最新-江西省高安四中八年级数学第一次月考试题 人教新课标版 精品
人教版八年级(下)学期 第一次月考数学试题及答案

人教版八年级(下)学期 第一次月考数学试题及答案一、选择题1.当0x =的值是( )A .4B .2 CD .0 2.下列各式是二次根式的是( )A B C D3.估计( ( ) A .4和5之间B .5和6之间C .6和7之间D .7和8之间4.m 能取的最小整数值是( )A .m = 0B .m = 1C .m = 2D .m = 35.x 的取值范围是( )A .x≥2020B .x≤2020C .x> 2020D .x< 20206.下列二次根式是最简二次根式的是( )A B C D7.若2019202120192020a =⨯-⨯,b =,c a ,b ,c 的大小关系是( )A .a b c <<B .a c b <<C .b a c <<D .b c a << 8.下列运算正确的是( )A .32-=﹣6B 12-C =±2D .=9.2= )A .3B .4C .5D .610.下列计算或判断:(1)±3是27的立方根;(2;(32;(4;(5) A .1个 B .2个 C .3个 D .4个11.a =-成立,那么a 的取值范围是( )A .0a ≤B .0a ≥C .0a <D .0a >12.在实数范围内有意义,则x 的取值范围是( )A .x >0B .x >3C .x ≥3D .x ≤3二、填空题13.2==________.14.若6x ,小数部分为y ,则(2x y 的值是___.15.计算:2015·2016=________.16.已知x ,y 为实数,y =13x -求5x +6y 的值________.17.,3,,,则第100个数是_______.18.a ,小数部分是b b -=______.19.3y =,则2xy 的值为__________.20.观察分析下列数据:0,,-3,的规律得到第10个数据应是__________.三、解答题21.计算 (1)2213113a a a a a a +--+-+-;(2)已知a 、b +b =0.求a 、b 的值(3)已知abc =1,求111a b c ab a bc b ac c ++++++++的值【答案】(1)22223a a a ----;(2)a =-3,b ;(3)1. 【分析】(1)先将式子进行变形得到()()113113a a a a a a +--+-+-,此时可以将其化简为1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭,然后根据异分母的加减法法则进行化简即可;(2)根据二次根式及绝对值的非负性得到2a +6=0,b =0,从而可求出a 、b ; (3)根据abc =1先将所求代数式转化:11b ab ab bc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,然后再进行分式的加减计算即可. 【详解】解:(1)原式=()()113113a a a a a a +--+-+- =1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭ =1113a a --+-=()()()()3113a a a a -++-+- =22223a a a ----;(20b =,∴2a +6=0,b =0,∴a =-3,b ;(3)∵abc =1, ∴11b ab ab bc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++, ∴原式=1111a ab ab a ab a ab a ++++++++ =11a ab ab a ++++ =1.【点睛】本题考查了分式的化简求值和二次根式、绝对值的非负性,分式中一些特殊求值题并非一味的化简,代入,求值,熟练掌握转化、整体思想等解题技巧是解答这类题目的关键.22.计算:10099+【答案】910【解析】 【分析】 先对代数式的每一部分分母有理化,然后再进行运算【详解】10099++=2100992-++++=991224-+-++-=1-=1110-=9 10【点睛】本题看似计算繁杂,但只要找到分母有理化这个突破口,就会化难为易。
江西省宜春市高安市第二中学、第四中学2023-2024学年八年级上学期月考数学试题

江西省宜春市高安市第二中学、第四中学2023-2024学年八年级上学期月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,四个图标分别是剑桥大学、北京大学、浙江大学和北京理工大学的校徽的重要组成部分,其中是轴对称图形的是()A .B .C .D .2.已知下列各组数据,能构成等腰三角形三边边长的是()A .2,2,1B .1,2,1C .1,3,1D .2,2,53.下列计算正确的是()A .32a a a-=B .236a a a ⋅=C .33(3)9a a =D .()224a a =4.图,点C 在AOB ∠的边OB 上,尺规作图痕迹显示的是()A .作线段CE 的垂直平分线B .作AOB ∠的平分线C .连接EN ,则CEN 是等边三角形D .作CN //OA5.如图,小明从A 点出发,沿直线前进16米后向左转45°,又向左转45°,…,照这样走下去,共走路程为()A .96米B .128米C .160米D .192米6.如图,D 为△ABC 内一点,CD 平分∠ACB ,BD ⊥CD ,∠A =∠ABD ,若AC =5,BC =3,则BD 的长为()A .1B .1.5C .2D .2.5二、填空题三、计算题四、证明题14.如图,已知ABC DEF ≌△△,点B 、E 、C 、F 在同一直线上,85A ∠=︒,=60B ∠︒,8AB=,2EH=.(1)求F∠的度数与DH的长;∥.(2)求证:AB DE五、问答题15.如图,在△ABC中,∠ABC=40°,∠ACB=80°,AD是BC边上的高,AE平分∠BAC.(1)求∠BAE的度数;(2)求∠DAE的度数.六、计算题七、证明题17.如图,在△ABC中,AB=AC,CD是∠ACB的平分线,DE∥BC,交AC于点E.(1)求证:DE=CE.(2)若∠CDE=25°,求∠A的度数.八、作图题18.如图,方格纸中每个小方格都是边长为1个单位的正方形,已知ABC 的三个顶点在格点上.(1)画出111A B C △,使它与ABC 关于直线a 对称;(2)求出111A B C △的面积;(3)在直线a 上画出点P ,使PA PC +最小九、证明题19.如图,已知△ABD 和△AEC 中,AD =AB ,AE =AC ,∠DAB =∠EAC =60°,CD 、BE 相交于点P .(1)用全等三角形判定方法证明:BE =DC ;(2)求∠BPC 的度数;20.如图,在ABC 中,90ACB ,CE AB ∠=︒⊥于点E ,AD AC,AF =平分CAB ∠交CE 于点F .DF 的延长线交AC 于点G .(1)若40B ∠=︒,求ADF ∠的度数;(2)求证:FG FE =.21.如图所示,点M 是线段AB 上一点,ED 是过点M 的一条直线,连接AE 、BD ,过点B 作BF //AE 交ED 于F ,且EM =FM .(1)若AE =5,求BF 的长;(2)若∠AEC =90°,∠DBF =∠CAE ,求证:CD =FE .十、计算题22.探究活动:(1)如图1,可以求出阴影部分的面积是____________.(写成两数平方差的形式)(2)如图2,若将阴影部分裁剪下来,重新拼成一个长方形,面积是__________.(写成多项式乘法的形式)(3)比较图1、图2阴影部分的面积,可以得到等式:______________.知识应用:(1)计算:()()22a b c a b c +-++.(2)若224915x y -=,4610x y +=,求23x y -的值.。
江西初二初中数学月考试卷带答案解析

江西初二初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、解答题1.(9分)某文具店第一次用400元购进胶皮笔记本若干个,第二次又用400元购进该种型号的笔记本,但这次每个的进价是第一次进价的1.25倍,购进数量比第一次少了20个.(1)求第一次每个笔记本的进价是多少?(2)若要求这两次购进的笔记本按同一价格全部销售完毕后后获利不低于460元,问每个笔记本至少是多少元?2.(9分)如图,△ABC是等腰直角三角形,延长BC至E使BE=BA,过点B作BD⊥AE于点D,BD与AC交于点F,连接EF.(1)求证:BF=2AD;(2)若CE=,求AC的长.3.(10分)已知△ABC是等边三角形,D是BC边上的一个动点(点D不与B,C重合)△ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC于点E,连接BF.(1)如图1,求证:△AFB≌△ADC;(2)请判断图1中四边形BCEF的形状,并说明理由;(3)若D点在BC 边的延长线上,如图2,其它条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.4.如图,BD是▱ABCD的对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:AE=CF.5.已知x2+y2﹣4x+6y+13=0,求x2﹣6xy+9y2的值.6.如图所示,在△ABC中,点D在BC上且CD=CA,CF平分∠ACB,AE=EB,求证:EF=BD.7.解不等式组,并把解集在数轴上表示出来8.解方程:.9.先化简,再求值:,其中从1,2,3中选取一个合适的数.10.