模拟乘法器调幅AM、DSB、SSB实验报告
广工实验四模拟乘法器DSB信号产生与调制电路仿真实验实验报告

实验4 模拟乘法器DSB信号产生与调制电路仿真实验
一、实验目的
1.了解DSB信号的产生原理。
2.了解同步检波电路的工作原理。
3.熟悉DSB信号解调电路的测试方法。
二、实验内容及要求
1.创建仿真电路
图1
2.DSB信号及解调信号观测
图2 调制与解调波形图3 DSB波形的特点观测
三、仿真小结
1.分析DSB波形特点:单频调制的双边带调幅信号中只含有上边频和下边频,而无载频分量,双边带调幅波的包络不再反映原调制信号的形状,当调制信号进入负半周时,DSB 波形就变为反相,表明载波电压产生了180度相移。
2.改变调制信号CH1幅度,DSB信号(CH2)和解调信号(CH3)波形:
图4 CH1调制前(1.0V)
图5 CH1改为0.5V
图6 CH1改为1.5V
由图知,DSB关系与解调信号关系:V1*V3=CH2。
模拟乘法器调幅(AM、DSB、SSB)实验报告

实验十二模拟乘法器调幅(AM、DSB、SSB)一、实验目的1.掌握用集成模拟乘法器实现全载波调幅。
抑止载波双边带调幅和单边带调幅的方法。
2.研究已调波与调制信号以及载波信号的关系。
3.掌握调幅系数的测量与计算方法。
4.通过实验对比全载波调幅、抑止载波双边带调幅和单边带调幅的波形。
5.了解模拟乘法器(MC1496)的工作原理,掌握调整与测量其特性参数的方法。
二、实验内容1.调测模拟乘法器MC1496正常工作时的静态值。
2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。
3.实现抑止载波的双边带调幅波。
4.实现单边带调幅。
三、实验原理幅度调制就是载波的振幅(包络)随调制信号的参数变化而变化。
本实验中载波是由晶体振荡产生的465KHz高频信号,1KHz的低频信号为调制信号。
振幅调制器即为产生调幅信号的装置。
1.集成模拟乘法器的内部结构集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。
在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。
采用集成模拟乘法器实现上述功能比采用分离器件如二极管和三极管要简单得多,而且性能优越。
所以目前无线通信、广播电视等方面应用较多。
集成模拟乘法器常见产品有BG314、F1596、MC1495、MC1496、LM1595、LM1596等。
(1)MC1496的内部结构在本实验中采用集成模拟乘法器MC1496来完成调幅作用。
MC1496是四象限模拟乘法器。
其内部电路图和引脚图如图12-1所示。
其中V1、V2与V3、V4组成双差分放大器,以反极性方式相连接,而且两组差分对的恒流源V5与V6又组成一对差分电路,因此恒流源的控制电压可图12-1 MC1496的内部电路及引脚图正可负,以此实现了四象限工作。
V7、V8为差分放大器V5与V6的恒流源。
(2)静态工作点的设定1)静态偏置电压的设置静态偏置电压的设置应保证各个晶体管工作在放大状态,即晶体管的集-基极间的电压应大于或等于2V ,小于或等于最大允许工作电压。
通信原理实验报告 AM DSB SSB(稻谷书屋)

通信原理实验报告题目名称:模拟调制解调实验专业班级:2010级2班学生姓名:刘云龙学生学号:20105081403.1.1 振幅调制(AM)一.实验原理1. 调制部分标准调幅的调制器可用一个乘法器来实现。
2. 解调部分:解调有相干和非相干两种。
非相干系统设备简单,但在信噪比较小时,相干系统的性能优于非相干系统。
这里采用相干解调。
二.实验步骤1.根据AM 调制与解调原理,用Systemview 软件建立一个仿真电路,如下图所示:2. 元件参数配置Token 0: 被调信息信号—正弦波发生器(频率=1000 Hz)Token 1,8: 乘法器Token 2: 增益放大器(增益满足不发生过调制的条件)Token 4: 加法器Token 3,10: 载波—正弦波发生器(频率=50 Hz)Token 9: 模拟低通滤波器(截止频率=75 Hz)Token 5,6,7,11: 观察点—分析窗3. 运行时间设置运行时间=0.5 秒采样频率=20,000 赫兹4. 运行系统在Systemview 系统窗内运行该系统后,转到分析窗观察Token5,6,7,11 四个点的波形。
