最新七年级数学上册绝对值专题提高练习
部编数学七年级上册专题绝对值压轴题(最值与化简)专项讲练重难题型技巧提升专项精练(人教版)含答案

专题03 绝对值压轴题(最值与化简)专项讲练专题1. 最值问题最值问题一直都是初中数学中的最难点,但也是高分的必须突破点,需要牢记绝对值中的最值情况规律,解题时能达到事半功倍的效果。
题型1. 两个绝对值的和的最值【解题技巧】b x a x -+-目的是在数轴上找一点x ,使x 到a 和b 的距离和的最小值:分类情况(x 的取值范围)图示b x a x -+-取值情况当a x <时无法确定当b x a ≤≤时b x a x -+-的值为定值,即为b a -当b x >无法确定结论:式子b x a x -+-在b x a ≤≤时,取得最小值为b a -。
例1.(2021·珠海市初三二模)阅读下面材料:数轴是数形结合思想的产物.有了数轴以后,可以用数轴上的点直观地表示实数,这样就建立起了“数”与“形”之间的联系.在数轴上,若点A ,B 分别表示数a ,b ,则A ,B 两点之间的距离为AB a b =-.反之,可以理解式子3x -的几何意义是数轴上表示实数x 与实数3两点之间的距离.则当25x x ++-有最小值时,x 的取值范围是()A .2x <-或5x >B .2x -≤或5x ≥C .25x -<<D .25x -≤≤【答案】D【分析】根据题意将25x x ++-可以理解为数轴上表示实数x 与实数-2的距离,实数x 与实数5的距离,两者的和,分三种情况分别化简,根据解答即可得到答案.【解析】方法一:代数法(借助零点分类讨论)当x<-2时,25x x ++-=(-2-x )+(5-x )=3-2x ;当25x -≤≤时,25x x ++-=(x+2)+(5-x )=7;当x>5时,25x x ++-=(x+2)+(x-5)=2x-3;∴25x x ++-有最小值,最小值为7,此时25x -≤≤,故选:D.方法二:几何法(根据绝对值的几何意义)25x x ++-可以理解为数轴上表示实数x 与实数-2的距离,实数x 与实数5的距离,两者的和,通过数轴分析反现当25x -≤≤时,25x x ++-有最小值,最小值为7。
北师大版2024新版七年级数学上册目标练:绝对值的应用技巧

《绝对值的应用技巧》目标练应用一 利用绝对值比较大小1.比较下列各组数的大小:(1)-3.5与-4.2;(2)-67与-78: (3)23--与1721-应用二 利用绝对值的性质求字母的值2.若a =5,b =3,a <0<b ,则,a b 的值分别是( )A.-5,3 В.–5,-3 C.5,3 D.5,-33.已知a =2,b =3,且在数轴上a 在b 的右边,求,a b 的值.4.已知123a b c -+-+-=0,求式子2a b c ++的值.5.根据x 是非负数,且非负数中最小的数是0,解答下列问题:(1)当x 取何值时,2021x -有最小值?这个最小值是多少?(2)当x 取何值时,2022-1x -有最大值,这个最大值是多少?应用三 利用绝对值解实际生活中的应用6.某出租车司机从公司出发,在东西方向的人民路上连续接送5批客人,行驶路程记录如下(规定向东为正,向西为负,单位:千米):若该出租车每千米耗油0.08升,那么在这过程中共耗油多少升?参考答案1.解析:(1) 3.5-=3.5, 4.2-=4.2.因为3.5<4.2,所以 3.5 4.2->-.(2)66487756-==,77498856-==, 因为49485656>,所以6778->-. (3)2233--=- ,22143321-==,17172121-=, 因为14172121< ,所以23-->1721-. 2.答案:A3.解析:因为a =2,b =3,所以a =±2,b =±3.因为在数轴上a 在b 的右边,所以b a <.所以a=2,b=-3或a=-2,b=-3,即a=±2,b=-3.4.解析:由题意,得a-1=0,b-2=0,c-3=0,解得a=1,b=2,c=3. 原式=2×1+2+3=7.x-有最小值,这个最小值是0. 5.解析:(1)当x=2021时,2021x-有最大值,这个最大值是2022.(2)当x=1时,2 022-16.解析:5+2+4-+3-+10=24(千米),0.08×24 =1.92(升).答:在这过程中共耗油1.92升.。