如图所示,已知△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣6,0),C(﹣1,0).(1)请直接写出点B关于点A对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.11.如图,在四边形ABCD中,AD∥BC,AD=5cm,BC=9cm.M是CD的中点,P是BC边上的一动点(P与B,C不重合),连接PM并延长交AD的延长线于Q.(1)试说明△PCM≌△QDM.(2)当点P在点B、C之间运动到什么位置时,四边形ABPQ是平行四边形?并说明理由.二、填空题1.如图:在Rt△ABC中,∠C=90°,∠A=30°,AB+BC=12㎝,则AB= ㎝.2.一个多边形的内角和是外角和的2倍,则这个多边形的边数为 .3.当分式有意义时,则x满足的条件是 ______.4.因式分解:16a2-16a+4= ______5.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC方向平移2个单位后得到△DEF,连接DC,则DC的长为 ______.6.如图3,在直角三角形ABC中,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC和AC的垂线AX上移动,则当AP=时,才能使△ABC和△APQ全等.、三、单选题1.下列所给图形是中心对称图形但不是轴对称图形的是()A.B.C.D.2.在,,,,,a +,中分式的个数有( ) A .2个B .3个C .4个D .5个3.根据下列条件,得不到平行四边形的是( )A .AB=CD ,AD=BCB .AB ∥CD ,AB=CDC .AB=CD ,AD ∥BC D .AB ∥CD ,AD ∥BC4.若分式方程有增根,则增根可能是( ) A .1B .-1C .1或-1D .05.如图钢架中,焊上等长的13根钢条来加固钢架,若AP 1=P 1P 2=P 2P 3=…=P 13P 14=P 14A ,则∠A 的度数是( )A .12°B .13°C .14°D .15°江西初二初中数学月考试卷答案及解析一、解答题1.(9分)某文具店第一次用400元购进胶皮笔记本若干个,第二次又用400元购进该种型号的笔记本,但这次每个的进价是第一次进价的1.25倍,购进数量比第一次少了20个.(1)求第一次每个笔记本的进价是多少?(2)若要求这两次购进的笔记本按同一价格全部销售完毕后后获利不低于460元,问每个笔记本至少是多少元?【答案】(1)4元(2)7元【解析】(1)设第一次每个笔记本的进价为x 元,然后根据第二次又用400元购进该种型号的笔记本数量比第一次少20个列方程求解即可;(2)设每个笔记本售价为y 元,然后根据全部销售完毕后后获利不低于460元列不等式求解即可.试题解析:解:(1)设第一次每个笔记本的进价为x 元.依据题可得,解这个方程得:x=4.经检验,x=4是原方程的解.故第一次每个笔记本的进价为4元.(2)设每个笔记本售价为y 元.根据题意得:,解得:y≥7.所以每个笔记本得最低售价是7元.【考点】分式方程的应用;一元一次不等式的应用2.(9分)如图,△ABC 是等腰直角三角形,延长BC 至E 使BE=BA ,过点B 作BD ⊥AE 于点D ,BD 与AC 交于点F,连接EF.(1)求证:BF=2AD;(2)若CE=,求AC的长.【答案】(1)见解析;(2)2+【解析】(1)由△ABC是等腰直角三角形,得到AC=BC,∠FCB=∠ECA=90°,由于AC⊥BE,BD⊥AE,根据垂直的定义得到∠CBF+∠CFB=90°,∠DAF+∠AFD=90°,由于∠CFB=∠AFD,于是得到∠CBF=∠CAE,证得△BCF≌△ACE,得出AE=BF,由于BE=BA,BD⊥AE,于是得到AD=ED,即AE=2AD,即可得到结论;(2)由(1)知△BCF≌△ACE,推出CF=CE=,在Rt△CEF中,EF==2,由于BD⊥AE,AD=ED,求得AF=FE=2,于是结论即可.试题解析:(1)证明:∵△ABC是等腰直角三角形,∴AC=BC,∠FCB=∠ECA=90°,∵AC⊥BE,BD⊥AE,∴∠CBF+∠CFB=90°,∠DAF+∠AFD=90°,∵∠CFB=∠AFD,∴∠CBF=∠CAE,在△BCF与△ACE中,,∴△BCF≌△ACE,∴AE=BF,∵BE=BA,BD⊥AE,∴AD=ED,即AE=2AD,∴BF=2AD;(2)由(1)知△BCF≌△ACE,∴CF=CE=,∴在Rt△CEF中,EF==2,∵BD⊥AE,AD=ED,∴AF=FE=2,∴AC=AF+CF=2+.【考点】全等三角形的判定与性质;勾股定理3.(10分)已知△ABC是等边三角形,D是BC边上的一个动点(点D不与B,C重合)△ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC于点E,连接BF.(1)如图1,求证:△AFB≌△ADC;(2)请判断图1中四边形BCEF的形状,并说明理由;(3)若D点在BC 边的延长线上,如图2,其它条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.【答案】(1)见解析;(2)BCEF是平行四边形;(3)成立【解析】(1)利用有两条边对应相等并且夹角相等的两个三角形全等即可证明△AFB≌△ADC;(2)四边形BCEF是平行四边形,因为△AFB≌△ADC,所以可得∠ABF=∠C=60°,进而证明∠ABF=∠BAC,则可得到FB∥AC,又BC∥EF,所以四边形BCEF是平行四边形;(3)易证AF=AD,AB=AC,∠FAD=∠BAC=60°,可得∠FAB=∠DAC,即可证明△AFB≌△ADC;根据△AFB≌△ADC可得∠ABF=∠ADC,进而求得∠AFB=∠EAF,求得BF∥AE,又BC∥EF,从而证得四边形BCEF是平行四边形.试题解析:证明:(1)∵△ABC和△ADF都是等边三角形,∴AF=AD,AB=AC,∠FAD=∠BAC=60°,又∵∠FAB=∠FAD﹣∠BAD,∠DAC=∠BAC﹣∠BAD,∴∠FAB=∠DAC,在△AFB和△ADC中,,∴△AFB≌△ADC(SAS);(2)由①得△AFB≌△ADC,∴∠ABF=∠C=60°.又∵∠BAC=∠C=60°,∴∠ABF=∠BAC,∴FB∥AC,又∵BC∥EF,∴四边形BCEF是平行四边形;(3)成立,理由如下:∵△ABC和△ADE都是等边三角形,∴AF=AD,AB=AC,∠FAD=∠BAC=60°,又∵∠FAB=∠FAD﹣∠BAD,∠DAC=∠BAC﹣∠BAD,∴∠FAB=∠DAC,在△AFB和△ADC中,,∴△AFB≌△ADC(SAS);∴∠AFB=∠ADC.又∵∠ADC+∠DAC=60°,∠EAF+∠DAC=60°,∴∠ADC=∠EAF,∴∠AFB=∠EAF,∴BF∥AE,又∵BC∥EF,∴四边形BCEF是平行四边形.【考点】全等三角形的判定与性质;平行四边形的判定4.如图,BD是▱ABCD的对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:AE=CF.【答案】详见解析.【解析】根据平行四边形的性质可得AB=CD,AB∥CD,再由平行线的性质证得∠ABE=∠CDF,根据AE⊥BD,CF⊥BD可得∠AEB=∠CFD=90°,由AAS证得△ABE≌△CDF,根据全等三角形的性质即可证得结论.试题解析:证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF.【考点】平行四边形的性质;全等三角形的判定及性质.5.已知x2+y2﹣4x+6y+13=0,求x2﹣6xy+9y2的值.【答案】121【解析】已知等式左边利用完全平方公式变形,利用非负数的性质求出x与y的值,代入原式计算即可得到结果.解:∵x2+y2﹣4x+6y+13=(x﹣2)2+(y+3)2=0,∴x﹣2=0,y+3=0,即x=2,y=﹣3,则原式=(x﹣3y)2=112=121.点评:此题考查了因式分解﹣运用公式法,熟练掌握公式是解本题的关键.6.如图所示,在△ABC中,点D在BC上且CD=CA,CF平分∠ACB,AE=EB,求证:EF=BD.【答案】见解析【解析】由等腰三角形三线合一得FA=FD.又由E是中点,所以EF是中位线,即得结论.∵CD=CA, CF平分∠ACB,∴FA=FD(三线合一),∵FA=FD,AE=EB,∴EF=BD.【考点】本题考查的是等腰三角形的性质,三角形的中位线点评:解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.7.解不等式组,并把解集在数轴上表示出来【答案】﹣2<x≤3,数轴表示见解析.【解析】试题分析: 解不等式3x-2≤x得x≤1,由得x>-3,进而确定不等式组的解集;根据含有“=”的用实心原点,不含“=”的用空心圆圈进而解答即可.试题解析:解①得:x≤1,解②得:x>﹣1,故不等式组的解集是:﹣2<x≤3.8.解方程:.【答案】x=3.【解析】试题分析: 分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.试题解析:两边同乘(x-2),得1-3(x-2)=-(x-1),去括号,得1-3x+6="-" x+1移项,得 -3x+ x=1-6-1合并同类项得 -2 x=-6系数化为1,得 x=3.经检验,x=3是原方程的根.9.先化简,再求值:,其中从1,2,3中选取一个合适的数.【答案】,当x=2时,原式=.【解析】试题分析: 先括号内通分,然后计算除法,最后取值时注意使得分式有意义,最后代入化简即可.试题解析:原式===当x=2时,原式=.10.如图所示,已知△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣6,0),C(﹣1,0).