5. 功率谱在分析窗绘出该系统调制后的功率谱。
三.实验报告1. 观察实验波形:被调信息信号波形载波波形已调波形解调波形整体波形2. AM 的功率谱。
(1)被调信息信号波形(2)载波波形的功率谱(3)已调波形的功率谱(4)解调波形的功率谱3.1.2 双边带调制(DSB)一.实验原理实现双边带调制就是完成调制信号与载波信号的相乘运算。
原则上,可以选用任何非线性器件或时变参量电路来实现乘法器的功能,如平衡调制器或环形调制器。
通常采用的平衡调制器的电路简单、平衡性好,并可将载波分量抑制到- 30~-40dB。
双边带调制节省了载波功率,提高了调制效率,但已调信号的带宽仍与调制信号一样,是基带信号带宽的两倍。
由于双边带信号的频谱是基带信号频谱的线性搬移,所以属于线性调制。
模拟乘法器综合应用实验-调制与解调

3.熟悉并掌握MC1496 乘法器的基本应用。
二、实 验 内 容
1.AM调制信号的产生与测量。 2.AM调制信号的调幅系数测量。 3.DSB调制信号的产生与测量。 4.AM调制与DSB调制信号的频域测量。 5.振副调制的(EWB)仿真实验。
三、实验应知知识
锯齿波
已调信号UAm:经过调制后的高频信号(射频信号)
u AM U c(1 m aco t)s cocts U ccocts 1 2 m acoc s ()t 1 2 m acoc s ()t
三、实验应知知识
六. 调制的基本方式
根据载波受调制参量的不同, 调制可分为三种基本方 式, 它们分别是:
连续波调制,特点:c(t)连续,如(t)=cosωct;
脉冲调制,特点:c(t)为脉冲,如周期矩形脉冲序列。
幅度调制,特点:用: m(t)改变c(t)的幅度,如AM, DSB,SSB,VSB。 频率调制,特点:用: m(t)改变c(t)的频率,如FM。
相位调制,特点:用: m(t)改变c(t)的相位,如PM。
振幅调制AM (调幅)
调制基本方式
频率调制FM (调频)
相位调制PM (调相)
三、实验应知知识
七、振幅调制与实现方法
所谓振幅调制(AM), 就是用调制信号uΩ去控制高频载波信号uc 的振幅,使载波信号的振幅按照调制信号uΩ的规律变化。即已调制 信号uAM变化的周期与调制信号uΩ的周期相同,且幅度的变化与调 制信号的振幅成正比.
模拟乘法器综合应用实验-调制与解 调
一、实 验 目 的
模拟调制可分为线性调制和非线性调制,本次实验研究线性调制。 线性调制的任务是把基带信号的频谱搬移到通带频谱上,以适应 (无线)信道的传输要求,或将多路信号合并起来进行多路传输。 通过本实验:
电子电路实验报告

电子电路实验报告学校:专业:学号:XX:教师:实验模拟乘法器调幅〔AM、DSB、SSB〕一、实验目的1、掌握AM、DSB和SSB调制的原理与性质;2、掌握模拟乘法器的工作原理及其调整方法。
二、实验内容1、产生并观察AM、DSB、SSB的波形;2、观察AM、DSB、SSB波的频谱〔选做〕;3、观察DSB波和过调幅时的反相现象。
三、实验仪器1、20MHz模拟示波器一台2、调试工具一套3、BT-3扫频仪〔选做〕一台4、数字式万用表一块四、实验原理实验原理图如图13-1所示。
图13-1 模拟乘法器调幅实验原理图调制信号从TP2输入,载波从TP1输入。
合理设置调制信号与载波信号的幅度以及乘法器的静态偏置电压〔调节W1〕,可在TP3处观察普通调幅波〔AM〕和抑制载波双边带调幅波〔DSB〕。
FL1为10.7MHz的陶瓷滤波器,它的作用是对TP3处调幅波进展滤波,得到抑制载波单边带调幅波〔SSB〕。
为兼容检波电路的滤波网络,在进展调制与检波实验时,调制信号的频率选择为1KHz 左右,载波信号的频率选择为10.7MHz。
为了便于观察各种调幅波的频谱和DSB波的相位突变现象,调制信号的频率选择为500KHz,载波信号的频率选择为11.2MHz。
本实验所产生的普通调幅波和抑制载波双边带调幅波,是实验十五同步检波和实验十六小信号检波的输入信号。
五、实验步骤1、连接实验电路在主板上正确插好幅度调制与解调模块,开关K1、K2、K8、K9、K10、K11向左拨,主板GND接模块GND,主板+12V接模块+12V,主板-12V接模块-12V,检查连线正确无误后,翻开实验箱右侧的船形开关,K1、K2向右拨。
假设正确连接,那么模块上的电源指示灯LED1、LED2亮。
