全国1卷-理数答案解析

合集下载

2019年高考理数(1卷)答案详细解析(附试卷)

2019年高考理数(1卷)答案详细解析(附试卷)

2019年普通高等学校招生全国统一考试理科数学(I 卷)答案详解一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(集合)已知集合}242{60{}M x x N x x x =-<<=--<,,则M N =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<【解析】集合N ={x |-2<x <3},所以有M ∩N={x |-2<x <2}. 【答案】C2.(复数)设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y +=B .221(1)x y +=-C .22(1)1y x +-=D .22(+1)1y x +=【解析】由题意得i y x i z )1(-+=-,∵=1z i -,∴22(1)1y x +-=,即22(1)1y x +-=【答案】C3.已知0.20.32log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<【解析】由指数函数和对数函数的单调性易得22log 0.2log 10a =<=,0.20 221b =>=,0.3 0.20c =>且0.30 0.20.21c =<=,所以有a c b <<.【答案】B4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的 长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为 105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是 A .165 cmB .175 cmC .185 cmD .190 cm【解析】由题意可知,肚脐至足底的长度大于105cm ,则头顶至肚脐的长度大于105×0.618≈64.89cm ,因此身高大于105+64.89=169.89cm ;头顶至咽喉的长度小于26cm ,则咽喉至肚脐的长度小于42.07cm ,头顶至肚脐的长度小于68.07cm ,所以身高小于68.07+68.07÷0.618=178.21cm. 所以选答案B. 【答案】B5.(函数)函数2cos sin )(xx xx x f ++=在[,]-ππ的图像大致为 A .B .C .D .【解析】∵2cos sin )(x x x x x f ++=,],[ππ-∈x ,∴)(cos sin cos sin )(22x f x x xx x x x x x f -=++-=+--=-,∴f (x )在[,]-ππ上是奇函数,因此排除A ;又01cos sin )(22>π+-π=π+ππ+π=πf ,因此排除B 、C. 【答案】D6.(概率统计)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .1116【解析】所有重卦的个数为6426=,恰有3个阳爻的个数为20C C 3336=,因此恰有3个阳爻的概率为1656420==P PS :其实可以对题目进行抽象:即有A 、B 两种字母,填6个位置,求恰有3个A 的概率.这样更容易求解.【答案】A7.(平面向量)已知非零向量a ,b 满足||2||=a b ,且()-⊥a b b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π6【解析】∵b a 、为非零向量,∴0||0||≠≠b a、. ∵()b -⊥a b ,∴2()||0b a b b -⋅=⋅-=a b ,即2||a b b ⋅=.设a 与b之间的夹角为θ,则2||||cos ||||||||||a b b b a a b a b θ⋅===,∵||2||a b =,∴1cos 2θ=.∵0θπ≤≤,∴3πθ=. 【答案】B8.(程序运算)如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+【解析】通过模拟程序过程,很容易得到正确答案. 【答案】A9.(数列)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =-【解析】设等差数列{}na 的公差为d ,依题意有⎩⎨⎧=+=+5406411d a d a ,解之得⎩⎨⎧=-=231d a .∴1(1)25n a a n d n =+-=-,21(1)42n n n S na d n n -=+=-. 【答案】A10.(解析几何)已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y +=【解析】由题意,设椭圆C 的方程为22221(0)x y a b a b+=>>.∵22||2||AF BF =,2||3||AB BF =,又∵1||||AB BF =,12||3||BF BF =. 由椭圆的定义可知,12||||2BF BF a +=,∴13||2a BF =,2||2aBF =,2||AF a =,1||AF a =. ∵13||||=2aAB BF =,∴1AF B ∆为等腰三角形,在1AF B ∆中,11||1cos 2||3AF F AB AB ∠==. 而在12AF F ∆中,222222121212212||||||22cos 12||||2AF AF F F a a F AB AF AF a a+-+-∠===-, ∴22113a -=,解得2=3a . ∴2=2b ,椭圆C 的方程为22132x y +=. 【答案】B11.(三角函数)关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间2(,)ππ单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③【解析】∵()sin |||sin()|sin |||sin |sin |||sin |()f x x x x x x x f x -=-+-=+-=+=,∴f (x )是偶函数,①正确. 当2(,)x π∈π时,sin ||sin x x =,|sin |sin x x =,则()2sin f x x =为减函数,故f (x )在区间2(,)ππ单调递减,②错误. 当(0,]x ∈π时,()sin |||sin |sin sin 2sin f x x x x x x =+=+=,所以f (x )在(0,]π内有1个零点x =π;由于f (x )是偶函数,所以在[,0)-π内有1个零点x =-π;∵(0)0f =,∴0x =由也是f (x )的1个零点;因此f (x )在[,]-ππ有3个零点,③错误. 当sin ||1x =、|sin |1x =时,f (x )取得最大值2,④正确.【答案】C12.(立体几何)已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为 A .68πB .64πC .62πD .6π【解析】如图A12所示.图A12在△PAC 中,设∠PAC=θ,PA=PB=PC=2x ,EC=y ,x >0,y >0, ∵点E 、F 分别为PA 、AB 的中点,∴x PB EF ==21,AE =x , 在△PAC 中,由余弦定理得:xx x x 21222424cos 222=⨯⨯-+=θ, 在△EAC 中,由余弦定理得:xy x x y x 44222cos 22222+-=⨯⨯-+=θ, ∴xy x x 442122+-=,即222-=-y x ①. ∵△ABC 是边长为2的正三角形,∴360sin 2=⨯= CF ∵∠CEF =90°,∴222CF EF CE =+,即322=+y x ②.联立①②得,22=x ,∴PA=PB=PC=2x=2 ∵△ABC 是边长为2的正三角形,∴222AB PB PA =+,222AC PC PA =+,222BC PC PB =+,即PA=PB=PC 两两垂直,∴三棱锥P-ABC 的外接球O 即以PA 为棱的正方体的外接球 ∴外接球的直径为62222=++=PC PB PA R ,∴26=R ∴外接球O 的体积为π6866π34π343=⨯==R V【答案】D二、填空题:本题共4小题,每小题5分,共20分。

2020年高考理科数学全国1卷(word版,含答案)

2020年高考理科数学全国1卷(word版,含答案)