(1)请直接写出点B关于点A对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.【答案】(1)画图见解析;(2)作图见解析;(3)D(-7,3)或(-5,-3)或(3,3).【解析】(1)分别作出点A、B、C绕坐标原点O逆时针旋转90°后的点,然后顺次连接,并写出点B的对应点的坐标;(2)分别以AB、BC、AC为对角线,写出第四个顶点D的坐标.解:(1)所作图形如图所示:,(2)点B'的坐标为:(0,-6);当以AB为对角线时,点D坐标为(-7,3);当以AC为对角线时,点D坐标为(3,3);当以BC为对角线时,点D坐标为(-5,-3).“点睛”本题考查了根据旋转变换作图,轴对称的性质,以及平行四边形的性质,熟练掌握网格结构,准确找出对应点的位置是解题的关键.11.如图,在四边形ABCD中,AD∥BC,AD=5cm,BC=9cm.M是CD的中点,P是BC边上的一动点(P与B,C不重合),连接PM并延长交AD的延长线于Q.(1)试说明△PCM≌△QDM.(2)当点P在点B、C之间运动到什么位置时,四边形ABPQ是平行四边形?并说明理由.【答案】(1)证明见解析;(2)PC=2,理由见解析.【解析】试题分析: (1)要证明△PCM≌△QDM,可以根据两个三角形全等四个定理,即AAS、ASA、SAS、SSS中的ASA.利用∠QDM=∠PCM,DM=CM,∠DMQ=∠CMP即可得出;(2)得出P在B、C之间运动的位置,根据一组对边平行且相等的四边形是平行四边形得出.试题解析:(1)∵AD∥BC,∴∠QDM=∠PCM.∵M是CD的中点,∴DM=CM,∵∠DMQ=∠CMP,在△PCM和△QDM中,∵,∴△PCM≌△QDM(ASA).(2)当四边形ABPQ是平行四边形时,PB=AQ,∵BC﹣CP=AD+QD,∴9﹣CP=5+CP,∴CP=(9﹣5)÷2=2.∴当PC=2时,四边形ABPQ是平行四边形.点睛:本题中和考查全等三角形、平行四边形的判定,熟练掌握平行四边形的性质和判定方法是解题的关键.二、填空题1.如图:在Rt△ABC中,∠C=90°,∠A=30°,AB+BC=12㎝,则AB= ㎝.【答案】8【解析】因为在Rt△ABC中,∠C=90°,∠A=30°,所以AB=2BC,又AB+BC=12,所以3BC=12,所以BC=4,AB=8.【考点】直角三角形的性质.2.一个多边形的内角和是外角和的2倍,则这个多边形的边数为 .【答案】6【解析】设这个多边形的边数为n,∵n边形的内角和为(n﹣2)•180°,多边形的外角和为360°,∴(n﹣2)•180°=360°×2,解得n=8,∴此多边形的边数为6.故答案为:6.【考点】多边形内角与外角.3.当分式有意义时,则x满足的条件是 ______.【答案】x≠3【解析】由题意,得x−3≠0,解得x≠3,故填:x≠3.4.因式分解:16a2-16a+4= ______【答案】4(2a-1)2【解析】16a2-16a+4=4(4a²-4a+1)="4(2a-1)" ²故填:4(2a-1) ².5.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC方向平移2个单位后得到△DEF,连接DC,则DC的长为 ______.【答案】4.【解析】∵△ABC沿射线BC方向平移2个单位后得到△DEF,∴DE=AB=4,BC−BE=6−2=4,∵∠B=∠DEC=60°,∴△DEC是等边三角形,∴DC=4,故答案为:4.点睛:本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.6.如图3,在直角三角形ABC中,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC和AC的垂线AX上移动,则当AP=时,才能使△ABC和△APQ全等.、【答案】或【解析】本题要分情况讨论:①Rt△APQ≌Rt△CBA,此时AP=BC=5cm,可据此求出P点的位置;②Rt△QAP≌Rt△BCA,此时AP=AC,P、C重合.解:∵PQ=AB,∴根据三角形全等的判定方法HL可知,①当P运动到AP=BC时,△ABC≌△QPA,即AP=BC=5cm;②当P 运动到与C 点重合时,△QAP ≌△BCA ,即AP=AC=10cm .【考点】全等三角形的判定.三、单选题1.下列所给图形是中心对称图形但不是轴对称图形的是( )A .B .C .D .【答案】D【解析】A. 此图形不是中心对称图形,不是轴对称图形,故A 选项错误;B. 此图形是中心对称图形,也是轴对称图形,故B 选项错误;C. 此图形不是中心对称图形,是轴对称图形,故D 选项错误。
人教版八年级数学上册第一次月考试题含答案

人教版八年级数学试题八年级(上)第一次月考数学试卷选择题(每小题3分,共30分) 1.下列语句是命题的是A.作直线AB 的垂线B.在线段AB 上取点CC.同旁内角互补D.垂线段最短吗?2.在下列长度的四根木棒中,能与4cm 、9cm 长的巧根木棒钉成个三角形的是 A.4cm B. 5cm C.9cm D.13cm3.工人师傅砌门时,常用一根木条固定长方形门框,使其不变形,这样做的根据是A.两点之间的线段最短B.三角形稳定性C.长方形是轴对称图形D.长方形的四个角都是直角 4.如图,90BAC ∠=︒,AB 丄BC ,则图中互余的角有A.2对B.3对C.4对D.5对5.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小—样的三角形玻璃?应该带第_____块去,这利用了三角形全等中的_______原理。
A.2;SASB.4;ASAC.2;AASD.4;SAS6.在数学课上,同学们在练习画边AC 上的高时,有一部分同学画出下列四种图形,请你判断一下,正确的是7.下列叙述中:①任意一个三角形的三条高至少有一条在此三角形内部;②以a ,b ,c 为边(a ,b ,c 都大于0,且a+b>c)可以构成一个三角形 ③一个三角形内角之比为3:2:1,此三角形为直角三角形; ④有两个角和一条边对应相等的两个三角形全等; 正确的有( )个 A.1 B.2 C.3 D.4 8.如图,点A 、B 、C 、D 、E 、F 是平面上的6个点,则A B C D E F ∠+∠+∠+∠+∠+∠的度数是( )A.180°B.360°C.540°D.720°9.如图,点D 、E 分别在AC 、AB 上,已知AB=AC ,添加下列条件,不能说明ABD ACE ∆≅∆的是A.B C ∠=∠B. AD AE =C. BDC CEB ∠=∠D. BD CE = 10.在下列条件中:①A B C ∠+∠=∠②::1:2:3A B C ∠∠∠=③90A B ∠=︒-∠④=A B C ∠=∠∠中,能确△ABC 是直角三角形的定条件有 A.①② B.③④ C.①③④ D.①②③ 二、填空题(每小题3分,共30分)11.若一凸多边形的内角和等于它的外角和,则它的边数是______.12.如图,50A ∠=︒,28ABO ∠=︒,32ACO ∠=︒,则BOC ∠=______°。
江西2024-2025学年八年级上学期第一次月考数学试题(解析版)

江西省2024-2025学年八年级上学期第一次月考数学试题一、单选题1. 在ABC 中,已知3AC =,4BC =,则AB 的取值范围是( )A. 68AB <<B. 17AB <<C. 214AB <<D. 114AB <<【答案】B【解析】【分析】根据三角形三边关系求解.【详解】解: 在ABC 中,3AC =,4BC =, ∴BC AC AB BC AC −<<+,∴4343AB −<<+,即17AB <<.故选B .【点睛】本题考查三角形三边关系的应用,解题的关键是掌握三角形两边之和大于第三边,两边之差小于第三边.2. 如图,△ABC ≌△ABD ,若∠ABC =30°,∠ADB =100°,则∠BAC 的度数是( ).A. 30°B. 100°C. 50°D. 80°【答案】C【解析】 【分析】根据全等三角形的性质得到∠C 的度数,然后利用三角形内角和定理计算即可.【详解】解:∵△ABC ≌△ABD ,∴∠C =∠ADB =100°,∴∠BAC =180°-100°-30°=50°,故选C.【点睛】本题考查了全等三角形的性质和三角形内角和定理,熟知全等三角形的对应边相等,对应角相等是解题关键.3. 如图,在ABC 中,AB AC =,AE AF =,AD BC ⊥,垂足为D .则全等三角形有( )A. 2组B. 3组C. 4组D. 5组【答案】C【解析】 【分析】本题主要考查了全等三角形的性质和判定,先根据HL 证明Rt ADE ≌Rt ADF ,可得DE DF =,进而得出Rt ABD △≌Rt ACD △,可得BD CD =,即可得出BE CF =,再根据SSS 证明ABE ≌ACF △,ACE △≌ABF △,可得答案.【详解】∵AE AF =,AD AD =,∴Rt ADE ≌Rt ADF ,∴DE DF =.∵AB AC =,AD AD =,∴Rt ADB △≌Rt ADC ,∴BD CD =,∴B D D E C D D F −=−,即BE CF =.∵AB AC =,AE AF =,∴ABE ≌ACF △.∵B D D F C D D E +=+,即BF CE =.∵AB AC =,AE AF =,∴ABF △≌ACE △.全等三角形有4组.故选:C .4. 如图,在ABC 中,,ABC ACB ∠∠的平分线交于点O ,连接AO ,过点O 作,,OD BC OE AB ABC ⊥⊥△的面积是16,周长是8,则OD 的长是( )A. 1B. 2C. 3D. 4【答案】D【解析】 【分析】本题主要考查了角平分线的性质,先过点O 作OF AC ⊥于点F ,然后根据角平分线的性质,证明OE OF OD ==,然后根据ABC 的面积AOB =△的面积BOC +△的面积AOC +△的面积,求出答案即可.