模拟乘法器1496实验报告
模拟乘法器调幅(AM、DSB、SSB)实验报告

实验十二模拟乘法器调幅(AM、DSB、SSB)一、实验目的1.掌握用集成模拟乘法器实现全载波调幅。
抑止载波双边带调幅和单边带调幅的方法。
2.研究已调波与调制信号以及载波信号的关系。
3.掌握调幅系数的测量与计算方法。
4.通过实验对比全载波调幅、抑止载波双边带调幅和单边带调幅的波形。
5.了解模拟乘法器(MC1496)的工作原理,掌握调整与测量其特性参数的方法。
二、实验内容1.调测模拟乘法器MC1496正常工作时的静态值。
2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。
3.实现抑止载波的双边带调幅波。
4.实现单边带调幅。
三、实验原理幅度调制就是载波的振幅(包络)随调制信号的参数变化而变化。
本实验中载波是由晶体振荡产生的465KHz高频信号,1KHz的低频信号为调制信号。
振幅调制器即为产生调幅信号的装置。
1.集成模拟乘法器的内部结构集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。
在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。
采用集成模拟乘法器实现上述功能比采用分离器件如二极管和三极管要简单得多,而且性能优越。
所以目前无线通信、广播电视等方面应用较多。
集成模拟乘法器常见产品有BG314、F1596、MC1495、MC1496、LM1595、LM1596等。
(1)MC1496的内部结构在本实验中采用集成模拟乘法器MC1496来完成调幅作用。
MC1496是四象限模拟乘法器。
其内部电路图和引脚图如图12-1所示。
其中V1、V2与V3、V4组成双差分放大器,以反极性方式相连接,而且两组差分对的恒流源V5与V6又组成一对差分电路,因此恒流源的控制电压可图12-1 MC1496的内部电路及引脚图正可负,以此实现了四象限工作。
V7、V8为差分放大器V5与V6的恒流源。
(2)静态工作点的设定1)静态偏置电压的设置静态偏置电压的设置应保证各个晶体管工作在放大状态,即晶体管的集-基极间的电压应大于或等于2V ,小于或等于最大允许工作电压。
高频模拟乘法器的综合应用设计实验

学生学号实验课成绩学生实验报告书实验课程名称高频电子线路实验开课学院信息工程学院指导教师姓名学生姓名学生专业班级20014-- 20015学年第一学期实验课程名称:_高频电子线路④倍频器电路设计与仿真实现对信号的倍频。
基本条件:Ux=Uy(载波信号UX:f=1MHZ /50mV),并记录各级信号波形。
推证输入、输出信号的关系。
⑤整理所测数据及波形,认真分析各种频率变换电路工作原理,画出所测波形,写出符合规范的综合设计性实验报告,并谈谈自己的体会。
三.实验原理与电路设计仿真1、集成模拟乘法器1496的内部结构集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。
在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。
采用集成模拟乘法器实现上述功能比采用分立器件如二极管和三极管要简单的多,而且性能优越。
所以目前在无线通信、广播电视等方面应用较多。
集成模拟乘法器的常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。
下面介绍MC1496集成模拟乘法器。
(1)MC1496的内部结构(a)1496内部电路 (b)1496引脚图图1 MC1496的内部电路及引脚图MC1496 是目前常用的平衡调制/解调器。
它的典型应用包括乘、除、平方、开方、倍频、图2 MC1496的内部电路及电路模块引脚图2、AM与DSB电路的设计与仿真调幅就是用低频调制信号去控制高频振荡(载波)的幅度,使高频振荡的振幅按调制信号的规律变化。
把调制信号和载波同时加到一个非线性元件上(例如晶体二极管或晶体三体管),经过非线性变换电路,就可以产生新的频率成分,再利用一定带宽的谐振回路选出所需的频率成分就可实现调幅。
幅度调制信号按其不同频谱结构分为普通调幅(AM)信号,抑制载波的双边带(DSB)信号,抑制载波和一个边带的单边带(SSB)信号。
高频电子线路实验四 集成模拟乘法器的应用(电子科技大学中山学院11级适用)

