应做成的。所谓压电效应,即是当晶体受到机械作用时,将产生与压力成正比的电场的现象。具有压电效应的晶体,在受到电信号的作用时,也会产生弹性形变而发出机械波(声波),即可把电信号转为声信号。由于这种声波只在晶体表面传播,故称为声表面波。声表面波滤波器的英文缩写为SAWF,声表面波滤波器具有体积小,重量轻、性能可靠、不需要复杂调整。在有线电视系统中实现邻频传输的关键器件。

ADC性能参数与测试方法

CDS:correlated double sampler VGA: variable gain amplifier AFE: AFE(Active Front End)整流/回馈单元的功能.其主动的含义在于,与传统的二极管或可控制硅整流技术相比,主动前端不再是被动地将交流转变成直流,而是具备了很多主动的控制功能。它不仅能消除高次谐波,提高功率因数,而且不受电网波动的影响,具有卓越的动态特性。 ADC性能指标: 直流性能: INL: 积分非线性误差。指的是实际的传输特性与理想传输特性的在垂直方向上的最大差值,它表示了实际转移曲线偏离理想曲线的程度。 INL = | [(V D - V ZERO)/V LSB-IDEAL] - D |,其中0 < D < 2N- DNL: 微分非线性误差。 DNL = |[(V D+1- V D)/V LSB-IDEAL - 1] |,其中0 < D < 2N - 2 较高数值的DNL增加了量化结果中的噪声和寄生成分,限制了ADC的性能,表现为有限的信号-噪声比指标(SNR)和无杂散动态范围指标(SFDR)。 抖动:

交流分析方法: SNR:信噪比。基频与耐克斯特频率以内的所有噪声信号(不包括基频的谐波)总和的比。THD:总谐波失真。基频与所有基频的谐波总和的比(dBc)。IEEE规定至少要包含9次谐波。SINAD:基频与耐克斯特频率以内的所有噪声和基频的谐波的总和只比。SINAD反应了量化过程产生的噪声、非线性产生的噪声和其他噪声。 SFDR:无杂散动态范围。基频的RMS值与最大谐波的值只比(dBc)。 IEEE 1241-2000规定了用正弦波测试ADC性能的方法。 直流分析方法: FFT和直方图的比较:在低频输入下,由于输入近似直流,FFT不能起到多大作用。我们关心的是ADC的输出有多大可信程度。这时可以对ADC输入直流,分析ADC的输出数据的统计特性。 直方图:得到标准差。谬是平均值。标准差等于ADC在直流输入下的RMS噪声。在使用直方图法的时候,可以在输入ADC量程内的所有值。这个输入可以是斜坡信号(难实现),也可以是正弦信号(容易实现)。为了使每个code能够有足够的数量,正弦信号至少要重复50次以上。以一个16bit的ADC为例,总共要产生50*(2^16)=3276800个数据。 PEAK TO PEAK: 反映了噪声的峰峰值。 平均值:反映了偏差。 AD ANALYZER ADC Analyzer程序是用来评估ADC性能的。配合“ADC FIFO评估工具箱”,它能够评估一个评估板的性能。它也集成了ADC行为模型工具“ADCsimADC”让用户评估一个虚拟的评估板,让用户可以不用实际的板子,只用电脑就可以评估ADC性能。 1.把“被评估板”与“FIFO评估板”连接,“FIFO”连在电脑上,供电。把模拟输入(低 噪声的正弦波)给ADC。 2.开始ADC Analyzer,选择或创建一个配置文件。 3.点击Time Data,可在电脑中看到重建的输入信号。 它可以测试的项目有:

相关文档
最新文档