【详解】如图所示:过点O 作OF AC ⊥于点F ,OB ,OC 分别是ABC ∠和ACB ∠角平分线,OD BC ⊥,OE AB ⊥,OF AC ⊥,OE OD OF ∴==,16ABC AOB BOC AOC S S S S =++= , ∴11116222AB OE BC OD AC OF ⋅+⋅+⋅=, 11116222AB OD BC OD AC OD ⋅+⋅+⋅=, 1()162OD AB BC AC ++=, 8++= AB BC AC ,4OD ∴=,故选:D .5. 如图,ABC ∆中,AB BC =,点D 在AC 上,BD BC ⊥.设BDC α∠=,ABD β∠=,则( )的A. 3180αβ+°B. 2180αβ+°C. 390αβ−=°D. 290αβ−=°【答案】D【解析】 【分析】根据三角形外角等于不相邻两个内角的和,直角三角形两锐互余解答【详解】解:AB BC = ,A C ∴∠=∠,A αβ−∠= ,90C α+∠=°,290αβ∴=°+,290αβ∴−=°,故选:D .【点睛】本题考查了三角形外角,直角三角形,熟练掌握三角形外角性质,直角三角形两锐角性质,是解决此类问题的关键6. 下列条件,不能判定两个直角三角形全等的是( )A. 两个锐角对应相等B. 一个锐角和斜边对应相等C. 两条直角边对应相等D. 一条直角边和斜边对应相等【答案】A【解析】【分析】本题主要考查全等的判定方法,熟练掌握判定方法是解题的关键.根据判定方法依次进行判断即可.【详解】解:A 、两个锐角对应相等,不能判定两个直角三角形全等,故A 符合题意;B 、一个锐角和斜边对应相等,利用AAS 可以判定两个直角三角形全等,故B 不符合题意;C 、两条直角边对应相等,利用SAS 可以判定两个直角三角形全等,故C 不符合题意;D 、一条直角边和斜边对应相等,利用HL 可以判定两个直角三角形全等,故D 不符合题意;故选:A .7. 如图,在ACD 和BCE 中,,,,,AC BC AD BE CD CE ACE m BCD n ===∠=∠= ,AD 与BE 相交于点P ,则BPA ∠的度数为( )A. n m −B. 2n m −C. 12n m −D. 1()2n m − 【答案】D【解析】 【分析】由条件可证明△ACD ≌△BCE ,根据全等三角形的性质得到∠ACB 的度数,利用三角形内角和可求得∠APB=∠ACB ,即可解答.【详解】在△ACD 和△BCE 中AC BC AD BE CD CE===∴△ACD ≌△BCE (SSS ),∴∠ACD=∠BCE ,∠A=∠B ,∴∠BCA+∠ACE=∠ACE+∠ECD ,∴∠ACB=∠ECD=12(∠BCD-∠ACE )=12×(n-m ) ∵∠B+∠ACB=∠A+∠BPA ,∴BPA ∠=∠ACB=1()2n m −. 故选D .【点睛】此题考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.8. 如图,EB 交AC 于M ,交FC 于D ,AB 交FC 于N ,90E F ∠=∠=°,B C ∠=∠,AE AF =,给出下列结论:①12∠=∠;②BE CF =;③ACN ABM ≌;④CD DN =.其中正确的结论有( )A. 4个B. 3个C. 2个D. 1个【答案】B【解析】 【分析】根据90E F ∠=∠=°,B C ∠=∠,AE AF =,可得ABE ACF ≌,三角形全等的性质BE CF =;BAE CAF ∠=∠可得①12∠=∠;由ASA 可得ACN ABM ≌,④CD DN =不成立.【详解】解:∵90E F ∠=∠=°,B C ∠=∠,AE AF =,∴ABE ACF ≌,∴BE CF =;BAE CAF ∠=∠,故②符合题意;∵BAE BAC CAF BAC ∠−∠=∠−∠,∴12∠=∠;故①符合题意;∵ABE ACF ≌∴B C ∠=∠,AB AC =,又∵BAC CAB ∠=∠∴ACN ABM ≌,故③符合题意;∴AM AN =,∴MC BN =,∵,B C MDC BDN ∠=∠∠=∠, ∴MDC NDB ≌,∴CD DB =,∴CD DN =不能证明成立,故④不符合题意.故选:B .【点睛】本题考查三角形全等的判定方法和三角形全等的性质,难度适中.9. 已知AOB ∠,下面是“作一个角等于已知角,即作A O B AOB ′′′=∠∠”的尺规作图痕迹.该尺规作图的依据是( )A. SASB. SSSC. AASD. ASA【答案】B【解析】 【分析】本题主要考查了尺规作图作一个角等于已知角、全等三角形判定等知识点,掌握尺规作图作一个角等于已知角的作法成为解题的关键.根据“作一个角等于已知角,即作A O B AOB ′′′=∠∠”的尺规作图痕迹,结合全等三角形的判定定理即可解答.【详解】解:由题意可知,“作一个角等于已知角,即作A O B AOB ′′′=∠∠”的尺规作图的依据是SSS .故选:B .10. 如图,在四边形ABCD 中,对角线AC 平分BAD ∠,AB AC >,下列结论正确的是( )A. AB AD CB CD −>−B. AB AD CB CD −=−C. AB AD CB CD −<−D. AB AD −与CB CD −的大小关系不确定【答案】A【解析】 【分析】先通过在AB 上截取AE =AD ,得到一对全等三角形,利用全等三角形的性质得到对应边相等,再利用三角形的三边关系和等量代换即可得到A 选项正确.【详解】解:如图,在AB 上取AE AD =,对角线AC 平分BAD ∠,BAC DAC ∴∠=∠,在ACD ∆和ACE ∆中,的AD AE BAC DAC AC AC = ∠=∠ =, ()ACD ACE SAS ∴∆≅∆,CD CE ∴=,BE CB CE >− ,AB AD CB CD ∴−>−.故选:A .【点睛】本题考查了全等三角形的判定与性质、角平分线的定义和三角形的三边关系,要求学生能根据已知条件做出辅助线构造全等三角形,并能根据全等三角形的性质得到不同线段之间的关系,利用三角形三边关系判断大小,解决本题的关键是牢记概念和公式,正确作辅助线构造全等三角形等.二、填空题11. 若正多边形的一个外角为60°,则这个正多边形的边数是______.【答案】六##6【解析】【分析】本题考查了多边形的外角和,熟练掌握任意多边形的外角和都是360度是解答本题的关键.根据任意多边形的外角和都是360度求解即可.【详解】解:360606°÷°=.故答案为:六.12. 四条长度分别为2cm ,5cm ,8cm ,9cm 的线段,任选三条组成一个三角形,可以组成的三角形的个数是___________个.【答案】2【解析】【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【详解】解:四条木棒的所有组合:2,5,8和2,5,9和5,8,9和2,8,9;∵2+5=7<8,∴2,5,8不能组成三角形;∵2+5=7<9,∴2,5,9不能组成三角形;∵5+8=13>9,∴5,8,9能组成三角形;∵2+8=10>9,∴2,8,9能组成三角形.∴ 5,8,9和2,8,9能组成三角形.只有2个三角形.故答案是:2.【点睛】此题主要考查了三角形三边关系,三角形的三边关系:任意两边之和>第三边,任意两边之差<第三边;注意情况的多解和取舍.13. 如图,在ABC 中,AD BC ⊥,AE 平分BAC ∠,若140∠=°,230∠=°,则B ∠=______.【答案】40°##40度【解析】【分析】本题考查了三角形的角平分线,高线的定义;由AE 平分BAC ∠,可得角相等,由140∠=°,230∠=°,可求得EAD ∠的度数,在直角三角形ABD 在利用两锐角互余可求得答案.【详解】解:AE 平分BAC ∠12EAD ∴∠=∠+∠,12403010EAD ∴∠=∠−∠=°−°=°,Rt ABD 中,9090401040BBAD ∠=°−∠=°−°−°=°. 故答案为:40°.14. 如图,BE 平分∠ABC ,CE 平分外角∠ACD ,若∠A =52°,则∠E 的度数为_____.【答案】26°【解析】【分析】根据三角形的外角等于和它不相邻的两个内角的和即可得答案.【详解】∵BE 平分∠ABC ,CE 平分外角∠ACD ,∴∠EBC =12∠ABC ,∠ECD =12∠ACD , ∴∠E =∠ECD ﹣∠EBC =12(∠ACD ﹣∠ABC ) ∵∠ACD-∠ABC=∠A ,∴∠E =12∠A =12×52°=26° 故答案为26°【点睛】本题考查三角形外角性质,三角形的一个外角,等于和它不相邻的两个内角的和;熟练掌握外角性质是解题关键.15. 如图1,123456∠+∠+∠+∠+∠+∠为m 度,如图2,123456∠+∠+∠+∠+∠+∠为n 度,则m n −=__________.【答案】0【解析】【分析】将图1原六边形分成两个三角形和一个四边形可得到m 的值,将图2原六边形分成四个三角形可得到n 的值,从而得到答案.【详解】解:如图1,将原六边形分成两个三角形和一个四边形,,1234562180360720m ∴°=∠+∠+∠+∠+∠+∠=×°+°=°,如图2,将原六边形分成四个三角形,,∴°=∠+∠+∠+∠+∠+∠=×°=°,1234564180720n∴==,m n720∴−=,m n故答案为:0.【点睛】本题考查了多边形的内角和,此类问题通常连接多边形的顶点,将多边形分割成四边形和三角形,通过计算四边形和三角形的内角和,求得多边形的内角和.16. 如图,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③ ACN≌ ABM;④CD=DN.