电子科技大学中山学院学生实验报告图1(2)产生有载波振幅调制信号在步骤(1)的基础上调节W1,使输出信号中有载波存在,则输出有载波的振幅调制信号。
图22.同步检波实验连接J22、J25,断开J21、J23、J24、J26,组成由mc1496构成的同步检波电路(图4)。
从TP3端输入10.7c f MHz =的载波信号c u (由高频信号发生器EE1051提供),p cp u -在50mV 左右。
先将TP7接地,调接电位器W2使输出电压尽可能小(调平衡)。
再从TP5端输入调制实验中产生的抑制载波调幅信号,即将TT11与TP5连接,这时从TT21处用示波器应能观察到解调信号Ωu 的波形。
实验中适当改变原调制信号的大小,使输出信号波形最好。
图33.混频器实验连接J12、J13、J15、J19、J110,断开J11、J14、J16、J17、J18,组成由MC1496构成的混频器电路(图8)。
从TP6处输入频率为10.7MHz ,峰峰值在300mV 附近的高频信号(由高频信号发生器EE1051提供)。
从TP8输入频率为10.245MHz 的信号,由正弦振荡单元电路产生(晶体振荡,参考正弦振荡单元)。
用示波器和频率计在TT11处观察输出波形,输出信号频率应为455KHz 。
图44. 鉴频实验断开J22、J24、J26,连接好J21、J23、J25,组成由mc1496构成的鉴频电路(图7)。
从TP4处输入调频波(此调频信号由高频信号源单元提供,参考高频信号源的使用),载波峰峰值在50mV 左右,调制信号峰峰值在mV mV 600~250。
用示波器从TT21处可以观察到输出的低频调制信号 u 。
如果信号失真,可调节可调节2W 以及可调电容1CC ,最后再微调调制信号及载波,使输出信号最大且不失真。
图5五、实验结果分析与总结u输入端只有调制信号而没有直流分量,调幅电路的输1.调幅:对于图2调幅电路:当出为抑止载波的双边带调幅波,即DSB波;若调节W1,使MC1496的1、4脚的直流电位差不为零,则电路有载波分量输出,输出为普通调幅波,即AM波。
实验四1496综合实验2

u U ( 1 m cos t ) cos t AM c a c 1 1 U cos t m cos ( ) t m cos ( ) t c c a c a c 2 2
三、实验应知知识
三. 调制的基本方式
根据载波受调制参量的不同, 调制可分为三种基本方 式, 它们分别是:
振幅调制:由调制信号去控制载波振幅,使已调信号的振幅随
随调制信号线性变化。 。
调制基 本方式
频率调制FM:由调制信号控制载波频率,使已调波的频率随调制
信号线性变化。
相位调制PM:由调制信号控制载波相位,使已调波的相位随调
制信号线变化
三、实验应知知识
四、振幅调制与实现方法
所谓振幅调制, 就是用调制信号uΩ去控制高频载波信号uc的振 幅,使载波信号的振幅按照调制信号uΩ的规律变化。即已调制信号 uAM变化的周期与调制信号uΩ的周期相同,且幅度的变化与调制信 号的振幅成正比.
实验项目一
乘法器实现 振幅调制信号
AM
三、实验应知知识
设:u (载波) u (调制信号) x y U ocs xt 1 U ocs yt x x y y 则输出:
u u 相加器 乘法器 uo kU ocs t .. . KU U cos t cos t x x x y x y
实
验 四
模拟乘法器综合应用实 验——调制与解调
高频电子线路实验
振幅调制信号产生
乘法器实现 AM、DSB
( 4-1)
一、实 验 目 的
模拟调制可分为线性调制和非线性调制,本次实验研究线性调制。 线性调制的任务是把基带信号的频谱搬移到通带频谱上,以适应 (无线)信道的传输要求,或将多路信号合并起来进行多路传输。 通过本实验:
模拟乘法器实验

模拟乘法器的应用——低电平调幅姓名: 学号: 实验台号:一、 实验目的1、掌握集成模拟乘法器的工作原理及其特点2、进一步掌握集成模拟乘法器(MC1596/1496)实现振幅调制、同步检波、混频、倍频的电路调整与测试方法二、实验仪器低频信号发生器 高频信号发生器频率计 稳压电源 万用表 示波器三、实验原理1、MC1496/1596 集成模拟相乘器集成模拟乘法器是继集成运算放大器后最通用的模拟集成电路之一,是一种多用途的线性集成电路。
可用作宽带、抑制载波双边带平衡调制器,不需要耦合变压器或调谐电路,还可作为高性能的SSB 乘法检波器、AM 调制解调器、FM 解调器、混频器、倍频器、鉴相器等,它与放大器相结合还可以完成许多数学运算,如乘法、除法、乘方、开放等。