七年级数学上册 绝对值提高练习(图片版) 人教新课标版

神奇的绝对值绝对值课后作业基础测试(一)1. 若000a b c ><<,,,则ab c +为( )A .正数B .负数C .零D .无法确定2. 若a ,b 互为相反数,则下面四个等式中一定成立的是( )A.a +b =0 B.a +b =1 C.0a b += D.0a b +=3、下列结论正确的是 ( )A. -a 一定是负数B. -|a|一定是非正数C. |a|一定是正数 D . |a|一定是负数 4. 如果a b c +=,且a ,b 都大于c ,那么a ,b 一定是( )A.同为负数 B.一个正数一个负数 C.同为正数 D.一个负数一个是零 5、| a |=1,| b |=2,| c |=3, 且a > b >c ,则2()a b c +-=( ). A .16 B .0 C .4或 0 D .36 6、当b <0时,a,a -b,a+b 中大小关系排列正确的是( )A 、a -b >a >a+bB 、 a -b >a+b >aC 、 a+b >a >a -bD 、a+b > a -b >a7、规定图形表示运算a –b + c,图形表示运算w y z x --+.则 + =________________(直接写出答案).8、()()()()=----20022001433221 . 9、若0<a <1,则a,a 2,a1的大小关系是 . 10. 已知|x+3|与4)4-y (互为相反数,试求yx11. 已知x =8,y =2,试求2()x y +的值12、若正数 a 的倒数等于其本身,负数 b 的绝对值等于 3,且 c <a ,c 2=36,求代数式 2 (a -2b 2)-5c 的值。
13.规定b a ⊗=1-ab ,试计算:)4()3()2(-⊗-⊗-的值。
(3分)14、已知2)1(,22-=+y x =4,求:x+y 的。
七年级数学上册专题提分精练绝对值的几何意义(解析版)

专题05 绝对值的几何意义1.阅读下面材料:点A 、B 在数轴上分别表示有理数a 、b ,在数轴上A 、B 两点之间的距离AB =|a ﹣b |.回答下列问题:(1)数轴上表示﹣3和1两点之间的距离是 ,数轴上表示x 和-2的两点之间的距离是 ;(2)数轴上表示a 和1的两点之间的距离为6,则a 表示的数为 ;(3)若x 表示一个有理数,则|x +2|+|x -4|有最小值吗?若有,请求出最小值;若没有,请说明理由.【答案】(1)4,2x +(2)7或5-(3)有最小值,6【解析】【分析】(1)根据在数轴上A 、B 两点之间的距离为AB =|a ﹣b |即可求解;(2)根据在数轴上A 、B 两点之间的距离为AB =|a ﹣b |即可求解;(3)根据绝对值的几何意义,即可得解.(1)解:()134--=,()2x x --=+故答案为:4,2x +.(2) 解:∵16a -=∴7a =或5a =-,故答案为:7或5-.(3) 在数轴上的24x x ++-几何意义是:表示有理数x 的点到﹣2及到4的距离之和,所以当24x -≤≤时,它的最小值为6.【点睛】本题考查了数轴,绝对值的性质,读懂题目信息,理解数轴上两点间的距离的表示是解题的关键.注意分类思想在解题中的运用.2.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示6和2的两点之间的距离为62-=______;表示-1和2两点之间的距离为()()1212--+=--=______;一般地,数轴上表示数m 和数n 的两点之间的距离等于m n -,如果表示数a 和-1的两点之间的距离是3,那么a =______.(2)若数轴上表示数a 的点位于-5与3之间,求53a a ++-的值;(3)当x =______时,45x x x +++-的值最小,最小值为______.【答案】(1)4,3,2或−4;(2)8;(3)0,9【解析】【分析】(1)根据绝对值的性质列式计算即可;(2)去绝对值即可求出答案;(3)根据绝对值的几何意义分析得出x 的值,进而计算即可.