其中符合题意结论的序号是_____.【答案】①②③【解析】【分析】此题考查的是全等三角形的判定和性质的应用,只要先找出图中的全等三角形就可判断题中结论是否正确.【详解】∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF(AAS),∴AC=AB,BE=CF,即结论②正确;∵AC=AB,∠B=∠C,∠CAN=∠BAM,∴△ACN≌△ABM(ASA),即结论③正确;∵∠BAE=∠CAF,∵∠1=∠BAE-∠BAC,∠2=∠CAF-∠BAC,∴∠1=∠2,即结论①正确;∴△AEM ≌△AFN (ASA ),∴AM =AN ,∴CM =BN ,∵∠CDM =∠BDN ,∠C =∠B ,∴△CDM ≌△BDN ,∴CD =BD ,无法判断CD =DN ,故④错误,∴题中正确的结论应该是①②③.故答案为:①②③.【点睛】此题考查了三角形全等的判定和性质;对图中的全等三角形作出正确判断是正确解答本题的关键.三、解答题17. 如图,已知点D ,E 分别AB ,AC 上,B C ∠=∠,DC BE =,求证:ABE ACD △△≌.【答案】见解析【解析】【分析】本题考查了全等三角形的判定,根据已知条件选择恰当的判定方法是解题的关键.【详解】解:在ABE 和ACD 中,B C A A BE DC ∠=∠ ∠=∠ =, ∴()AAS ABE ACD ≌.18. 如图,请你仅用无刻度直尺作图.在(1)在图①中,画出三角形AB 边上的中线CD ;(2)在图②中,找一格点D ,使得ABC CDA △△≌.【答案】(1)见解析 (2)见解析【解析】【分析】(1)如图,连接CD 即可;(2)按如图所示,找到点D ,连接AD CD ,即可.【小问1详解】【小问2详解】如图,CDA 即为所求;【点睛】本题考查了作图,三角形中线的性质、全等三角形的判定方法,掌握中线的性质及全等三角形判定的方法是关键.19. (1)在ABC 中,ABC ∠的角平分线和ACB ∠的角平分线交于点P ,如图1,试猜想P ∠与A ∠的关系,直接写出结论___________:(不必写过程)(2)在ABC 中,一个外角ACE ∠的角平分线和一个内角ABC ∠的角平分线交于点P ,如图2,试猜想P ∠与A ∠的关系,直接写出结论____________;(不必写过程) (3)在ABC 中,两个外角EBC ∠的角平分线和FCB ∠的角平分线交于点P ,如图3,试猜想P ∠与A ∠的关系,直接写出结论_________,并予以证明.【答案】(1)1902P A∠=°+∠;(2)12P A∠=∠;(3)1902P A∠=°−∠【解析】【分析】(1)根据三角形的内角和定理表示出∠ABC+∠ACB,再根据角平分线的定义求出∠PBC+∠PCB,然后根据三角形的内角和定理列式整理即可;(2)根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACE=∠A+∠ABC,∠PCE=∠P+∠PBC,再根据角平分线的定义可得∠PBC=12∠ABC,∠PCE=12∠ACE,然后整理即可得证;(3)根据三角形的一个外角等于与它不相邻的两个内角的和与角平分线的定义表示出∠PBC+∠PCB,然后利用三角形的内角和定理列式整理即可得解.【详解】解:(1)1902P A ∠=°+∠;理由:在△ABC中,∠ABC+∠ACB=180°-∠A,∵点P为角平分线的交点,∴1=2PBC ABC∠∠,1=2PCB ACB∠∠,∴∠PBC+∠PCB=12(∠ABC+∠ACB)=12(180°-∠A)=90°-12∠A,在△PBC中,∠P=180°-(90°-12∠A)=90°+12∠A;故答案为:1902P A ∠=°+∠;(2)12P A ∠=∠.理由:由三角形的外角性质得,∠ACE=∠A+∠ABC,∠PCE=∠P+∠PBC,∵外角∠ACE的角平分线和内角∠ABC的角平分线交于点P,∴∠PBC=12∠ABC,∠PCE=12∠ACE,∴12(∠A+∠ABC)=∠P+12∠ABC,∴∠P=12∠A;(3)1902P A ∠=°−∠; 证明: 外角EBC ∠的角平分线和FCB ∠的角平分线交于点P ,11()()22PBC PCB A ACB A ABC ∴∠+∠=∠+∠+∠+∠ 111()90222A A ABC ACB A =∠+∠+∠+∠=∠+° 在PBC ∆中,11180909022P A A ∠=°−∠+°=°−∠. 故答案为:1902P A ∠=°−∠; 【点睛】本题考查的是三角形内角和定理,角平分线的定义和三角形外角的性质,熟记性质与概念是解题的关键,要注意整体思想的利用.20. 如图,在ABC 中,AE 为边BC 上的高,点D 为边BC 上的一点,连接AD .(1)当AD 为边BC 上的中线时,若6AE =,ABC 的面积为30,求CD 的长;(2)当AD 为BAC ∠的角平分线时,若6636C B ∠=°∠=°,,求DAE ∠的度数.【答案】(1)5 (2)15°【解析】【分析】本题考查了用三角形中线求三角形面积、三角形外角性质、直角三角形性质.(1)利用三角形中线定义及三角形面积求出CD 长;(2)利用三角形内角和先求BAC ∠,再用外角性质和直角三角形性质求出DAE ∠.【小问1详解】∵AD 为边BC 上的中线, ∴1152ADC ABC S S == , ∵AE 为边BC 上的高, ∴1152DC AE ××=, ∴5CD =.【小问2详解】∵6636C B ∠=°∠=°,∴18078BAC B C =°−−=°∠∠∠,∵AD 为BAC ∠的角平分线,∴39BAD DAC ∠=∠=°,∴393675ADC BAD B ∠=∠+∠=°+°=°,∵AE BC ⊥,∴90AED ∠=°,∴9015DAE ADC ∠=°−∠=°21. 如图,点A ,D ,B ,E 在同一直线上,AC =DF ,AD =BE ,BC =EF .求证:AC ∥DF .【答案】详见解析【解析】【分析】根据等式的性质得出AB =DE ,利用SSS 证明△ABC 与△DEF 全等,进而解答即可.【详解】证明:∵AD =BE ,∴AD +DB =BE +DB ,∴AB =DE ,在△ABC 与△DEF 中,AB DE AC DF BC EF = = =,∴△ABC ≌△DEF (SSS ),∴∠A =∠FDE ,∴AC ∥DF .【点睛】此题主要考查了平行线的性质和判定,全等三角形的判定和性质,做题的关键是找出证三角形全等的条件.22. 如图,在ACB △中,90ACB ∠=°,CD AB ⊥于D .(1)求证:ACD B ∠=∠;(2)若AF 平分CAB ∠分别交CD 、BC 于E 、F ,求证:CEF CFE ∠=∠.【答案】(1)见解析 (2)见解析【解析】【分析】本题考查了直角三角形的性质,三角形角平分线的定义,对顶角的性质,余角的性质,难度适中. (1)由于ACD ∠与B ∠都是BCD ∠的余角,根据同角的余角相等即可得证;(2)根据直角三角形两锐角互余得出9090CFA CAF AED DAE ∠=°−∠∠=°−∠,,再根据角平分线的定义得出CAF DAE ∠=∠,然后由对顶角相等的性质,等量代换即可证明CEF CFE ∠=∠.【小问1详解】证明:90ACB ∠=° ,CD AB ⊥于D ,90ACD BCD ∴∠+∠=°,90B BCD ∠+∠=°,ACD B ∴∠=∠;【小问2详解】证明:在Rt AFC △中,90CFA CAF ∠=°−∠,同理Rt AED △中,90AED DAE ∠=°−∠.又AF 平分CAB ∠,CAF DAE ∴∠=∠,AED CFE ∴∠=∠,又CEF AED ∠=∠ ,CEF CFE ∴∠=∠.23. 如图,AC ,BD 相交于点O ,OB OD =,A C ∠=∠,求证:△≌△AOB COD .在【答案】见解答【解析】【分析】本题主要考查全等三角形的判定,熟练掌握判定方法是解题的关键.根据全等三角形的判定方法证明即可.【详解】证明:AOB 和COD △中,A C AOB COD OB OD∠=∠ ∠=∠ = , (AAS)AOB COD ∴≌△△.24. 材料阅读:如图①所示的图形,像我们常见的学习用品—— 圆规.我们不妨把这样图形叫做 “规形图 ”.解决问题:(1)观察“规形图 ”,试探究BDC 与A B C ∠∠∠,,之间的数量关系,并说明理由;(2)请你直接利用以上结论,解决以下两个问题:Ⅰ.如图② ,把一块三角尺 DEF 放置在ABC 上,使三角尺的两条直角边DE DF ,恰好经过点B C ,,若40A ∠=°,则ABD ACD +=∠∠ ° . Ⅱ.如图③ ,BD 平分ABP CD ∠,平分ACP ∠,若40130A BPC ∠=°∠=°,,求BDC ∠的度数.【答案】(1) BDC A B C ∠=∠+∠+∠,理由见解析(2)Ⅰ.50;Ⅱ. 85°【解析】【分析】本题考查的是三角形内角和定理,三角形外角性质以及角平分线的定义得运用.根据题意连接AD 并延长至点 F ,利用三角形外角性质即可得出答案.Ⅰ.由(1)可知BDC A B C ∠=∠+∠+∠,因为40A ∠=°,90D ∠=︒,所以904050ABD ACD ∠+∠=°−°=°;Ⅱ.由(1)的已知条件,由于BD 平分ABP CD ∠,平分ACP ∠,即可得出在1452ABD ACD ABP ACP ∠+∠=∠+∠=°(),因此4540=85BDC ∠=°+°°. 【小问1详解】 解:如图连接AD 并延长至点 F , 根据外角的性质,可得 BDF BAD B ∠=∠+∠, CDF C CAD ∠=∠+∠, 又∵BDC BDF CDF BAC BAD CAD ∠=∠+∠∠=∠+∠,, ∴BDC BAC B C ∠=∠+∠+∠;【小问2详解】解:Ⅰ. 由(1)可得,BDC ABD ACD A ∠=∠+∠+∠; 又∵4090A D ∠=°∠=°,, ∴9040=50ABD ACD ∠+∠=°−°°, 故答案为:50; Ⅱ.由(1),可得BPC ABP ACP BDC BAC ABD ACD ∠=∠+∠+∠∠=∠+∠+∠,, ∴1304090ABP ACP BPC BAC ∠+∠=∠−∠=°−°=°, 又∵BD 平分ABP CD ∠,平分ACP ∠, ∴1452ABD ACD ABP ACP ∠+∠=∠+∠=°(), ∴4540=85BDC ∠=°+°°.。