MC1496的内部电路继引脚排列如图所示MC1496型模拟乘法器只适用于频率较低的场合,一般工作在1MHz 以下的频率。
双差分对模拟乘法器MC1496/1596的差值输出电流为121562()()()22TyTi i i th th V R V υυυ=-≈MC1595是差值输出电流为式中,错误!未找到引用源。
为乘法器的乘法系数。
MC1496/1596使用时,VT1至VT6的基极均需外加偏置电压。
2.乘法器振幅调制原理X通道两输入端8和10脚直流电位均为6V,可作为载波输入通道;Y通道两输入端1和4脚之间有外接调零电路;输出端6和12脚外可接调谐于载频的带通滤波器;2和3脚之间外接Y通道负反馈电阻R8。
若实现普通调幅,可通过调节10kΩ电位器RP1使1脚电位比4脚高错误!未找到引用源。
,调制信号错误!未找到引用源。
与直流电压错误!未找到引用源。
叠加后输入Y通道,调节电位器可改变错误!未找到引用源。
的大小,即改变调制指数Ma ;若实现DSB调制,通过调节10kΩ电位器RP1使1、4脚之间直流等电位,即Y通道输入信号仅为交流调制信号。
为了减小流经电位器的电流,便于调零准确,可加大两个750Ω电阻的阻值,比如各增大10Ω。
通信电子线路实验:实验六 模拟乘法器

5PT3
结论
同步检波器也可用于解调普通的Am波。 与二极管包络检波器比较,同步检波器电路较复杂。当 与已调波的载波不同频不同相,将会产生解调信号失真。
(5) 1°将接于5PT2的示波器探头接于5PT3,调节低频信号 发生器输出,增大ma=100%,记录ma=100%的调幅波 波形与抑制载波波形作比较,指出其区别。
(3)1°观察记录二极管包络检波器的输出波形(7PT) 2°观察记录二极管包络检波器的解调输出波形与已调 波(5PT3)包络的关系。 3°将接5PT3的示波器探头改接5PT2,观察记录包络检 波器的解调输出波形与原调制信号的差异。
7PT3 7PT3
5PT2 5PT3
结论:二极管包络检波器可解调ma<1的普通调幅波
对3°,4°实验结果进行分析 写出结论。
(2) 抑制载波调幅波的解调。
1°同集成模拟乘法器构成的同步解调器进行解调将5K3连通 2-3端,示波器一通道接5PT2,另一通道6PT1,观察,记 录解调输出(6PT1)波形与原解调制信号(5PT2)波形 的异同。将接5PT2的示波器输出探头改接5PT3,观察记 录解调输出波形与已调波包迹的关系。图如下:
3 普通调幅波的产生及其解调
(4)1°将5K3连通2-3端,示波器一通道探头接6PT1另一 通道探头接5PT2,观察记录同步检波器解调输出波 形与原调制信号波形的异同。
2°将接5PT的示波器探头改接5PT3,观察记录同步检 波器解调输出波形与原调制信号包络的关系。
6PT1
6PT1
结论 (下页) 5PT2
VΩ vAM VDSB
1°普通AM波的包络函数 αVΩ(t)VDSB波的 包络函数α∣ VΩ(t)∣
2° VΩ=0 普通AM波的振幅为原载波
模拟乘法器1496实验报告综述

实验课程名称:_高频电子线路五.实验原理与电路设计仿真1、集成模拟乘法器1496的内部结构集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。
在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。
采用集成模拟乘法器实现上述功能比采用分立器件如二极管和三极管要简单的多,而且性能优越。
所以目前在无线通信、广播电视等方面应用较多。
集成模拟乘法器的常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。
下面介绍MC1496集成模拟乘法器。
(1)MC1496的内部结构MC1496 是目前常用的平衡调制/解调器。
它的典型应用包括乘、除、平方、开方、倍频、调制、混频、检波、鉴相、鉴频、动态增益控制等。
MC1496 的和内部电路与外部引脚图如图1(a)(b)所示。
(a)1496内部电路 (b)1496引脚图图1 MC1496的内部电路及引脚图它内部电路含有 8 个有源晶体管,引脚 8 与 10 接输入电压 VX、1与 4接另一输入电压VY,6 与12 接输出电压 VO。
一个理想乘法器的输出为VO=KVXVY,而实际上输出存在着各种误差,其输出的关系为:VO=K(VX +VXOS)(VY+VYOS)+VZOX。