1.【ID:4002604】若,则()A.B.C.D.【答案】D【解析】解:,则.故选D.2.【ID:4002605】设集合,,且,则()A.B.C.D.【答案】B【解析】解:易求得:,,则由,得,解得.故选B.3.【ID:4002606】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.B.C.D.【答案】C【解析】解:如图,设正四棱锥的底面边长为,斜高,则,两边同时除以,得:,解得:,故选C.4.【ID:4002607】已知为抛物线:上一点,点到的焦点的距离为,到轴的距离为,则()A.B.C.D.【答案】C【解析】解:由题意知,,则.故选C.5.【ID:4002608】某校一个课外学习小组为研究某作物种子的发芽率和温度(单位:)的关系,在个不同的温度条件下进行种子发芽实验,由实验数据得到下面的散点图:由此散点图,在至之间,下面四个回归方程类型中最适宜作为发芽率和温度的回归方程类型的是()A.B.C.D.【答案】D【解析】解:由图易知曲线特征:非线性,上凸,故选D.6.【ID:4002609】函数的图象在点处的切线方程为()A.B.C.D.【答案】B【解析】解:,则切线斜率,又,则切线方程为.故选B.7.【ID:4002610】设函数在的图象大致如下图,则的最小正周期为()A.B.C.D.【答案】C【解析】解:由图可估算,则.故选C.由图可知:,由单调性知:,解得,又由图知,则,当且仅当时满足题意,此时,故最小正周期.8.【ID:4002611】的展开式中的系数为()A.B.C.D.【答案】C【解析】解:,要得到项,则应取项,则其系数为.故选C.9.【ID:4002612】已知,且,则()A.B.C.D.【答案】A【解析】解:由,得,解得:或(舍),又,则.故选A.10.【ID:4002613】已知,,为球的球面上的三个点,为的外接圆.若的面积为,,则球的表面积为()A.B.C.D.【答案】A【解析】解:由条件易得:,由,则,则,所以球的表面积为.故选A.11.【ID:4002614】已知:,直线:,为上的动点.过点作的切线,,切点为,,当最小时,直线的方程为()A.B.C.D.【答案】D【解析】解::,则,如图,由圆的切线性质,易知:,则,所以最小时,最短,即最短,此时,易求得:,则直线:,整理,得:.故选D.12.【ID:4002615】若,则()A.B.C.D.【答案】B【解析】根据题意,有,若,则,不符合题意,因此.13.【ID:4002616】若,满足约束条件,则的最大值为________.【答案】1【解析】解:作不等式组满足的平面区域如图:易得:,,,因为区域为封闭图形,分别将点的坐标代入,得最大值为.14.【ID:4002617】设,为单位向量,且,则________.【答案】【解析】解:因为,,则,则.15.【ID:4002618】已知为双曲线:的右焦点,为的右顶点,为上的点,且垂直于轴.若的斜率为,则的离心率为________.【答案】2【解析】解:如图,,,则由题意得:,解得:,(舍),所以的离心率为.16.【ID:4002619】如图,在三棱锥的平面展开图中,,,,,,则________.【答案】【解析】在中,;在中,,由展开图的生成方式可得,在中,由余弦定理可得,于是,因此在中,由余弦定理可得.17. 设是公比不为的等比数列,为,的等差中项.(1)【ID:4002620】求的公比.【答案】【解析】解:设数列的公比为,则,,即,解得或(舍去),的公比为.(2)【ID:4002621】若,求数列的前项和.【答案】【解析】解:记为的前项和.由及题设可得,.所以,.可得.所以.18. 如图,为圆锥的顶点,是圆锥底面的圆心,为底面直径,.是底面的内接正三角形,为上一点,.(1)【ID:4002622】证明:平面.【答案】见解析【解析】方法:以为原点,所在直线为轴,建立如图所示的空间直角坐标系,则有,,,,,.,,,则,,,平面.方法:设,由题设可得,,,.因此,从而.又,故.所以平面.(2)【ID:4002623】求二面角的余弦值.【答案】【解析】由知,,,平面的一个法向量为,设平面的一个法向量为,则,即,解得,,二面角的余弦值为.19. 甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰:当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为.(1)【ID:4002624】求甲连胜四场的概率.【答案】【解析】解:.(2)【ID:4002625】求需要进行第五场比赛的概率.【答案】【解析】(甲连胜场)(乙连胜场)(丙连胜场).(3)【ID:4002626】求丙最终获胜的概率.【答案】【解析】丙最终获胜,有两种情况,丙连胜或输一场.(丙连胜),丙输一场,则共进行场,丙可以在①第场输,、场胜;②第、场胜,场输;③第、、场胜,第场输,(丙第场输,,场胜);(丙第,场胜,第场输);(丙第,,场胜,第场输),(丙胜).20. 已知,分别为椭圆:的左、右顶点.为的上顶点,,为直线上的动点,与的另一交点为,与的另一交点为.(1)【ID:4002627】求的方程.【答案】【解析】由题意知,,,故,,,故椭圆的方程为.(2)【ID:4002628】证明:直线过定点.【答案】见解析【解析】方法:设,,故:,,故:,联立,,同理可得,,①当时,:,②当时,,:,③当且时,,:,令,故直线恒过定点.方法:设,,.若,设直线的方程为,由题意可知.因为直线的方程为,所以.直线的方程为,所以.可得.又,故,可得,即.①将代入得.所以,.代入①式得.解得(舍去),.故直线的方程为,即直线过定点.若,则直线的方程为,过点.综上,直线过定点.21. 已知函数.(1)【ID:4002629】当时,讨论的单调性.【答案】当时,函数单调递减;当时,函数单调递增.【解析】当时,,其导函数,又函数为单调递增函数,且,于是当时,函数单调递减;当时,函数单调递增.(2)【ID:4002630】当时,,求的取值范围.【答案】【解析】方法:根据题意,当时,不等式显然成立;当时,有,记右侧函数为,则其导函数,设,则其导函数,当时,函数单调递减,而,于是.因此函数在上单调递增,在上单调递减,在处取得极大值,也为最大值.因此实数的取值范围是,即.方法:等价于.设函数,则.(i)若,即,则当时,.所以在上单调递增,而,故当时,,不合题意.(ii)若,即,则当时,;当时,.所以在,上单调递减,在上单调递增.又,所以当且仅当,即.所以当时,.(iii)若,即,则.由于,故由(ii)可得.故当,.综上,的取值范围是.22. 在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)【ID:4002631】当时,是什么曲线?【答案】为以坐标原点为圆心,半径为的圆.【解析】解:,的参数方程为,则的普通方程为:,是以坐标原点为圆心,半径为的圆.(2)【ID:4002632】当时,求与的公共点的直角坐标.【答案】【解析】解:当时,:,消去参数,得的直角坐标方程为:,的直角坐标方程为:,联立得,其中,,,解得,与的公共点的直角坐标为.23. 已知函数.(1)【ID:4002633】画出的图象.【答案】见解析【解析】解:如图,.(2)【ID:4002634】求不等式的解集.【答案】【解析】解:方法:由题意知,结合图象有,当时,不等式恒成立,故舍去;当,即时,不等式恒成立;当时,由,得,,解得,综上,.方法:函数的图象向左平移个单位长度后得到函数的图象.的图象与的图象的交点坐标为.由图象可知当且仅当时,的图象在的图象上方.故不等式的解集为.。

2020年高考理科数学全国卷1(附答案与解析)

2020年高考理科数学全国卷1(附答案与解析)

绝密★启用前2020年普通高等学校招生全国统一考试·全国Ⅰ卷理科数学本试卷共6页,23题(含选考题).全卷满分150分.考试用时120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码黏贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。