人教版八年级上册数学《第一次月考》考试及答案免费

人教版八年级上册数学《第一次月考》考试及答案免费 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.4的算术平方根为( )A .2±B .2C .2±D .22.计算:(a -b)(a +b)(a 2+b 2)(a 4-b 4)的结果是( )A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 83.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .108°B .90°C .72°D .60°4.估计56﹣24的值应在( )A .5和6之间B .6和7之间C .7和8之间D .8和9之间5.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)6.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒7.关于x 的一元二次方程2(1)210k x x +-+=有两个实数根,则k 的取值范围是( )A .0k ≥B .0k ≤C .0k <且1k ≠-D .0k ≤且1k ≠-8.如图所示,点A 、B 分别是∠NOP 、∠MOP 平分线上的点,AB ⊥OP 于点E ,BC⊥MN 于点C ,AD ⊥MN 于点D ,下列结论错误的是( )A .AD +BC =ABB .与∠CBO 互余的角有两个C .∠AOB =90°D .点O 是CD 的中点9.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .7010.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°二、填空题(本大题共6小题,每小题3分,共18分)1.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=________.21273=___________. 3.分解因式:3x -x=__________.4.如图,一次函数y=﹣x ﹣2与y=2x+m 的图象相交于点P (n ,﹣4),则关于x的不等式组22{20x m xx+----<<的解集为________.5.我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼制成一个大正方形(如下图),设勾a=3,弦c=5,则小正方形ABCD的面积是_______。
江西省高安市第四中学八年级数学上学期第一次月考试题
第5题图第4题图第6题图江西省高安市第四中学2016-2017学年八年级数学上学期第一次月考试题温馨提示:1.本试卷共有三个大题,23个小题; 2.全卷满分120分,考试时间120分钟。
一、选择题(每小题3分,共18分,每小题只有一个正确选项.) 1. 下列三条线段中(单位长度都是cm ),能组成三角形的是( ) A 、3,4,9 B 、50,60,12 C 、11,11,31 D 、20,30,502. 已知△ABC 中,∠A 、∠B 、∠C 对应的比例如下,其中能判定△ABC 是直角三角形的是( ) A 、2:3:4 B 、4:3:5 C 、1:2:3 D 、1:2:23.如图所示,∠1=∠2,BC =EF ,欲证△ABC ≌△DEF ,则须补充一个条件是( )A 、AB =DE B 、∠ACE =∠DFBC 、BF =ECD 、∠ABC =∠DEF4.如图,AD 和BE 是△ABC 的两条中线,设△ABD 的面积为1s ,△BCE 的面积为2s ,那么( )A 、1s >2sB 、1s =2sC 、1s <2sD 、不能确定5.如图,在△PAB 中,PA =PB ,M ,N ,K 分别是PA ,PB ,AB 上的点,且AM =BK ,BN =AK , 若∠MKN =40°,则∠P 的度数为( )A .100°B .110°C .80°D .90°6.如图的七边形ABCDEFG 中,AB 、ED 的延长线相交于O 点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD 的度数是( ) A .400B .450C .500D .600二、填空题(每小题3分,共18分)7. 已知一个等腰三角形其中两边的长分别是2和6,则它的周长为 8.一个三角形的三个外角之比为5:4:3,则这个三角形内角中最大的角是 度 9.如图,直线a ∥b ,一块含60°角的直角三角板ABC (∠A =60°)按如图所示放置.若∠1=45°, 则∠2的度数为第9题图第12题图B第10题图10.如图,在△ABC 中,AB=AC ,∠A =30°,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D ,则∠D 等于11.如图,Rt △ABC 中,∠C =90°,AC =8,BC =4,PQ =AB ,点P 与点Q 分别在AC 和AC 的垂线AD 上移动,则当AP = 时,△ABC ≌△APQ12.如图,AD 和BE 是△ABC 的角平分线且交于点O ,连接OC ,现有以下论断: ①OD ⊥BC ;②∠AOC =90°+21∠ABC ;③OA =OB =OC ;④OC 平分∠ACB ;⑤∠AOE+∠DCO =90° 其中正确的有三、(本大题共五个小题,每小题6分,共30分)13.一个多边形的内角和是它的外角和的4倍,求这个多边形的边数14.如图,点F 是△ABC 的边BC 延长线上一点.DF ⊥AB 于D ,∠A =30°,∠F =40°,求∠ACF 的度数 15.如图,已知∠1=∠2,∠3=∠4,EC =AD ,求证:AB =BE16.如图, ∠AOB 是一个任意角,小聪在边OA 、OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合,他说过角尺顶点C 的射线OC 便是∠AOB 的平分线,请你判断小聪的说法正确吗?并说明理由第14题图第15题图第18题图 ACBD F E第19题图17. 如图,BD 平分∠ABC ,DA ⊥AB ,垂足是A 点,若∠1=60°,∠BDC =80°,求∠C 的度数四、(本大题共四个小题,每小题8分,共32分)18.如图,在△ABC 中,D 是BC 边上一点,且∠1=∠2,∠3=∠4,∠BAC =60°,求∠DAC 的度数19.如图,在△ABC 中,D 是BC 边上的点(不与B ,C 重合), F ,E 分别是AD 及其延长线上的点,CF ∥BE . 请你添加一个条件,使△BDE ≌△CDF (不再添加其它线段,不再标注或使用其他字母),并给出证明.(1)你添加的条件是: ; (2)证明:20.如图,已知在△ABC 中,BE 、CF 分别是AC 、AB 边上的高,在BE 上截取BD = AC ,在CF 的延长线上截取CG = AB ,连结AD 、AG ,则AG 与AD 有何关系?并证明你的结论第17题图第20题图21.如图,△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠BAC =500,∠C =700,求∠DAC 及∠BOA 的度数五、(本大题共二个小题,10+12= 32分)22.如图所示,CE ⊥AB 于点E ,BD ⊥AC 于点D ,BD 、CE 交于点O ,且AO 平分∠B AC(1) 请问图中有多少对全等三角形?并一一列举出来(不必说明理由);(2)小明说:欲证BE =CD ,可先证明△AOE ≌△AOD 得到AE =AD ,再证明△ADB ≌△AEC 得到A B =AC ,然后利用等式的性质得到BE =CD ,请问他的说法正确吗?如果正确,请按照(或仿照)他的说法写出推导过程,如果不正确,请说明理由第22题图ADE FOB第20题图23.探究(1)如图1,把△ABC 沿DE 折叠,使点A 落在点A ’处,请你判断∠1+∠2与∠A 的关系?直接写出结论,不必说明理由思考(2)如图2,BI 平分∠ABC ,CI 平分∠ACB ,把△ABC 折叠,使点A 与点I 重合,若∠1+∠2=130°,求∠BIC 的度数;应用(3)如图3,在锐角△ABC 中,BF ⊥AC 于点F ,CG ⊥AB 于点G ,BF 、CG 交于点H ,把△ABC 折叠使点A 和点H 重合,试探索∠BHC 与∠1+∠2的关系,并证明你的结论.21图3图2图1EFHGC 2121IEC BADA 'D BAABCED2016年高安四中初二第一次月考数学试题答案温馨提示:1.本试卷共有三个大题,23个小题;2.全卷满分120分,考试时间120分钟。
人教版八年级上册数学《第一次月考》考试卷及答案【A4版】