2、产生并观察AM波和DSB波〔1〕输入调制信号VΩ本步骤的调制信号可由正弦波振荡器模块的RC振荡器提供,也可由低频信号源提供。
①假设调制信号由正弦波振荡器模块的RC振荡器提供参考实验十,用RC振荡器产生1.2KHz左右的正弦波调制信号VΩ,调节正弦波振荡器模块的W3,使VΩ的峰峰值VΩp-p约为700mV。
实验三 模拟乘法器应用实验报告

实验题目:乘法器调幅(AM、DSB、SSB)、同步检波、混频及倍频实验原理:2TP3(2P3、2Q3)—载波(本振)信号输入端;2Q4—调制信号(或高频已调信号)输入端;2TP4—调制信号(或高频已调信号)输入端测试点;2TP5(2P5)—乘法器同相输出端;2TP5A—乘法器反相输出端;2TP6(2Q6)—2.5MHz带通滤波器输出;2W11—调制信号(或高频已调信号)输入端幅度调节;2W1—乘法器1、4输入端平衡调节;2W2—增益调节。
图3.1 乘法器调幅、混频实验电路图2TP9(2P9)—载波(本振)信号输入端;2TP10(2P10)—高频已调信号输入端;2TP11(2P11)—同步检波输出端;2W5—1、4输入端平衡调节。
图3.2 乘法器同步检波器电路图2TP7(2P7)—信号输入端;2TP8(2P8)—信号输出端;2W3—调节中心频率;2W4—调节输出幅度。
实验内容及步骤:一. 普通波调幅(AM )1. 电路连接《调幅与调频接收模块》接±12V 电源电压;打开“乘法器调幅 混频”电路的电源开关(电源指示灯点亮);2TP3接载波信号C u (20KHz ,100mV PP );2TP4接调制信号u Ω(1kHz 、300mVpp );用示波器同时观测C u 、u Ω和同相输出端(2TP5)。
注:C u 由示波器(Wave Gen )提供;u Ω由信号源(F20A A 路)提供,并以u Ω所接示波器通道做触发源。
2. 电路调整调节2W11,使2TP4端幅度最大;调节示波器使波形清晰稳定;调节2W1,使2TP5输出信号为AM 已调波AM u (如图3.4);调节2W2,使AM u 的波峰、波谷无压缩失真(2W1、2W2往往配合调节)。
3. 时域测量记录或存储C u 、u Ω和AM u 的时域波形,按图3.4计算调制度m :图3.4 AM 波时域波形%100⨯+-=BA BA m4.频域测量①频谱仪射频输入(RF IN)接反相输出端2TP5A。
模拟线性调制系统实验报告

模拟线性调制系统实验报告实验项目名称:模拟线性调制系统实验一、实验目的1. 研究模拟连续信号在(AM、DSB、SSB、VSB、QAM)几种线性调制中的信号波形与频谱,了解调制信号是如何搬移到载波附近。
2. 加深对模拟线性调制(AM、DSB、SSB、VSB、QAM)的工作原理的理解。
3. 了解产生调幅波(AM)和抑制载波双边带波(DSB—SC)的调制方式,以及两种波之间的关系。
4. 了解用滤波法产生单边带SSB—SC的信号的方式和上下边带信号的不同。
5. 研究在相干解调中存在同步误差(频率误差、相位误差)对解调信号的影响从而了解使用同频同相的相干载波在相干解调中的重要性。
6. 熟悉正交调幅QAM传输系统的原理及作用。
二、实验内容1常规调幅(AM)Amplitude modulation and demodulation(AM)[sim]2抑制载波双边带(DSB—SC)调制与解调DSB—SC modulation and demodulation [sim]3抑制载波单边带(SSB—SC)调制与解调SSB modulation and demodulation [sim]4残留边带(VSB)调制与解调5正交幅度调制(QAM)与解调Quadure amplitude modulation and demodulation IQ三、实验设施本实验系统是采用Analog Signal System应用最广泛的PC机和Windows操作系统作为软硬件平台,使用MATLAB软件的SIMULINK的集成开发工具实现对AM、DSB、SSB、VSB及QAM系统的调制与解调的仿真。
每个子系统都是由各个模块组成,实验时,可以在系统上进行参数的设置与更改。
可对上述调制与解调各种参数进行更为深入的研究。
四、实验原理模拟带通传输系统,是将基带信号经过线性调制后形成的已调波送入信道传输,在接收端经过反调制,再从已调波中将基带信号恢复出来。
实验一乘法器调幅实验