写在试卷,草稿纸和答题卡上的非答题区域均无效。

4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试卷,草稿纸和答题卡上的非答题区域均无效。

5.考试结束后,请将本试卷和答题卡一并上交。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若1i z =+,则22z z -=( )A .0B .1C .2D .22.设集合{}240A x x =-≤,{}20B x x a =+≤,且{}21A B x x =-≤≤,则a =( )A .4-B .2-C .2D .43.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A .514- B .512- C .514+D .512+4.已知A 为抛物线()2:20C y px p =>上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( )A .2B .3C .6D .95.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据()()1220i i x y i =,,,…,得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( )A .y a bx =+B .2y a bx =+C .x y a be =+D .ln y a b x =+6.函数()432f x x x =-的图像在点()()11f ,处的切线方程为( )A .21y x =--B .21y x =-+毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在------------------此-------------------卷-------------------上-------------------答-------------------题-------------------无------------------效----------------C .23y x =-D .21y x =+7.设函数()πcos 6f x x ω⎛⎫=+ ⎪⎝⎭在[]ππ-,的图像大致如下图,则()f x 的最小正周期为( )A .10π9B .7π6 C .4π3 D .3π28.()25y x x y x ⎛⎫++ ⎪⎝⎭的展开式中33x y 的系数为( )A .5B .10C .15D .20 9.已知()0πα∈,,且3cos28cos 5αα-=,则sin α= ( )A .53B .23C .13D .5910.已知A ,B ,C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π11.已知⊙22:2220M x y x y +---=,直线:220l x y ++=,P 为l 上的动点.过点P 作⊙M 的切线PA ,PB ,切点为A ,B ,当PM AB ⋅最小时,直线AB 的方程为( )A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++= 12.若242log 42log aba b +=+则( )A .2a b >B .2a b <C .2a b >D .2a b <二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件2201010x y x y y +-⎧⎪--⎨⎪+⎩≤,≥,≥,则7z x y =+的最大值为 .14.设a ,b 为单位向量,且1+=a b ,则-=a b .15.已知F 为双曲线()2222:100x y C a b a b-=>,>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴,若AB 的斜率为3,则C 的离心率为 .16.如图,在三棱锥P ABC -的平面展开图中,1AC =,3AB AD ==,AB AC ⊥,AB AD ⊥,30CAE ∠=,则cos FCB ∠= .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项. (1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.18.(12分)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC △是底面的内接正三角形,P 为DO 上一点,66PO DO =. (1)证明:PA PBC ⊥平面; (2)求二面角B PC E --的余弦值.19.(12分)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一轮轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12.(1)求甲连胜四场的概率; (2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率.20.(12分)已知A ,B 分别为椭圆E :()22211x y a a+=>的左、右顶点,G 为E 上顶点,8AG GB ⋅=.P 为直线6x =上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程; (2)证明:直线CD 过定点.21.(12分)已知函数()2x f x e ax x =+-.(1)当1a =时,讨论()f x 的单调性;(2)当0x ≥时,()3112f x x +≥,求a 的取值范围.(二)选考题:共10分,请考生在22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4—4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线1C 的参数方程为()cos sin kkx t t y t⎧=⎪⎨=⎪⎩,为参数,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=. (1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标.23.[选修4—5:不等式选讲](10分) 已知函数()3121f x x x =+--. (1)画出()y f x =的图像;(2)求不等式()()1f x f x +>的解集.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在------------------此------------------卷------------------上-------------------答------------------题------------------无------------------效----------------2020年普通高等学校招生全国统一考试·全国Ⅰ卷理科数学答案解析一、选择题 1.【答案】D【解析】由题意首先求得22z z -的值,然后计算其模即可.由题意可得:()2212z i i =+=,则()222212z z i i -=-+=-.故2222z z -=-=.故选:D .【考点】复数的运算法则,复数的模的求解 2.【答案】B【解析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的 值.求解二次不等式240x -≤可得:{}22A x x =-≤≤,求解一次不等式20x a +≤可得:2a B x x ⎧⎫=-⎨⎬⎩⎭≤.由于{}21AB x x =-≤≤,故:12a-=,解得:2a =-.故选:B .【考点】交集的运算,不等式的解法 3.【答案】C【解析】设CD a =,PE b =,利用212PO CD PE =⋅得到关于a ,b 的方程,解方程即可得到答案.如图,设CD a =,PE b =,则PO ==212PO ab =,即22142a b ab -=,化简得24210b b a a ⎛⎫-⋅-= ⎪⎝⎭,解得14b a +=(负值舍去). 故选:C .【考点】正四棱锥的概念及其有关计算 4.【答案】C【解析】利用抛物线的定义建立方程即可得到答案. 设抛物线的焦点为F ,由抛物线的定义知122A p AF x =+=,即1292p=+,解得6p =. 故选:C .【考点】利用抛物线的定义计算焦半径 5.【答案】D【解析】根据散点图的分布可选择合适的函数模型.由散点图分布可知,散点图分布在一个对数函数的图象附近,因此,最适合作为发芽率y 和温度x 的回归方程类型的是ln y a b x =+.故选:D .【考点】函数模型的选择,散点图的分布6.【答案】B【解析】求得函数()y f x =的导数()f x ',计算出()1f 和()1f '的值,可得出所求切线的点斜式方程,化简 即可.()432f x x x =-,()3246f x x x '∴=-,()11f ∴=-,()12f '=-,因此,所求切线的方程为()121y x +=--,即21y x =-+. 故选:B .【考点】利用导数求解函图象的切线方程7.【答案】C【解析】由图可得:函数图象过点409π⎛⎫-⎪⎝⎭,,即可得到4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭,结合409π⎛⎫- ⎪⎝⎭,是函数()f x 图象与x 轴负半轴的第一个交点即可得到4962πππω-⋅+=-,即可求得32ω=,再利用三角函数周期公式即 可得解.由图可得:函数图象过点409π⎛⎫-⎪⎝⎭,,将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭. 