为了得到好的精度,必须消除 VXOS、VYOS与 VZOX三项失调电压。
引脚 2 与 3 之间需外接电阻,对差分放大器 T5与 T6产生交流负反馈,可调节乘法器的信号增益,扩展输入电压的线性动态范围。
各引脚功能如下:1:SIG+ 信号输入正端 2: GADJ 增益调节端3:GADJ 增益调节端 4: SIG- 信号输入负端5:BIAS 偏置端 6: OUT+ 正电流输出端 7: NC 空脚 8: CAR+ 载波信号输入正端9: NC 空脚 10: CAR- 载波信号输入负端11: NC 空脚 12: OUT- 负电流输出端13: NC 空脚 14: V- 负电源(2)Multisim建立MC1496电路模块启动multisim11程序,Ctrl+N新建电路图文件,按照MC1496内部结构图,将元器件放到电子工作平台的电路窗口上,按住鼠标左键拖动,全部选中。
高频实验报告

调幅调制电路实验杰 2012一、实验目的1、掌握集成模拟乘法器MC1496的基本原理,学习英文版的MC1496芯片资料。
2、理解MC1496实现AM波和DSB波的原理。
3、理解电路参数对调幅波形的影响。
4、熟悉已调波和载波及调制信号的关系。
5、练习焊接技术和电路测试水平。
6、练习各种仪器仪表的使用。
二、实验原理1、MC1496芯片内部电路分析2、调制原理三、实验仪器直流稳压电源、高频信号发生器、双踪示波器、万用表四、实验内容及仿真结果1、实验步骤2、在Multisim仿真环境中创建集成模拟乘法器MC1496电路模块生成MC1496子电路代替模块3、MC1496构成的模拟调幅电路的仿真实现 1)MC1496构成的双边带条幅的电路2)有载波振幅调制3)抑制载波振幅调制五、实验总结通过本次实验,首先在课本上学习了理论知识,再在Mutlisim上仿真,最后在自己焊接电路实现振幅调制电路。
其中这个过程遇到了很多问题,学习理论知识时不太清楚DSB的波形,在使用Mutlisim仿真时,学习了自己创建子电路,另外主要就是调节电路参数,特别是调节信号源的参数,先做了很久都没有成功,后来问了同学才好的。
在焊接电路上,也是第一次没有成功,始终是输出调制信号,没有包络出现,自己检查电路也没有出来,最后花了很多时间,还是自己又重新做了一个,一次就成功了,做的频率也基本达到了10MHz,通过调节滑动变阻器可以实现AM波和DSB波,真正的体会到了通过MC1496来实现AM波和DSB 波的原理。
掌握了调制系数m与调制信号幅度和载波的幅度的关系,理解了AM 波和DSB波的区别,就是在过零点时,DSB波有180度的变相。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验课程名称:_高频电子线路五.实验原理与电路设计仿真1、集成模拟乘法器1496的内部结构集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。
在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。
采用集成模拟乘法器实现上述功能比采用分立器件如二极管和三极管要简单的多,而且性能优越。
所以目前在无线通信、广播电视等方面应用较多。
集成模拟乘法器的常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。
下面介绍MC1496集成模拟乘法器。
(1)MC1496的内部结构MC1496 是目前常用的平衡调制/解调器。
它的典型应用包括乘、除、平方、开方、倍频、调制、混频、检波、鉴相、鉴频、动态增益控制等。
MC1496 的和内部电路与外部引脚图如图1(a)(b)所示。
(a)1496内部电路 (b)1496引脚图图1 MC1496的内部电路及引脚图它内部电路含有 8 个有源晶体管,引脚 8 与 10 接输入电压 VX、1与 4接另一输入电压VY,6 与12 接输出电压 VO。
一个理想乘法器的输出为VO=KVXVY,而实际上输出存在着各种误差,其输出的关系为:VO=K(VX +VXOS)(VY+VYOS)+VZOX。
为了得到好的精度,必须消除 VXOS、VYOS与 VZOX三项失调电压。
引脚 2 与 3 之间需外接电阻,对差分放大器 T5与 T6产生交流负反馈,可调节乘法器的信号增益,扩展输入电压的线性动态范围。