(1)解:数轴上表示6和2的两点之间的距离为62-=4;表示-1和2两点之间的距离为()()1212--+=--=3;∵表示数a 和−1的两点之间的距离是3,∴|a −(−1)|=3,解得a =2或−4,故答案为:4,3,2或−4;(2)∵表示数a 的点位于-5与3之间, ∴()53538a a a a ++-=++-=;(3) 由绝对值的几何意义可知:45x x x +++-的值就是数轴上表示数x 的点到0的距离与到-4的距离和到5的距离之和,∴当x =0时,45x x x +++-的值最小,最小值为9.【点睛】本题考查了绝对值的性质和绝对值的几何意义,正确理解数轴上表示数m 和数n 的两点之间的距离等于m n -是解题的关键.3.阅读下面的材料:我们知道,在数轴上,||a 表示有理数a 对应的点到原点的距离,同样的道理,|2|a -表示有理数a 对应的点到有理数2对应的点的距离,例如,|52|3-=,表示数轴上有理数5对应的点到有理数2对应的点的距离是3.请根据上面的材料解答下列问题:(1)数轴上有理数9-对应的点到有理数3对应的点的距离是_______;(2)|5|-a 表示有理数a 对应的点与有理数_______对应的点的距离;如果|5|2-=a ,那么有理数a 的值是_______;(3)如果|1||6|7-+-=a a ,那么有理数a 的值是_______.(4)代数式|1||6|-+-a a 的最小值是_________,此时有理数a 可取的整数值有______个.【答案】(1)12;(2)5,3或7;(3)0或7;(4)5,6.【解析】【分析】(1)根据题意可知,数轴上有理数9-对应的点到有理数3对应的点的距离是|93|--,计算即可;(2)根据题意进行解题即可;(3)式子代表的a 对应的点到1的距离与到6的距离的和为7,找到对应的点即可; (4)代数式|1||6|-+-a a 的最小值在数轴上1与6之间,最小值为5,符合条件的值有6个.(1)解:由题意得,|93|--=12,故答案为:12.(2)|5|-a 表示有理数a 对应的点与有理数5对应的点的距离;|5|2-=a ,表示到5所对应的点距离为2的点,即为:3或7.故答案为:5;3或7.(3)|1||6|7-+-=a a 表示:a 对应的点到1的距离与到6的距离的和为7,从数轴上观察得出a 的值为:0或7,故答案为:0或7.(4)代数式|1||6|-+-a a 表示的是a 对应的点到1的距离与到6的距离的和,最小值为1到6的距离,最小值为5,符合条件的整数值在1到6之间,共6个.故答案为:5,6.【点睛】本题主要考查的数材料阅读理解能力,考查知识点为绝对值的几何意义,灵活运用其几何意义是解题的关键.4.(1)数轴上表示4与2-的点之间的距离为_________,数轴上表示3与5的点之间的距离为_________(2)|4(2)|--=___________;|35|-=___________(3)观察(1)(2)两小题,若数轴上的点A 表示的数为x ,点B 表示的数为y ,则A 与B 两点间的距离可以表示为__________.A 与表示-2的点之间的距离可表示为__________ (4)结合数轴,求23x x -++的最小值为 ________【答案】(1)6;2;(2)6;2 ;(3)x y -,2x +;(4)5【解析】【分析】(1)根据两点间的距离公式,即可求出距离;(2)根据绝对值的性质即可求解;(3)根据两点间的距离公式,即可求解;(4)由绝对值的意义进行化简,即可求出答案;【详解】解:(1)数轴上表示4与−2的点之间的距离为()426--=,数轴上表示3与5的点之间的距离为352-=;故答案为:6,2;(2)|4−(−2)|=6;|3−5|=2;故答案为:6,2;(3)A 与B 两点间的距离可以表示为x y -,A 与表示-2的点之间的距离可表示为()22x x --=+; 故答案为:x y -,2x +;(4)∵|x -2|+|x +3|理解为:在数轴上表示点x 到2和-3的距离之和,∴当点x 在2与-3之间的线段上,即-3≤x ≤2时,|x -2|+|x +3|有最小值,最小值为:2-(-3)=5.故答案为:5.