又409π⎛⎫- ⎪⎝⎭,是函数()f x 图象与x 轴负半轴的第一个交点,所以4962πππω-⋅+=-,解得:32ω=.所以函数()f x 的最小正周期为224332T πππω===. 故选:C .【考点】三角函数的性质及转化,三角函数周期公式 8.【答案】C【解析】求得()5x y +展开式的通项公式为515r r rr T C x y -+=(r ∈N 且5r ≤),即可求得2y x x ⎛⎫+ ⎪⎝⎭与()5x y + 展开式的乘积为65rrrC xy -或425r rr C xy-+形式,对r 分别赋值为3,1即可求得33x y 的系数,问题得解.()5x y + 展开式的通项公式为515rrrr T C xy -+=(r ∈N 且5r ≤).所以2y x x ⎛⎫+ ⎪⎝⎭与()5x y +展开式的乘积可表示为:56155rrrr rrr xT xC x y C xy --+==或22542155r r rr r r r T C x y xC y y y x x --++==在615r r r r xT C x y -+=中,令3r =,可得:33345xT C x y =,该项中33x y 的系数为10,在42152r r r r T C x xy y -++=中,令1r =,可得:521332T C y x xy =,该项 中33x y 的系数为5.所以33x y 的系数为10515+=. 故选:C【考点】二项式定理及其展开式的通项公式,赋值法 9.【答案】A【解析】用二倍角的余弦公式,将已知方程转化为关于cos α的一元二次方程,求解得出cos α,再用同角间的三角函数关系,即可得出结论.3cos28cos 5αα-=,得26cos 8cos 80αα--=,即23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又(0)απ∈,,sin α∴==. 故选:A .【考点】三角恒等变换,同角间的三角函数关系求值 10.【答案】A【解析】由已知可得等边ABC △的外接圆半径,进而求出其边长,得出1OO 的值,根据球截面性质,求出 球的半径,即可得出结论.设圆1O 半径为r ,球的半径为R ,依题意,得24r ππ=,2r ∴=,由正弦定理可得2sin 6023AB r ==,1OO AB ∴==,根据圆截面性质1OO ABC ⊥平面,11OO O A ∴⊥,4R OA =,∴球O 的表面积2464S R ππ==.故选:A .【考点】球的表面积,应用球的截面性质11.【答案】D【解析】由题意可判断直线与圆相离,根据圆的知识可知,四点A ,P ,B ,M 共圆,且AB MP ⊥,根据22PAM PM AB S PA ⋅==△可知,当直线MP l ⊥时,PM AB ⋅最小,求出以MP 为直径的圆的方程,根据圆系的知识即可求出直线AB 的方程.圆的方程可化为()()22114x y -+-=,点M 到直线l的距离为2d ==,所以直线l 与圆相离.依圆的知识可知,四点A ,P ,B ,M 四点共圆,且AB MP ⊥, 所以12222PAMPM AB S PA AM PA ⋅==⨯⨯⨯=△,而PA =,当直线MP l ⊥时,min MP =min 1PA =,此时PM AB ⋅最小.()1:112MP y x ∴-=-即1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,10x y =-⎧⎨=⎩. 所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即2210x y y +--=,两圆的方程相减可得:210x y ++=,即为直线AB 的方程.故选:D .【考点】直线与圆,圆与圆的位置关系的应用,圆的几何性质的应用 12.【答案】B【解析】设()22log x f x x =+,利用作差法结合()f x 的单调性即可得到答案. 设()22log xf x x =+,则()f x 为增函数,因为22422log 42log 2log a b ba b b +=+=+,所以()()()()22222222122log 2log 22log 2log 2log 102a b b b f a f b a b b b -=+-+=+-+==-<,所以()()2f a f b <,所以2a b <.()()()()22222222222222log 2log 2log 2log 22log a b b b b b f a f b a b b b b-=+-+=+-+=--,当1b =时,()()220f a f b -=>,此时()()2f a f b >,有2a b >.当2b =时,()()210f a f b -=-<,此时()()2f a f b <,有2a b <,所以C 、D 错误. 故选:B .【考点】函数与方程的综合应用,构造函数,利用函数的单调性比较大小二、填空题 13.【答案】1【解析】首先画出可行域,然后结合目标函数的几何意义即可求得其最大值. 绘制不等式组表示的平面区域,如图所示,目标函数7z x y =+即:1177y x z =-+,其中z 取得最大值时,其几何意义表示直线系在y 轴上的截距最大,据此结合目标函数的几何意义可知目标函数在点A 处取得最大值,联立直线方程:22010x y x y +-=⎧⎨--=⎩,可得点 A 的坐标为:()10A ,,据此可知目标函数的最大值为:max 1701z =+⨯=.故答案为:1. 14.【解析】整理已知可得:()2a b a b +=+,再利用a ,b 为单位向量即可求得21a b ⋅=-,对a b -变形可得:222a b a a b b -=-⋅+,问题得解.因为a ,b 为单位向量,所以1a b ==,所以()2222221a b a ba ab b a b +=+=+⋅+=+⋅=.解得:21a b ⋅=-. 所以()22223a b a b a a b b -=-=-⋅+=.【考点】向量模的计算公式及转化 15.【答案】2【解析】根据双曲线的几何性质可知,2b BF a=,AF c a =-,即可根据斜率列出等式求解即可.依题可得,3BF AF =,而2bBF a =,AF c a =-,即23ba c a=-,变形得22233c a ac a -=-,化简可得, 2320e e -+=,解得2e =或1e =(舍去).故答案为:2. 【考点】双曲线的离心率的求法,双曲线的几何性质的应用 16.【答案】14-【解析】在ACE △中,利用余弦定理可求得CE ,可得出CF ,利用勾股定理计算出BC 、BD ,可得出BF ,然后在BCF △中利用余弦定理可求得cos FCB ∠的值.AB AC ⊥,AB 1AC =,由勾股定理得2BC ==,同理得BD =,BF BD ∴==ACE △中,1AC =,AE AD ==30CAE ∠=,由余弦定理得2222cos3013211CE AC AE AC AE =+-⋅=+-⨯=,1CF CE ∴==,在BCF△中,2BC =,BF =,1CF =,由余弦定理得2221461cos 22124CF BC BF FCB CF BC +-+-∠===-⋅⨯⨯.故答案为:14-.【考点】利用余弦定理解三角形 三、解答题17.【答案】(1)2-(2)()()11329nn n S -+-=【解析】(1)由已知结合等差中项关系,建立公比q 的方程,求解即可得出结论.设{}n a 的公比为q ,1a 为2a ,3a 的等差中项,1232a a a =+,10a ≠,220q q ∴+-=,1q ≠,2q ∴=-.(2)由(1)结合条件得出{}n a 的通项,根据{}n na 的通项公式特征,用错位相减法,即可求出结论.设{}n na 的前n 项和为n S ,11a =,()12n n a -=-,()()()211122322n n S n -=⨯+⨯-+⨯-++-,①()()()()()()2312122232122n nn S n n --=⨯-+⨯-+⨯-+--+-,②-①②得,()()()()()()()()()211211323122222123nnn nnn n S n n ----+-=+-+-++---=--=--,()()11329nn n S -+-∴=.【考点】等比数列通项公式基本量的计算,等差中项的性质,错位相减法求和 18.【答案】(1)证明:由题设,知DAE △为等边三角形,设1AE =,则DO =,112CO BO AE ===,所以PO =,PC =,PB ==又ABC △为等边三角形,则2sin60BA OA=,所以BA =22234PA PB AB +==,则90APB ∠=,所以PA PB ⊥,同理PAPC ⊥,又PC PB P =,所以PA PBC ⊥平面.(2)5【解析】(1)要证明PA PBC ⊥平面,只需证明PA PB ⊥,PA PC ⊥即可. 由题设,知DAE △为等边三角形, 设1AE =,则DO =,1122CO BO AE ===,所以PO=,4PC ==, 4PB ==,又ABC △为等边三角形,则2sin60BA OA =,所以2BA =,22234PA PB AB +==,则90APB ∠=,所以PA PB ⊥,同理PA PC ⊥,又PCPB P =,所以PA PBC ⊥平面. (2)以O 为坐标原点,OA 为x 轴,ON 为y 轴建立如图所示的空间直角坐标系,分别算出平面PCB 的法向量为n ,平面PCE 的法向量为m ,利用公式cos m <,||||n mn n m ⋅=>计算即可得到答案.