各引脚功能如下:1:SIG+ 信号输入正端 2: GADJ 增益调节端3:GADJ 增益调节端 4: SIG- 信号输入负端5:BIAS 偏置端 6: OUT+ 正电流输出端 7: NC 空脚 8: CAR+ 载波信号输入正端9: NC 空脚 10: CAR- 载波信号输入负端11: NC 空脚 12: OUT- 负电流输出端13: NC 空脚 14: V- 负电源(2)Multisim建立MC1496电路模块启动multisim11程序,Ctrl+N新建电路图文件,按照MC1496内部结构图,将元器件放到电子工作平台的电路窗口上,按住鼠标左键拖动,全部选中。
被选择的电路部分由周围的方框标示,表示完成子电路的选择。
为了能对子电路进行外部连接,需要对子电路添加输入/输出。
单击Place / HB/SB Connecter 命令或使用Ctrl+I 快捷操作,屏幕上出现输入/输出符号,将其与子电路的输入/输出信号端进行连接。
带有输入/输出符号的子电路才能与外电路连接。
单击Place/Replace by Subcircuit命令,屏幕上出现Subcircuit Name对话框,在对话框中输入MC1496,单击OK,完成子电路的创建选择电路复制到用户器件库,同时给出子电路图标。
双击子电路模块,在出现的对话框中单击Edit Subcircuit 命令,屏幕显示子电路的电路图,可直接修改该电路图。
MC1496内部结构multisim电路图和电路模块如图2所示。
图2 MC1496的内部电路及电路模块引脚图2、AM与DSB电路的设计与仿真调幅就是用低频调制信号去控制高频振荡(载波)的幅度,使高频振荡的振幅按调制信号的规律变化。
把调制信号和载波同时加到一个非线性元件上(例如晶体二极管或晶体三体管),经过非线性变换电路,就可以产生新的频率成分,再利用一定带宽的谐振回路选出所需的频率成分就可实现调幅。
幅度调制信号按其不同频谱结构分为普通调幅(AM)信号,抑制载波的双边带(DSB)信号,抑制载波和一个边带的单边带(SSB)信号。
利用模拟乘法器相乘原理实现调幅是很方便的,工作原理如下:在乘法器的一个输入端输入载波信号另一输入端输入调制信号,则经乘法器相乘,可得输出抑制载波的双边带调幅信号的表达为:若要输出普通调幅信号,只要调节外部电路的平衡电位器,使输出信号中有载波即可。
输出信号表达式为:普通振幅调制电路的原理框图与抑制载波双边带振幅调制电路的原理框图如图3所示图3① AM 与DSB 电路的设计查集成模拟乘法器MC1496 应用资料(附录1),得典型应用电路如图4所示。
图4 1496构成的振幅调制电路电原理图图中载波信号经高频耦合电容C1输入到Uc ⑩端,C3为高频旁路电容,使⑧交流接地。
调制信号经高频耦合电容C2输入到U Ω④端,C5为高频旁路电容,使①交流接地。
调制信号U AM 从⑿脚单端输出。
电路采用双电源供电,所以⑤脚接Rb 到地。
因此,改变R 5也可以调节I 0的大小,即:则:当VEE=-8V ,I 5=1mA 时,可算得:(MC1496器件的静态电流一般取I 0=I 5=1mA 左右)R 5={(8-0.75)/(1X10-3)}-500=6.75K Ω 取标称电阻,则R5=6.8K ΩMC1496的②③脚外接电阻RB ,对差分放大器T5、T6产生电流负回授,可调节乘法器的增益,扩展输入信号U Ω动态范围。
因为:U Ω≤I 5RB式中 I 5为5脚的电流,当选I 5=1mA ,Uy=1V(峰值)时,由上式可确定RB :RB ≥U Ω/I5=1/1X10-3=1K Ω负载电阻RC 的选择由于共模静态输出电压为:U 6=U 12=V CC -I 5R L式中U 6、U 12是6脚与12脚的静态电压。
当选U 6=U 12=8V ,V CC =12V ,I 5=1mA 时,R L =(V CC -U 6)/I 5=(12-8)/(1X10-3)=4K Ω,取标称电阻RL=3.9K Ω。
电阻R1、R2、R3与RC1、RC2提供芯片内晶体管的静态偏置电压,保证各管工作在放大状态。
阻值的选取应满足如下关系:12641108,,v v v v v v ===V v v V 2)(1586≥-≥, Vv v V 7.2)(1518≥-≥, V v v V 7.2)(1551≥-≥所以取:R1=R2=1K Ω R3=51Ω R4=R5=750Ω,R6=R7=1K Ω,WR1=10 K Ω电阻R4、R5、WR1、R6和R7用于将直流负电源电压分压后供给MC1496的1、4脚内部的差分对三极管基极偏置电压。