【点睛】本题考查了数轴在两点间的距离及绝对值化简中的应用,明确数轴上两点间的距离及绝对值之间的关系,是解题的关键.5.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起一一对应的关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.我们知道|4||40|=-,它的几何意义是数轴上表示4的点与原点(即表示0的点)之间的距离,又如式子|73|-,它的几何意义是数轴上表示数7的点与表示数3的点之间的距离.也就是说,在数轴上,如果点A 表示的数记为a ,点B 表示的数记为b ,则A ,B 两点间的距离就可记作||-a b .回答下列问题:(1)几何意义是数轴上表示数2的点与数3-的点之间的距离的式子是________;式子|5|+a 的几何意义是_______________________;(2)根据绝对值的几何意义,当|2|3-=m 时,m =________;(3)探究:|1||9|++-m m 的最小值为_________,此时m 满足的条件是________;(4)|1||9||16|++-+-m m m 的最小值为________,此时m 满足的条件是__________.【答案】(1)23+或2(3)--;数轴上表示数a 的点与数2的点之间的距离.(2)1-或5(3)10,19m -≤≤(4)17,9m =【解析】【分析】(1)根据距离公式及定义表示即可;(2)分点在2表示的数的点的左边和右边两种情形求解;(3)利用数形结合思想,画数轴求解即可;(4)利用数形结合思想,画数轴求解即可.(1)解:①在数轴上的意义是表示数2的点与表示数3-的点之间的距离的式子是()23-- , 故答案为:()2323--=+; ②∵5a +=|a -(-5)|, ∴5a +在数轴上的意义是表示数a 的点与表示数-5的点之间的距离.故答案为:表示数a 的点与表示数-5的点之间的距离.(2) 解:∵2m -表示数m 到2的距离,画数轴如下:当数在2的右边时,右数3个单个单位长,得到对应数是5,符合题意;当数在2的左边时,左数3个单个单位长,得到对应数是-1,符合题意;故答案为:-1或5;(3) 解:∵19m m ++-表示数m 与-1,9的距离之和,画数轴如下:根据两点之间线段最短,-1表示点与9表示点的最短距离为9-(-1)=10,此时动点m 在-1表示点与9表示点构成的线段上,∴19m -≤≤ ;故答案为:10、19m -≤≤;(4)解:根据题意,画图如下,根据两点之间线段最短,-1表示点与16表示点的最短距离为16-(-1)=17,此时动点m 在-1表示点与16表示点构成的线段上,且到9表示的点的距离为0, ∴9m = ;故答案为:17、 9m =.【点睛】本题考查了数轴上两点间的距离计算公式,线段最短原理,数轴的意义,解题的关键是利用数形结合思想,分类思想,结合数轴,运用数学思想解题.6.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:(1)求|5-(-2)|=______.(2)若32x -=成立,则x =_________.(3)请你写出12x x -+-的最小值为________.并确定相应的x 的取值范围是______.【答案】(1)7;(2)5或1;(3)3,1≤x ≤2【解析】【分析】(1)根据5与-2两数在数轴上所对的两点之间的距离为7得到答案;(2)根据题意可得方程x -3=±2,再解即可;(3)分情况讨论,去绝对值化简,从而确定x 的最小值.【详解】解:(1)|5-(-2)|=|5+2|=7,故答案为:7;(2)∵|x -3|=2成立,∴x -3=±2,∴x =5或1,故答案为:5或1;(3)当x <1时,原式=-x +1-x +2=-2x +3>1;当1≤x ≤2时,原式=x -1-x +2=1;当x >2时,原式=x -1+x -2=2x -3>1,∴|x -1|+|x -2|的最小值是1,故答案为:3,1≤x ≤2.【点睛】本题主要考查了去绝对值和数轴相联系的综合试题以及去绝对值的方法,难度较大,去绝对值的关键是确定绝对值里面的数的正负性.7.