过O 作ON BC ∥交AB 于点N ,因为PO ABC ⊥平面,以O 为坐标原点,OA 为x 轴,ON 为y 轴建立如图所示的空间直角坐标系,则1002E ⎛⎫- ⎪⎝⎭,,,004P ⎛⎫ ⎪⎪⎝⎭,,,104B ⎛⎫- ⎪⎪⎝⎭,104C ⎛⎫- ⎪⎪⎝⎭,,14PC ⎛=- ⎝⎭,,14PB ⎛=-⎝⎭,102PE ⎛=- ⎝⎭,,,设平面PCB 的一个法向量为()111n x y z =,,,由0n PC n PB ⎧⋅=⎪⎨⋅=⎪⎩,得1111110x x ⎧--=⎪⎨-+-=⎪⎩,令1x =得11z =-,10y =,所以()201n =-,,,设平面PCE 的一个法向量为()222m x y z =,,由00m PC m PE ⎧⋅=⎪⎨⋅=⎪⎩,得22222020x x ⎧-=⎪⎨-=⎪⎩,令21x =,得2z =2y=,所以 313m ⎛= ⎝,故cos m <,2||||3n m n n m ⋅==⋅⨯,设二面角22143x y +=的大小为θ,则cos θ. 【考点】线面垂直的证明,利用向量求二面角的大小 19.【答案】(1)116(2)34(3)716【解析】(1)根据独立事件的概率乘法公式可求得事件“甲连胜四场”的概率.记事件:M 甲连胜四场,则()411216P M ⎛⎫== ⎪⎝⎭.(2)计算出四局以内结束比赛的概率,然后利用对立事件的概率公式可求得所求事件的概率.记事件A 为甲输,事件B 为乙输,事件C 为丙输,则四局内结束比赛的概率为()()()()411424P P ABAB P ACAC P BCBC P BABA ⎛⎫'=+++=⨯= ⎪⎝⎭,所以,需要进行第五场比赛的概率为314P P '=-=.(3)列举出甲赢的基本事件,结合独立事件的概率乘法公式计算出甲赢的概率,由对称性可知乙赢的概率和甲赢的概率相等,再利用对立事件的概率可求得丙赢的概率.记事件A 为甲输,事件B 为乙输,事件C 为丙输,记事件:M 甲赢,记事件:N 丙赢,则甲赢的基本事件包括:BCBC 、ABCBC 、ACBCB 、BABCC 、BACBC 、BCACB 、BCABC 、BCBAC ,所以,甲赢的概率为()4511972232P M ⎛⎫⎛⎫=+⨯= ⎪⎪⎝⎭⎝⎭.由对称性可知,乙赢的概率和甲赢的概率相等,所以丙赢的概率为()97123216P N =-⨯=.【考点】独立事件概率的计算20.【答案】(1)2219x y +=(2)证明:设()06P y ,,则直线AP 的方程为:()()00363y y x -=+--,即:()039yy x =+.联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++-=,解得:3x =-或20203279y x y -+=+.将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+.所以点C 的坐标为2002200327699y y y y ⎛⎫-+ ⎪++⎝⎭,.同理可得:点D 的坐标为200220033211y y y y ⎛⎫-- ⎪++⎝⎭,.∴直线CD 的方程为: 0022********2000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=- ⎪ ⎪-+-++⎝⎭⎝⎭-++,整理可得: ()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭.整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭.故直线CD 过定点302⎛⎫⎪⎝⎭,. 【解析】(1)由已知可得:()0A a -,,()0B a ,,()01G ,,即可求得21AG GB a ⋅=-,结合已知即可求得:29a =,问题得解.依据题意作出如下图象:由椭圆方程()222:11x E y a a +=>可得:()0A a -,,()0B a ,,()01G ,.∴()1AG a =,,()1GB a =-,.∴218AG GB a ⋅=-=,∴29a =.∴椭圆方程为:2219x y +=.(2)设()06P y ,,可得直线AP 的方程为:()039yy x =+,联立直线AP 的方程与椭圆方程即可求得点C 的坐标为2002200327699y y y y ⎛⎫-+ ⎪++⎝⎭,,同理可得点D 的坐标为200220033211y y y y ⎛⎫-- ⎪++⎝⎭,,即可表示出直线CD 的方程, 整理直线CD 的方程可得:()02043233y y x y ⎛⎫=- ⎪-⎝⎭,命题得证. 证明:设()06P y ,,则直线AP 的方程为:()()00363y y x -=+--,即:()039yy x =+.联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810yx y x y +++-=,解得:3x =-或20203279y x y -+=+.将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+.所以点C 的坐标为2002200327699y y y y ⎛⎫-+ ⎪++⎝⎭,.同理可得:点D 的坐标为200220033211y y y y ⎛⎫-- ⎪++⎝⎭,. ∴直线CD 的方程为:0022200002222000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=-⎪ ⎪-+-++⎝⎭⎝⎭-++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭ 整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭. 故直线CD 过定点302⎛⎫ ⎪⎝⎭,. 【考点】椭圆的简单性质,方程思想21.【答案】(1)当()0x ∈-∞,时,()'0f x <,()f x 单调递减,当()0x ∈+∞,时,()'0f x >,()f x 单调递增.(2)274e ⎡⎫-+∞⎪⎢⎣⎭, 【解析】(1)由题意首先对函数二次求导,然后确定导函数的符号,最后确定原函数的单调性即可.当1a =时,()2x x x e f x =+-,()'21x f x e x =+-,由于()''20x f x e =+>,故()'f x 单调递增,注意到()'00f =,故:当()0x ∈-∞,时,()'0f x <,()f x 单调递减,当()0x ∈+∞,时,()'0f x >,()f x 单调递增.(2)首先讨论0x =的情况,然后分离参数,构造新函数,结合导函数研究构造所得的函数的最大值即可确 定实数a 的取值范围.由()3112f x x +≥得,23112x e ax x x +-+,其中0x ≥,①当0x =时,不等式为:11≥,显然成立,符合题意;②当0x >时,分离参数a 得,32112x e x x a x----, 记()32112x e x x g x x ---=-,()()231212'x x e x x g x x ⎛⎫---- ⎪⎝⎭=-,令()()21102x e x x h x x ---=≥,则()'1x h x e x =--,()''10x h x e =-≥,故()'h x 单调递增,()()''00h x h =≥,故函数()h x 单调递增,()()00h x h =≥,由()0h x ≥可得:21102x e x x ---恒成立,故当()02x ∈,时,()'0g x >,()g x 单调递增; 当()2x ∈+∞,时,()'0g x <,()g x 单调递减;因此,()()2max724e g x g -⎡⎤==⎣⎦, 综上可得,实数a 的取值范围是274e ⎡⎫-+∞⎪⎢⎣⎭,. 【考点】导数的几何意义,解析几何,微积分,用导数求函数的单调区间,判断单调性,已知单调性求参数,利用导数求函数的最值(极值),数形结合思想的应用 22.【答案】(1)曲线1C 表示以坐标原点为圆心,半径为1的圆(2)1144⎛⎫⎪⎝⎭,【解析】(1)利用22sin cos 1t t +=消去参数t ,求出曲线1C 的普通方程,即可得出结论.当1k =时,曲线1C 的参数方程为cos sin x t y t=⎧⎨=⎩(t 为参数),两式平方相加得221x y +=,所以曲线1C 表示以坐标原点为圆心,半径为1的圆.(2)当4k =时,0x ≥,0y ≥,曲线1C 的参数方程化为22cos sin tt(t 为参数),两式相加消去参数t ,得1C 普通方程,由cos x ρθ=,sin y ρθ=,将曲线2C 化为直角坐标方程,联立1C ,2C 方程,即可求解.当4k =时,曲线1C 的参数方程为44cos sin x ty t⎧=⎨=⎩(t 为参数),所以数学试卷 第21页(共22页) 数学试卷 第22页(共22页)0x ≥,0y ≥,曲线1C的参数方程化为22cos sin tt(t 为参数),两式相加得曲线1C11,平方得1y x =-,01x ≤≤,01y ≤≤,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=,曲线2C 直角坐标方程为41630x y -+=,联立1C ,2C方程141630y x x y ⎧=-⎪⎨-+=⎪⎩,整理得12130x -=12=136(舍去),14x ∴=,14y =,1C ∴,2C 公共点的直角坐标为1144⎛⎫⎪⎝⎭,.【考点】参数方程与普通方程互化,极坐标方程与直角坐标方程互化23.【答案】(1)因为()3115113133x x f x x x x x ⎧⎪+⎪⎪=--⎨⎪⎪---⎪⎩,≥,<<,≤,作出图象,如图所示:(2)76⎛⎫-∞- ⎪⎝⎭, 【解析】(1)根据分段讨论法,即可写出函数()f x 的解析式,作出图象.因为()3115113133x x f x x x x x ⎧⎪+⎪⎪=--⎨⎪⎪---⎪⎩,≥,<<,≤,作出图象,如图所示:(2)作出函数()1f x +的图象,根据图象即可解出.将函数()f x 的图象向左平移1个单位,可得函数()1f x +的图象,如图所示:由()3511x x --=+-,解得76x =-.所以不等式的解集为76⎛⎫-∞- ⎪⎝⎭,. 【考点】分段函数的图象,利用图象解不等式。