人教版八年级上册数学《第一次月考》考试卷及答案【A4版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列说法中正确的是( )A .若0a <,则20a <B .x 是实数,且2x a =,则0a >C .x -有意义时,0x ≤D .0.1的平方根是0.01±2.将抛物线23y x =-平移,得到抛物线23(1)2y x =---,下列平移方式中,正确的是( )A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位3.已知x+y =﹣5,xy =3,则x 2+y 2=( )A .25B .﹣25C .19D .﹣194.如图,在四边形ABCD 中,∠A=140°,∠D=90°,OB 平分∠ABC ,OC 平分∠BCD ,则∠BOC=( )A .105°B .115°C .125°D .135°5.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是( )A .12x x ≠B .21120x x -=C .122x x +=D .122x x ⋅=6.已知a=2012x+2011,b=2012x+2012,c=2012x+2013,那么a 2+b 2+c 2—ab -bc -ca 的值等于( )A .0B .1C .2D .37.实数a 、b 在数轴上的位置如图所示,且|a|>|b|2a a b +的结果为()A.2a+b B.-2a+b C.b D.2a-b8.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°9.如图,能判定EB∥AC的条件是()A.∠C=∠1 B.∠A=∠2C.∠C=∠3 D.∠A=∠110.如图,在平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的大小为()A.150°B.130°C.120°D.100°二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是.2.已知AB//y轴,A点的坐标为(3,2),并且AB=5,则B的坐标为________.3.分解因式:3x-x=__________.4.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF =AC,则∠ABC=________度.5.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm ,BC=8cm ,则AEF 的周长=______cm .6.如图,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =6,BC =8,则EF 的长为______.三、解答题(本大题共6小题,共72分)1.解方程:(1)2(1)30x +-= (2)4(2)3(2)x x x +=+2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中3x =3.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x +y >0,求m 的取值范围.4.如图所示,在△ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 与CE 交于点F ,且AD=CD ,(1)求证:△ABD ≌△CFD ;(2)已知BC=7,AD=5,求AF 的长.5.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.6.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、C4、B5、D6、D7、C8、B9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±4.2、(3,7)或(3,-3)3、x(x+1)(x-1)4、455、96、1三、解答题(本大题共6小题,共72分)1、(1)11x =,21x =;(2)12x =-,243x =.2、3x 3、m >﹣24、(1)略;(2)3.5、(1)略(2)略6、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.。
人教版八年级上册数学第一次月考考试卷及完整答案
人教版八年级上册数学第一次月考考试卷及完整答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-5的相反数是( )A .15-B .15C .5D .-52.已知3a =+3b = )A .24B .±C .D .3.下列说法不一定成立的是( )A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >4.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )A .1201508x x =-B .1201508x x =+C .1201508x x =-D .1201508x x =+ 5.若关于x 的一元二次方程(k -1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是( )A .k<5B .k<5,且k ≠1C .k ≤5,且k ≠1D .k>56.关于x 的不等式组314(1){x x x m->-<的解集为x <3,那么m 的取值范围为( )A .m=3B .m >3C .m <3D .m ≥37.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=( )A .30°B .35°C .45°D .60°8.如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,过点D 作DE ∥BC 交AC 于点E,若∠A=54°,∠B=48°,则∠CDE 的大小为( )A .44°B .40°C .39°D .38°9.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( )A .B .C .D .10.如图,直线a ∥b ,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为( )A .30°B .32°C .42°D .58°二、填空题(本大题共6小题,每小题3分,共18分)1.已知直角三角形的两边长分别为3、4.则第三边长为________.2.计算1273-=___________. 3.若一个正数的两个平方根分别是a +3和2﹣2a ,则这个正数的立方根是________.4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若AB=2,则CD=________.5.如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG=CD ,DF=DE ,则∠E=________度.6.如图,已知点E 在正方形ABCD 的边AB 上,以BE 为边向正方形ABCD 外部作正方形BEFG ,连接DF ,M 、N 分别是DC 、DF 的中点,连接MN.若AB=7,BE=5,则MN=________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--.2.先化简,再求值:2211(1)m m m m+--÷,其中3.3.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d -+++的值.4.(1)如图(1),已知:在△ABC 中,∠BAC =90°,AB=AC ,直线m 经过点A ,BD ⊥直线m, CE ⊥直线m,垂足分别为点D 、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC 中,AB=AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE,若∠BDA=∠AEC=∠BAC ,试判断△DEF 的形状.5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、D5、B6、D7、B8、C9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、523、4415、:略6、13 2三、解答题(本大题共6小题,共72分)1、x=32、3、0.4、(1)见解析(2)成立(3)△DEF为等边三角形5、CD的长为3cm.6、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.。
2016-2017学年江西省宜春市高安四中八年级(下)第一次月考数学试卷