实验一乘法器调幅实验一、实验目的1、掌握AM、DSB和SSB调制的原理与性质;2、掌握模拟乘法器的工作原理及其调整方法;3、了解小信号检波的原理;4、熟悉用二极管实现检波的方法。
二、实验内容1、产生并观察AM、DSB的波形;2、观察AM、DSB、SSB波的频谱;3、观察DSB波和过调幅时的反相现象;4、用二极管小信号检波器对调幅波进行检波。
三、实验仪器1、20MHz模拟示波器2、调试工具四、实验原理模拟乘法器调幅实验原理图如图1所示。
图1 模拟乘法器调幅实验原理图调制信号从TP2输入,载波从TP1输入。
合理设置调制信号与载波信号的幅度以及乘法器的静态偏置电压(调节W1),可在TT1处观察普通调幅波(AM)和抑制载波双边带调幅波(DSB)。
FL1为10.7MHz的陶瓷滤波器,它的作用是对TT1处调幅波进行滤波,得到抑制载波单边带调幅波(SSB)。
为兼容检波电路的滤波网络,在进行调制与检波实验时,调制信号的频率选择为1KHz左右,载波信号的频率选择为10.7MHz。
为了便于观察各种调幅波的频谱和DSB波的相位突变现象,调制信号的频率选择为500KHz,载波信号的频率选择为11.2MHz。
模拟乘法器调幅部分所产生的普通调幅波和抑制载波双边带调幅波,是小信号检波的输入信号。
五、实验步骤1、连接实验电路在主板上正确插好幅度调制与解调模块,开关K1、K2、K8、K9、K10、K11向左拨,主板GND接模块GND,主板+12V接模块+12V,主板-12V接模块-12V,检查连线正确无误后,打开实验箱右侧的船形开关,K1、K2向右拨。
若正确连接,则模块上的电源指示灯LED1、LED2亮。
2、产生并观察AM波和DSB波(1)输入调制信号VΩ本步骤的调制信号可由由低频信号源模块提供。
参考低频信号源的使用方法,用低频信号源产生频率为1KHz,峰峰值约700mV的正弦波调制信号VΩ。
连接信号源的Vout与幅度调制与解调模块的TP2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模拟乘法器调幅(AM、DSB、SSB)实验报告
————————————————————————————————作者:————————————————————————————————日期:
实验十二模拟乘法器调幅(AM、DSB、SSB)
一、实验目的
1.掌握用集成模拟乘法器实现全载波调幅。
抑止载波双边带调幅和单边带调幅的方法。
2.研究已调波与调制信号以及载波信号的关系。
3.掌握调幅系数的测量与计算方法。
4.通过实验对比全载波调幅、抑止载波双边带调幅和单边带调幅的波形。
5.了解模拟乘法器(MC1496)的工作原理,掌握调整与测量其特性参数的方法。
二、实验内容
1.调测模拟乘法器MC1496正常工作时的静态值。
2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。
3.实现抑止载波的双边带调幅波。
4.实现单边带调幅。
三、实验原理
幅度调制就是载波的振幅(包络)随调制信号的参数变化而变化。
本实验中载波是由晶体振荡产生的465KHz高频信号,1KHz的低频信号为调制信号。
振幅调制器即为产生调幅信号的装置。
1.集成模拟乘法器的内部结构
集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。
在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。
采用集成模拟乘法器实现上述功能比采用分离器件如二极管和三极管要简单得多,而且性能优越。
所以目前无线通信、广播电视等方面应用较多。
集成模拟乘法器常见产品有BG314、F1596、MC1495、MC1496、LM1595、LM1596等。
(1)MC1496的内部结构
在本实验中采用集成模拟乘法器MC1496来完成调幅作用。
MC1496是四象限模拟乘法器。
其内部电路图和引脚图如图12-1所示。
其中V1、V2与V3、V4组成双差分放大器,以反极性方
式相连接,而且两组差分对的恒流源V5与V6又组成一对差分电路,因此恒流源的控制电压可
图12-1 MC1496的内部电路及引脚图
正可负,以此实现了四象限工作。
V7、V8为差分放大器V5与V6的恒流源。
(2)静态工作点的设定
1)静态偏置电压的设置
静态偏置电压的设置应保证各个晶体管工作在放大状态,即晶体管的集-基极间的电压应大于或等于