2022年高考全国卷1理科数学试题及参考答案

2022年高考全国卷1理科数学试题及参考答案

普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}42M x x =-<<,{}260N x x x =--<,则M N =A .{}43x x -<<B .{}42x x -<<-C .{}22x x -<<D .{}23x x <<2.设复数z 满足1z i -=,z 在复平面内对应的点为(),x y ,则A .()2211x y ++=B .()2211x y -+=C .()2211x y +-=D .()2211x y ++=3.已知2log 0.2a =,0.22b =,0.30.2c =,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是51-(510.618-≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-。

若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是 A .165cmB .175cmC .185cmD .190cm5.函数()2sin cos x xf x x x+=+在[],ππ-的图象大致为6.我国古代典籍《周易》用“卦”描述万物的变化。

每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,右图就是一重卦,在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A.516B .1132C .2132D .11167.已知非零向量a ,b 满足2a b =,且()a b b -⊥,则a 与b 的夹角为()A .6π B .3π C .23π D .56π 8.右图是求112122++的程序框图,图中空白框中应填入A .12A A =+B .12A A=+C .112A A=+D .112A A=+9.记n S 为等差数列{}n a 的前n 项和,已知4=0S ,55a =,则A .25n a n =-B .310n a n =-C .228n S n n =-D .2122n S n n =-10.已知椭圆C 的焦点为()11,0F -,()21,0F ,过2F 的直线与C 交于A ,B 两点,若222AF F B =,1AB BF =,则C 的方程为A .2212x y += B .22132x y +=C .22143x y +=D .22154x y +=11.关于函数()sin sin f x x x =+有下述四个结论:①()f x 是偶函数②()f x 在区间,2ππ⎛⎫⎪⎝⎭单调递增 ③()f x 在[],ππ-有4个零点④()f x 的最大值为2 A .①②④B .②④C .①④D .①③12.已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,△ABC 是边长为2的正三角形,E ,F 分别是PA ,PB 的中点,90CEF ∠=︒,则球O 的体积为A .86πB .46πC .26πD 6π二、填空题:本题共4小题,每小题5分,共20分。

2019年高考理科数学(全国1卷)答案详解(附试卷)

2019年高考理科数学(全国1卷)答案详解(附试卷)

P 20 5 64 16
PS:其实可以对题目进行抽象:即有 A、B 两种字母,填 6 个位置,求恰有 3 个 A 的概率.这样更
容易求解.
【答案】A
第 2 页 共 18 页
7.(平面向量)已知非零向量 a,b 满足 | a | 2 | b | ,且 (a b) b ,则 a 与 b 的夹角为
头顶至肚脐的长度小于 68.07cm,所以身高小于 68.07+68.07÷0.618=178.21cm. 所以选答案 B.
【答案】B
5.(函数)函数
f
(x)

sin x x cos x x2
在[, ] 的图像大致为
A.
B.
C.
D.
【解析】∵
f (x)
sin x x cos x x2
A. (x+1)2 y 2 1 B. (x 1)2 y2 1 C. x2 ( y 1)2 1 D. x2 ( y+1)2 1
【解析】由题意得 z i x ( y 1)i ,∵ z i =1 ,∴ x2 ( y 1)2 1 ,即 x2 ( y 1)2 1
【答案】D
6.(概率统计)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的 6 个爻 组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦 恰有 3 个阳爻的概率是
5
A.
16
11
B.
32
21
C.
32
11
D.
16
【解析】所有重卦的个数为 26 64 ,恰有 3 个阳爻的个数为 C36C33 20 ,因此恰有 3 个阳爻的概率为

2021年高考理科数学全国新课标卷1(附答案)

2021年高考理科数学全国新课标卷1(附答案)