2016-2017学年江西省宜春市高安四中八年级(下)第一次月考数学试卷一、选择题(每小题3分,共18分,每小题只有一个正确选项.)1.(3分)计算:的结果为()A.3 B.9 C.1 D.2.(3分)下列计算正确的是()A.4 B.C.2=D.33.(3分)下列各组数据中的三个数,可作为三边长构成直角三角形的是()A.1、2、3 B.32,42,52C.D.4.(3分)如图是一个三级台阶,它的每一级的长、宽和高分别是50cm,30 cm,10cm,A和B是这个台阶的两个相对的端点,A点上有一只壁虎,它想到B点去吃可口的食物,请你算一算这只壁虎从A点出发,沿着台阶面至少需爬(),才能爬到B点.A.13 cm B.40 cm C.130 cm D.169 cm5.(3分)已知a<b,则化简二次根式的正确结果是()A. B.C.D.6.(3分)△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42 B.32 C.42或32 D.37或33二、填空题(每小题3分,共18分)7.(3分)若|a﹣b+1|与互为相反数,则(a﹣b)2017=.8.(3分)已知直角三角形的两条边长分别是3cm和5cm,那么第三边长是.9.(3分)计算:﹣++=.10.(3分)若是整数,则正整数n的最小值为.11.(3分)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A,B,C的面积分别是8cm2,10cm2,14cm2,则正方形D的面积是cm2.12.(3分)已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P 在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为.三、(本大题共五个小题,每小题6分,共30分)13.(6分)计算:(1)(5﹣6+4)÷(2)﹣+﹣.14.(6分)已知x=+2,y=﹣2,求下列各式的值:(1)x2+2xy+y2;(2)x2﹣y2.15.(6分)实数a、b在数轴上的对应点如图所示,请你化简:﹣+.16.(6分)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,请你以格点为顶点分别在图1和图2中画一个直角三角形,使它的三边长都是无理数.(两个三角形不全等)17.(6分)如图,已知正方形ABCD的边长为4,E为AB中点,F为AD上的一点,且AF=AD,请你判断△EFC的形状并说明理由.四、(本大题共四个小题,每小题8分,共32分)18.(8分)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.19.(8分)先化简,再求值:,其中a=,b=.20.(8分)若x,y是实数,且y=++,求(x+)﹣(+)的值.21.(8分)如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处;(1)求证:B′E=BF;(2)设AE=a,AB=b,BF=c,试猜想a,b,c之间的一种关系,并给予证明.五、(本大题共二个小题,10+12=32分)22.(10分)现有一组有规律排列的数:1,﹣1,,﹣,,﹣,1,﹣1,,﹣,,﹣…,其中1,﹣1,,﹣,,﹣这六个数按此规律重复出现,(1)请你判断第100个数是什么数?(2)若把从第1个数开始的前2017个数相加,这2017年加数的和是多少(3)从第1个数起,把连续若干个数的平方加起来,如果这些数的平方和为520,请你求出一共有多少个数的平方相加?23.(12分)阅读下面材料,并解决问题:问题:如图1,等边△ABC内有一点P,若点P到顶点A,B,C的距离分别为6,8,10,求∠APB的度数?分析:由于PA,PB,PC不在同一个三角形中,为了解决本题我们可以将△ABP 绕顶点A旋转到△ACP′处,此时△ACP′和△ABP全等,这样,就可以利用全等三角形知识,将三条线段的长度转化到同一个三角形中从而求出∠APB的度数.应用:(1)请你按上述方法求出图1中∠APB的度数(2)请你利用第(1)题的解答思想方法,解答下面问题:如图2,已知△ABC 中,∠CAB=90°,AB=AC,E、F为BC上的点,且∠EAF=45°,求证:EF2=BE2+FC2.2016-2017学年江西省宜春市高安四中八年级(下)第一次月考数学试卷参考答案一、选择题(每小题3分,共18分,每小题只有一个正确选项.)1.C;2.C;3.C;4.C;5.A;6.C;二、填空题(每小题3分,共18分)7.﹣1;8.4cm或cm;9.0;10.5;11.17;12.(3,4)或(2,4)或(8,4);三、(本大题共五个小题,每小题6分,共30分)13.;14.;15.;16.;17.;四、(本大题共四个小题,每小题8分,共32分)18.;19.;20.;21.;五、(本大题共二个小题,10+12=32分)22.;23.;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二第一次月考数学试题
一、选择题:(本题共8个小题,每小题3分,满分24分) 1.下面有4个汽车标致图案,其中是轴对称图形的是( )
①
② ③ ④
A 、②③④
B 、①②③
C 、①②④
D 、①②④
2.在平面直角坐标系中.点P (-2,3)关于x 轴的对称点在( ). A . 第四象限 B . 第三象限 C .第二象限
D . 第一象限
3.两个三角形只有以下元素对应相等,不能判定两个三角形全等的是( )
A. 两角和一边
B. 两边及夹角
C.三个角
D.三条边
4
.在⊿ABC 和⊿A /B /C /中,AB=A /B /,∠A=∠A /,若证⊿ABC≌⊿A /B /C /还要从下列条件中补选一个,错误的选法
是( )
A. ∠B=∠B /
B. ∠C=∠C /
C. BC=B /C /
D. AC=A /C /
5.如图5,将⊿ADF 绕正方形ABCD 的顶点A 顺时针旋转90度,得到⊿ABE ,连结EF ,则下列结论错误的是( )
A ⊿ADF ≌⊿ABE
B AE ⊥AF
C ∠AEF=45°
D 四边形AECF 的周长等于四边形ABCD 的周长
6.如图6,在△ABC 中,AD 、BE 、CF 交于点O ,且AB=AC ,AF=AE ,BD=CD ,则图中全等的三角形共有( )
A 、5对
B 、6对
C 、7对
D 、8对
7. 如果一个三角形的两边的垂直平分线的交点在第三边上,那么这个三角形是( )
A .锐角三角形 B.钝角三角形
C.直角三角形 D. 不能确定
8.如图7所示,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 边翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为 ( ) A .80° B .100° C .60° D .45°. 二、填空题(本题共8个小题,每小题3分,满分24分) 9.如图:AB=AC ,BD=CD ,若∠B=28°则∠C= ;
10.如图
2,线段AC 与BD 交于点O ,且OA=OC, 请添加一个条件,使△OAB ≅△OCD,这个条件是_____________。
11.如图3,在△ABC 中,∠C=900
,AD 平分∠CAB ,BC=8cm ,BD=5cm ,那么D 点到直线AB 的距离是 。
12.若A (2,b ),B )3,(-a 两点关于y 轴对称,则a +b=__ ___
13.把Rt △ABC (∠C=90°)折叠,使A 、B 两点重合,得到折痕ED 后再沿BE 折叠,C 点恰好与D 点重合,则
∠A 等于________.
14.如图4,四边形ABCD 沿直线l 对折后互相重合,如果AD ∥BC,有下列结论:①AB ∥CD
②AB=CD ③AB ⊥BC ④AO=OC ,其中正确的结论是___________.
图4 图5 15.在平面镜里看到背后墙上,电子钟示数如图5所示,这时的实际时间应该是__ ___. 16.如图6,BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是“______”.
三、作图题(本大题共3小题,第13小题6分,第14题5分,第15小题7分,共18分)
17.(6分)如图,在网格纸上,分别画出所给图形关于直线l 对称的图形. 18.(7分)在图中找出点P ,使得点P 到C 、D 两点的距离相等,并且点P 到OA 、OB 的距离也相等。
(尺规作图,保留作图痕迹,不写作法)
19.(7分)画出△ABC 关于x 轴对称的图形△A 1B 1C 1,并指出△A 1B 1C 1的顶点坐标。
四、解答题(本大题共2小题,每小题7分,共14分) 20.(8分)如图,在△ABC 中,AB=AC,AB 的垂直平分线交AB 、AC 于D 、
G ,
F A B C
D l
O
图5 图6 图7 22题图 C
B
A D E C
B 图6
AB=10cm ,△BGC 的周长为17cm ,求BC 的长.
21 .(8分)如图,△ABC≌△ADE,∠B=30°,∠E=20°,∠BAE=80°,求∠BAC、∠DAC 的度数.
五、证明题(本大题共3小题,26、27小题每小题8分,28题12分, 共28分) 22.( 8分 )已知:如图,A 、F 、C 、D 四点在一直线上,CD AF =,AB ∥DE ,且DE AB =.
求证:(1)ABC ∆≌DEF ∆;(2)BC ∥EF.
23.( 9分 )已知:如图,B F⊥AC 于点F ,CE⊥AB 于点E ,且BD=CD
求证:⑴△BDE≌△CDF ⑵点D 在∠A 的平分线上
24、(9分)如图:在△ABC 中,∠C=90°,AC=BC ,过点C 在△ABC 外作直线MN ,AM ⊥MN 于M ,BN ⊥MN 于N 。
(1)求证:MN=AM+BN 。
(2)若过点C 在△ABC 内作直线MN ,AM ⊥MN 于M ,BN ⊥MN 于N ,则AM 、BN 与MN 之
间有什么关系?请说明理由。
25(10分).如图,△ABC 中,D 是BC 的中点,过D 点的直线GF 交AC 于F ,交AC 的平行线BG 于G 点,DE ⊥DF ,交AB 于点E ,连结EG 、EF . (1)求证:BG =CF .
(2)请你判断BE +CF 与EF 的大小关系,并说明理由.
初二数学答案
1——8 BBCCDCCA 9 、28° 10、∠C=∠A (答案不唯一) 11、3cm 12、-5 13、30° 14、⑴⑵⑷ 15、21:18 16、HL 17、18 略
19、A (3,-4)B (1,-2)C (5,-1) 20、BC=7cm 21、∠BAC=130° ∠DAC=180° 22、23、24、25、略
F E D
C B
A
A B C D
E N
M C B A B
A
D
C
E
F
N
M
C
B
A
F E D C B A G。