2V ,小于或等于最大允许工作电压。
根据MC 1496的特性参数,对于图11-1所示的内部电路,应用时,静态偏置电压(输入电压为0时)应满足下列关系,即 V v v v V V
v v v v V V v v v v V v v v v v v 2)(152)()(152)()(15,,5414110810812612641108≥-≥≥-≥≥-≥===
2)静态偏置电流的确定 静态偏置电流主要由恒流源0I 的值来确定。
当器件为单电源工作时,引脚14接地,5脚通过一电阻R V 接正电源+VCC 由于0I 是5I
的镜像电流,所以改变R V 可以调节0I 的大小,即 5007.050+-=≈R CC V V V I I 当器件为双电源工作时,引脚14接负电源ee V -,5脚通过一电阻R V 接地,所以改变R V 可 以调节0I 的大小,即 根据MC1496的性能参数,器件的静态电流应小于4mA ,一般取mA I I 150=≈。
在本实验电路中R V 用6.8K的电阻15R 代替。
2.实验电路说明
用MC1496集成电路构成的调幅器电路图如图12-4所示。
图中W1用来调节引出脚1、4之间的平衡,器件采用双电源方式供电(+12V,-8V ),所以5脚偏置电阻15R 接地。
电阻1R 、2R 、4R 、5R 、6R 为器件提供静态偏置电压,保证器件内部的各个晶体管工作在放大状态。
载波信号加在1V -4
V 的输入端,即引脚8、10之间;载波信号C V 经高频耦合电容1C 从10脚输入,2
C 为高频旁路电容,使8脚交流接地。
调制信号加在差动放大器5V 、6V 的输入端,
即引脚1、4之间,调制信号ΩV 经低频耦合电容1E 从1脚输入。
2、3脚外接1K Ω电阻,以扩大调制信号动态范围。
当电阻增大,线性范围增大,但乘法器的增益随之减小。
已调制信号取自双差动放大器的两集电极(即引出脚6、12之间)输出。
四、实验步骤 1.静态工作点调测:使调制信号0=ΩV ,载波0=C V ,11R 、12R 、13R 、14R 与电位器1W 组成平衡调节电路,改变1W 可以使乘法器实现抑止载波的振幅调制或有载波的振幅调制和单边带调幅波。
只需要调节1W 使1、4脚的电压差接近0V 即可,方法是用万用表表笔分别接1、4脚,使得万用表读数接近于0V 。
2.抑止载波振幅调制:J1端输入载波信号)(t Vc ,其频率KHz fc 465=,峰-
峰值mV V P CP 500=-。
J 5端输入调制信号ΩV (t),其频率KHz f 1=Ω,先使峰-峰值0=-ΩP P V ,调节1W ,使输出0=O V (此时V1=V4),再逐渐增加P P V -Ω≤ ,则输出信号)(0t V 的幅度逐渐增大,最后出现如图11-3所示的抑止载波的调幅信号。
由于器件内部参数不可能完全对称,致使输出出现漏信号。
脚1和4分别接
5007.050+-=≈R ce V V V I I mV 60
电阻12R 和14R ,可以较好地抑止载波漏信号和改善温度性能。
图12-2 抑制载波调幅波形 3.全载波振幅调制1,min max min max J V V V V m m m m m +-=端输入载波信号)(t Vc ,KHz fc 465=,
mV V P CP 500=-,调节平衡电位器W1,使输出信号)(0t V 有载波输出(此时V1与V4不相等)。
再从J5端输入调制信号,其KHz f 1=Ω,当P P V -Ω由零逐渐增大时,则输出信号V)(0t 的幅度发生变化,最后出现如图13-4所示的有载波调幅信号的波形,记下AM 波对应m ax m V 和m in m V ,并计算调幅度m 。
图12-3 普通调幅波波形
4.观察S SB,步骤同3,从J6处观察输出波形。
5.加大ΩV ,观察波形变化,比较全载波调幅、抑止载波双边带调幅和单边带调幅的波形。
五、实验结果
1.静态工作点调测:1、4脚的电压差接近0V
2.抑止载波振幅调制:
过调幅:
3.全载波振幅调制:
V mmax=192mV,V mmin=160mV
4.观察SSB:
六、实验总结
1、通过这次实验,掌握了用集成模拟乘法器实现全载波调幅、抑制载波双边及单边带调幅的方法。
2、通过研究已调波与调制信号以及载波信号的关系,掌握了调幅系数的测量与计算方法。
3、通过实验对比全载波调幅、抑制载波双边及单边带调幅的波形,了解了模拟乘法器的工作原理,掌握了调整与测量其特性参数的方法。