2021年高考理科数学全国新课标卷1(附答案)2021年普通高等学校夏季招生全国统一考试数学理工农医类(全国卷I新课标)注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2021课标全国Ⅰ,理1)已知集合A={x|x2-2x>0},B={x|-5<x<5},则( ). A.A∩B= B.A∪B=R C.B?A D.A?B2.(2021课标全国Ⅰ,理2)若复数z满足(3-4i)z=|4+3i|,则z的虚部为( ).A.-4 B.?A.500π3866π3cm B.cm 3344 C.4 D. 557.(2021课标全国Ⅰ,理7)设等差数列{an}的前n项和为Sn,若Sm-1=-2,Sm=0,Sm+1=3,则m=( ).A.3 B.4 C.5 D.68.(2021课标全国Ⅰ,理8)某几何体的三视图如图所示,则该几何体的体积为( ).3.(2021课标全国Ⅰ,理3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ).A.简单随机抽样 B.按性别分层抽样 C.按学段分层抽样 D.系统抽样x2y254.(2021课标全国Ⅰ,理4)已知双曲线C:2?2=1(a>0,b>0)的离心率为,则C的渐近线方程为( ).ab211A.y=?x B.y=?x341C.y=?x D.y=±x25.(2021课标全国Ⅰ,理5)执行下面的程序框图,如果输入的t∈[-1,3],则输出的s属于( ).A.16+8π B.8+8π C.16+16π D.8+16π+9.(2021课标全国Ⅰ,理9)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m1展开式的二项式系数的最大值为b.若13a=7b,则m=( ).A.5 B.6 C.7 D.8x2y210.(2021课标全国Ⅰ,理10)已知椭圆E:2?2=1(a>b>0)的右焦点为F(3,0),过点F的直线交E于A,B两ab点.若AB的中点坐标为(1,-1),则E的方程为( ).x2y2x2y2?=1 B.?=1 A.45363627x2y2x2y2?=1 D.?=1 C.2718189A.[-3,4] B.[-5,2]C.[-4,3] D.[-2,5]6.(2021课标全国Ⅰ,理6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器的厚度,则球的体积为( ).??x2?2x,x?0,11.(2021课标全国Ⅰ,理11)已知函数f(x)=?若|f(x)|≥ax,则a的取值范围是( ).?ln(x?1),x?0.A.(-∞,0] B.(-∞,1] C.[-2,1] D.[-2,0]12.(2021课标全国Ⅰ,理12)设△AnBnCn的三边长分别为an,bn,cn,△AnBnCn的面积为Sn,n=1,2,3,….若b1>c1,b1+c1=2a1,an+1=an,bn+1=A.{Sn}为递减数列cn?anb?an,cn+1=n,则( ). 22 第 1 页共 1 页B.{Sn}为递增数列C.{S2n-1}为递增数列,{S2n}为递减数列 D.{S2n-1}为递减数列,{S2n}为递增数列第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2021课标全国Ⅰ,理13)已知两个单位向量a,b的夹角为60°,c=ta+(1-t)b.若b・c=0,则t=__________. 14.(2021课标全国Ⅰ,理14)若数列{an}的前n项和Sn?21an?,则{an}的通项公式是an=__________. 3315.(2021课标全国Ⅰ,理15)设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cos θ=__________.16.(2021课标全国Ⅰ,理16)若函数f(x)=(1-x2)(x2+ax+b)的图像关于直线x=-2对称,则f(x)的最大值为__________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(2021课标全国Ⅰ,理17)(本小题满分12分)如图,在△ABC中,∠ABC=90°,AB=3,BC=1,P为△ABC内一点,∠BPC=90°.19.(2021课标全国Ⅰ,理19)(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为1,且各件产品是否为优质品相互独2(1)若PB=1,求PA; 2(2)若∠APB=150°,求tan∠PBA.18.(2021课标全国Ⅰ,理18)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(2021课标全国Ⅰ,理20)(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.第 2 页共 2 页21.(2021课标全国Ⅰ,理21)(本小题满分12分)设函数f(x)=x2+ax+b,g(x)=ex(cx+d).若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(1)求a,b,c,d的值;(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑. 22.(2021课标全国Ⅰ,理22)(本小题满分10分)选修4―1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)当a=-2时,求不等式f(x)<g(x)的解集; (2)设a>-1,且当x∈???a1?,?时,f(x)≤g(x),求a的取值范围. ?22?(1)证明:DB=DC;(2)设圆的半径为1,BC=3,延长CE交AB于点F,求△BCF外接圆的半径.23.(2021课标全国Ⅰ,理23)(本小题满分10分)选修4―4:坐标系与参数方程?x?4?5cost,已知曲线C1的参数方程为?(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,y?5?5sint?曲线C2的极坐标方程为ρ=2sin θ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.(2021课标全国Ⅰ,理24)(本小题满分10分)选修4―5:不等式选讲已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.第 3 页共 3 页感谢您的阅读,祝您生活愉快。

2024年高考全国甲卷理数-答案

2024年高考全国甲卷数学(理)一、单选题1.设5i z =+,则()i z z +=( )2.集合{}1,2,3,4,5,9,A BA ==,则∁AA (AA ∩BB )=( )A .{}1,4,9B .{}3,4,9C .{}1,2,3D .{}2,3,53.若实数,x y 满足约束条件43302202690x y x y x y −−≥−−≤ +−≤ ,则5z x y =−的最小值为( )A .5B .12C .2−D .72−4.等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =( ) A .2− B .73C .1D .25.已知双曲线2222:1(0,0)y x C a b a b−=>>的上、下焦点分别为()()120,4,0,4F F −,点()6,4P −在该双曲线上,则该双曲线的离心率为( )6.设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为( ) A .16B .13C .12D .237.函数()()2e e sin x x f x x x −=−+−在区间[2.8,2.8]−的大致图像为( )A .B .C .D .8.已知cos cos sin ααα=−πtan 4α+=( )A .1B .1−CD .19.已知向量()()1,,,2a x x b x =+=,则( )A .“3x =−”是“a b ⊥”的必要条件B .“3x =−”是“//a b”的必要条件C .“0x =”是“a b ⊥”的充分条件 D .“1x =−”是“//a b”的充分条件是两个平面,是两条直线,且①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n ⊥ 其中所有真命题的编号是( )A .①③B .②④C .①②③D .①③④【答案】A【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③. 【解析】①,当n ⊂α,因为//m n ,m β⊂,则//n β,当n β⊂,因为//m n ,m α⊂,则//n α, 当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,①正确; ②,若m n ⊥,则n 与,αβ不一定垂直,②错误; ③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s ,同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β,因为s ⊂平面α,m αβ= ,则//s m ,又因为//n s ,则//m n ,③正确;④,若,m n αβ∩=与α和β所成的角相等,如果//,//αβn n ,则//m n ,④错误; ①③正确, 故选A.11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( )A .32BC D12.已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++−=交于,A B 两点,则AB 的最小值为( ) A .2B .3C .4D .【答案】C【分析】结合等差数列性质将c 代换,求出直线恒过的定点,采用数形结合法即可求解.【详解】因为,,a b c 成等差数列,所以2b a c =+,2c b a =−,代入直线方程0ax by c ++=得 20ax by b a ++−=,即()()120a x b y −++=,令1020x y −= += 得12x y = =− ,故直线恒过()1,2−,设()1,2P −,圆化为标准方程得:()22:25C x y ++=,故选C二、填空题13.1013x +的展开式中,各项系数的最大值是 .14.已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r −和()213r r −,则两个圆台的体积之比=V V 甲乙.15.已知1a >,8115log log 42a a −=−,则=a . 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是 .三、解答题17.某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间26 24 0 50乙车间70 28 2 100总计96 52 2 150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p=,设p为升级改造后抽取的n件产品的优级品率.如果p p>+则认为该工厂产品的优级品率提高了,根据抽取的150件产品的数据,能否认为生产线智能12.247≈)附:22()()()()()n ad bcKa b c d a c b d−=++++()2P K k≥0.050 0.010 0.001 k 3.841 6.635 10.82818.记n S 为数列{}n a 的前n 项和,且434n n S a =+. (1)求{}n a 的通项公式;(2)设1(1)n n n b na −−,求数列{}n b 的前n 项和为n T .4,2AD AB BC EF ====,ED FB =M 为AD 的中点.(1)证明://BM 平面CDE ;20.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M 在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.21.已知函数()()()1ln 1f x ax x x =−+−.(1)当2a =−时,求()f x 的极值; 0f x ≥恒成立,求a 的取值范围.中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为cos 1ρρθ+.(1)写出C 的直角坐标方程;(2)设直线l :x t y t a = =+(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.满足.(1)证明:2222a b a b +>+;(2)证明:22226a b b a −+−≥.【答案】(1)见解析(2)见解析【分析】(1)直接利用22222()a b a b +≥+即可证明.(2)根据绝对值不等式并结合(1)中结论即可证明.。