通过调节RP ,可使MC1496的1、4端的直流电位差为零,即U Ω输入端只有调制信号输入而没有直流分量,则调幅电路的输出为抑制载波的双边带调幅波;若调节RP ,使MC1496的1、4端的直流电位差不为零,则电路有载波分量输出,为普通调幅波。
耦合电容与高频电容的选择Ω+--=≈5007.0550R V u I I EE Ω--=5007.055I V R EE电容C1与C2应选择得使其电抗在载波频率上低于5Ω,即:1/ωC1=1/ωC2≤5Ω所以取C1=C3=0.1uf,C2=C5=4.7uf,由此得到实际的模拟乘法器1496构成的振幅调制电路与测量系统电原理图,如图5。
图5 1496构成的振幅调制电路电原理图②AM与DSB电路的仿真1) 全载波振幅调制(AM)(1)按设计电路设置元件参数并用Multisim完成电路连接。
(2)当电路平衡时,即UΩ=0,Uo=0 , 模拟乘法器1496的静态特性数据如表1。
引脚⑧⑩①④⑥12 ②③⑤14电压 5.9v 5.9v-67.6mv-9.1mv9.72v9.7v-623.2mv-672.7mv-7.1v-8v(3) 调R15(99%),使模拟乘法器①④脚间电压为+200mV,即电路不平衡。
按设计要求加入信号,载波信号UX:f=500KHZ /60mV 调制信号Uy:f=2KHz/150mV,此时实现AM调制。
信号时域波形和频域图形如图6-1、6-2所示。
此条件时,图6-1 图6-2=⨯+-=%100BABAma图6-3图6-4如图6.3、6.4所示,使用Tektronix 示波器来测A 和B 的值(调用光标可很方便地测得)。
由图6-3知A=584mv , 由图6-4知,B=236mv,则:m a =(584-236)/(584+236)*100%=42.4%(4)调R14使AM 信号过调制,即使M >100%。
当M >100%时,过零点为一条直线。
实验测得信号波形如图7所示。
=⨯+-=%100BA BA m a图721) 抑制载波振幅调制(DSB)(1) 令UΩ=0,调R14,使模拟乘法器①④脚间电压为0V,即电路平衡。
按设计要求加入信号,载波信号UX:f=500KHZ /50mV 调制信号Uy:f=2KHz/200mV,此时实现DSB调制。
信号的时域和频域波形如图8所示。
图8实验测得DSB过零点信号波形如图9所示。
为M曲线。
实验测得DSB过零点信号波形如图9所示。
为M曲线。
图9(2)同步检波器电路设计与仿真①同步检波器电路设计振幅调制信号的解调过程称为检波。
常用方法有包络检波和同步检波两种。
由于普通调幅波(AM)信号的包络直接反映了调制信号的变化规律,可以用二极管包络检波的方法进行解调。
而双边带或单边带振幅调制信号的包络不能直接反映调制信号的变化规律,所以无法用包络检波进行解调,必须采用同步检波方法。
MC1496模拟乘法器构成的同步检波解调器电路原理框图10所示。
其中y端输入同步载波信号U C,x端输入已调波信号U S。
解调器输出信号经低通后输出解调信号。
其1496构成的同步检波电路与外接元件参数与AM调制电路无异,仅需接一低通滤波器实际设计电路如图11所示;图10低通滤波器设计计算(略)图 11②同步检波器电路仿真1、按设计电路设置元件参数并用EWB完成电路连接。
2、调RW1使电路平衡时,即Uc=UΩ=0,Uo=03、按设计要求加入信号,(载波信号UX:f=500KHZ /50mV 调制信号Uy:f=2KHz/200mV),a.按已知条件产生DSB信号b. 按同步检波工作原理加入信号,得实验数据如图12所示。
如图12,从上至下,依次为调制信号、DSB信号、解调输出信号。
图12(3)混频器电路设计与仿真混频电路的作用是在本地振荡电压的作用下,将载频为fc 的高频已调信号不失真地变换为载频为f 的中频已调信号。
由于乘法器可以产生只包含两个输入信号之和频及差频分量的输出信号,所以用模拟乘法器和带通滤波器可以方便地实现混频功能。
其原理框图如图13所示:①混频器电路设计由1496模拟乘法器构成混频电路和外接元件参数与AM 调制电路无异,仅输出端需接465KHZ 谐振回路,其设计的电路如图14所示。
但必须保证模拟乘法器工作在平衡状态。
xU yU 用模拟乘法器实现混频,就是在 端和 相差一中频,再经过带通滤波器取出中频信号。
端分别加上两个不同频率的信号,两信号图14465KHZ 谐振回路的设计与原件参数计算:(略)②混频器电路仿真1、按设计电路设置元件参数并完成电路连接。