2019年全国卷Ⅰ理数数学高考试题(含答案)

(2) 有且仅有2个零点.
21.(12分)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得 分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得 分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.
A.165 cmB.175 cmC.185 cmD.190cm
5.函数f(x)= 在 的图像大致为
A. B.
C. D.
6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是
16.已知双曲线C: 的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点.若 , ,则C的离心率为____________.
三、解答题:
17.(12分) 的内角A,B,C的对边分别为a,b,c,设 .
(1)求A;
(2)若 ,求sinC.
18.(12分) 如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.
(1)求C和l的直角坐标方程;
(2)求C上的点到l距离的最小值.
23.[选修4—5:不等式选讲](10分)

高考理科数学(1卷):答案详细解析(最新)

2020年普通高等学校招生全国统一考试理科数学(I 卷)答案详解一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(复数)若1z i =+,则22z z -=A.0B.1 D.2【解析】∵1z i =+,∴222(2)(1)(1)12z z z z i i i -=-=+-=-=-,∴2=22z z -.【答案】D2.(集合)设集合{}240A x x =-≤,{}20B x x a =+≤,且{}21A B x x =-≤≤ ,则a =A.-4B.-2C.2D.4【解析】由已知可得{}22A x x =-≤≤,2a B x x ⎧⎫=≤-⎨⎬⎩⎭,∵{}21A B x x =-≤≤ ,∴12a -=,解得2a =-.【答案】B 3.(立体几何,同文3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A.14- B.12 C.14+ D.12+【解析】如图A3所示,设正四棱锥底面的边长为a ,则有22221212h am a h m ⎧=⎪⎪⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩整理得22420m am a --=,令m t a =,则有24210t t --=,∴114t +=,214t -=(舍去),即14m a +=.图A3【答案】C4.(解析几何)已知A 为抛物线2:2(0)C y px p =>上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =A .2B .3C .6D .9【解析】设A 点的坐标为(m ,n ),∵点A 到C 的焦点的距离为12,∴m =9,∵点A 到C 的焦点的距离为12,∴122p m +=,解得6p =.【答案】C5.(概率统计,同文5)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C )的关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据,)(i i x y i =(1,2,…,20)得到下面的散点图:由此散点图,在10C 至40C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A.y a bx =+B.2y a bx =+C.x y a be =+D.ln y a b x=+【解析】根据散点图的趋势和已学函数图象可知,本题的回归方程类型为对数函数,故选D 选项.【答案】D6.(函数)函数43()2f x x x =-的图像在点(1,(1))f 处的切线方程为A .21y x =--B .21y x =-+C .23y x =-D .21y x =+【解析】32()46f x x x '=-,∴函数()f x 的图像在点(1,(1))f 处的切线斜率为(1)2k f '==-,又∵(1)1f =-,∴所求的切线方程为12(1)y x +=--,化简为21y x =-+.【答案】B7.(三角函数,同文7)设函数()cos()6f x x πω=+在[]ππ-,的图像大致如下图,则()f x 的最小正周期为A.109πB.76πC.43πD.32π【解析】∵函数过点4π,09⎛⎫- ⎪⎝⎭,∴4ππcos()=096x ω-+,∴4πππ=962x ω-+-,解得23=ω,∴()f x 的最小正周期为3π4π2==ωT .【答案】C 8.(概率统计)25()()y x x y x++的展开式中33x y 的系数为A.5 B.10 C.15 D.20【解析】∵5()x y +展开式的通项公式为55C r r r x y -(r =0,1,2,3,4,5),∴1r =时,2141335C 5y x y x y x=,∴3r =时,323335C 10x x y x y =,∴展开式中的33x y 系数为5+10=15.【答案】C9.(三角函数)已知(0,)α∈π,且3cos28cos 5αα-=,则sin α=A.53 B.23 C.13 D.59【解析】应用二倍角公式2cos22cos 1αα=-,将3cos28cos 5αα-=化简为,23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又∵(0,)α∈π,∴5sin 3α=.【答案】A 10.(立体几何,同文12)已知A ,B ,C 为球O 的球面上的三个点,1O 为△ABC 的外接圆.若 1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π【解析】由题意可知, 1O 为的半径r =2,由正弦定理可知,24sin ==AB r C,则14sin 4sin 60==== OO AB C ,∴球O 的半径4R ==,∴球O 的表面积为24π64πR =.图A10【答案】A11.(解析几何)已知22:2220M x y x y +---= ,直线:20+=l x y ,p 为l 上的动点.过点p 作M 的切线PA ,PB ,切点为,A B ,当PM AB 最小时,直线AB 的方程为A.210x y --= B.210x y +-=C.210x y -+= D.210x y ++=【解析】222:(1)(1)2-+-= M x y , M 的半径r =2,圆心(1,1)M ,由几何知识可知,⊥PM AB ,故1||||=2=||||2||2∆=⋅⋅==四边形APM APBM S PM AB S AP AM AP ,∴⋅PM AB 最小,即PM 最小,此时直线PM ⊥l ,即直线PM 的斜率为12=m k ,故直线PM 的方程为11(1)2-=-y x ,化简为1122=+y x ,∴直线PM 与l 的交点P 的坐标为(1,0)-P ,直线AB 为过点P 作 M 的切线所得切点弦AB 所在的直线,其方程为(11)(1)(01)(1)4---+--=x y ,化简得210++=x y .图A11【答案】D注:过圆外一点00(,)P x y 作222:()()O x a y b r -+-= 的切线所得切点弦所在直线方程为200()()()()x a x a y b y b r --+--=.特别当0a b ==时,切点弦所在直线方程为200x x y y r +=.(具体推到过程,可到百度搜索)12.(函数)若242log 42log +=+a b a b 则A.a >2bB.a <2bC.a >b 2D.a <b 2【解析】由指数和对数运算性质,原等式可化为2222log 2log a b a b +=+,∵222log 1log log 2b b b <+=,∴22222log 2log 2b b b b +<+,∴2222log 2log 2a b a b +<+,设2()2log x f x x =+,则有()(2)f a f b <,由指数函数和对数函数的单调性可知()f x 在(0,)+∞单调递增,∴2a b <.【答案】B二、填空题:本题共4小题,每小题5分,共20分。

2019年全国卷1(理科数学)含答案

绝密★启用前2019年普通高等学校招生全国统一考试理科数学(全国Ⅰ卷)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合}242{60{}M x x N x x x =-<<=--<,,则MN =A .}{43xx -<<B .}42{xx -<<- C .}{22x x -<< D .}{23xx <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y +=B .221(1)x y +=-C .22(1)1y x +-=D .22(+1)1y x +=3.已知0.20.32log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<4,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=在[,]-ππ的图像大致为 A . B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .11167.已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π62sin cos ++x xxx8.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+9.记为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B .310n a n =- C .228n S n n =-D .2122n S n n =- 10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③12.已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为n SA .B .C . D二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档