先阅读,后探究相关的问题【阅读】|5﹣2|表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离:|5+2|可以看作|5﹣(﹣2)|,表示5与﹣2的差的绝对值,也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.【探究】(1)如图,先在数轴上找出表示点2.5的相反数的点B ,再把点A 向左移动3个单位,得到点C ,则点B 和点C 表示的数分别为_______和_______,B ,C 两点间的距离是_______;(2)数轴上表示x 和﹣2的两点A 和B 之间的距离表示为_______;如果|AB |=3,那么x 为_______;(3)要使代数式|x +2|+|x ﹣3|取最小值时,则整数x 的值为_______.(4)当x 为_______时,|x +4|+|x ﹣2|=12.【答案】(1) 2.5-,0.5-,2 (2)2x +,1或5-(3)2-,1-,0,1,2,3(4)7-或5【解析】(1)根据相反数的定义求得点B表示的数,根据数轴上点的的位置,求得点A,C表示的数;(2)根据绝对值的意义,表示出|x+2|=3,解绝对值方程即可求解;(3)根据|x+2|+|x﹣3|取最小值,即数轴上表示数x的点到表示﹣2,3的距离之和最小,根据x为整数即可求解;(4)由(3)可知|x+4|+|x﹣2|的最小值为|﹣4﹣2|=6,要使|x+4|+|x﹣2|=12,则x<﹣4或x >2,根据题意得出方程,﹣x﹣4+2﹣x=12或x+4+x﹣2=12,解方程即可求解.(1)解:∴点B所表示的数与2.5互为相反数,∴点B所表示的数为﹣2.5,又∵点A向左移动3个单位,得到点C,点A所表示的数是2.5,∴点C所表示的数为2.5﹣3=﹣0.5,∴BC=|﹣2.5+0.5|=2,故答案为:﹣2.5,﹣0.5,2;(2)由题意可知,数轴上表示x和﹣2的两点A和B之间的距离表示为|x+2|,当AB=3,即|x+2|=3,解答x1=1,x2=﹣5,故答案为:|x+2|,1或﹣5;(3)∵|x+2|+|x﹣3|取最小值,即数轴上表示数x的点到表示﹣2,3的距离之和最小,∴当﹣2≤x≤3时,|x+2|+|x﹣3|的值最小,其最小值为|﹣2﹣3|=5,又∵x为整数,∴整数x为﹣2,﹣1,0,1,2,3,故答案为:﹣2,﹣1,0,1,2,3;(4)由(3)可知|x+4|+|x﹣2|的最小值为|﹣4﹣2|=6,要使|x+4|+|x﹣2|=12,因此x<﹣4或x>2,故有﹣x﹣4+2﹣x=12或x+4+x﹣2=12,解得x=﹣7或x=5,故答案为:﹣7或5【点睛】本题考查了绝对值的意义,数轴上的两点距离,一元一次方程,掌握绝对值的意义是解题的8.点A 、B 在数轴上分别表示有理数a 、b ,点A 与原点O 两点之间的距离表示为AO ,则0AO a a =-=,类似地,点B 与原点O 两点之间的距离表示为BO ,则BO b =,点A 与点B 两点之间的距离表示为AB a b .请结合数轴,思考并回答以下问题:(1)填空:①数轴上表示1和3-的两点之间的距离是______.②数轴上表示m 和1-的两点之间的距离是______.③数轴上表示m 和1-的两点之间距离是3,则有理数m 是______. (2)求满足246x x -++=的所有整数x 的和______. (3)已知31510412y x z x z y -+-+-=-+----.求x y z ++的最大值为______.【答案】(1)①4;②|m +1|;③2或-4(2)-7(3)9【解析】【分析】(1) ①根据题意即可求得;②根据题意即可求得;③根据题意可得|m +1|=3,解方程即可求得; (2)根据246x x -++=的几何意义是数轴上表示x 的点到表示2与-4的点的距离之和为6,可得42x -≤≤,可得x 可取的整数,据此即可求得;(3)由原式可得32145110-+-+-++-+-=y y x z z ,由321-+-≥y y ,145x x -++≥,514-+-≥z z ,可得23y ≤≤,41x -≤≤,15z ≤≤,据此即可求得.(1)解:①数轴上表示1和3-的两点之间的距离是|1-(-3)|=4;②数轴上表示m 和1-的两点之间的距离是|m -(-1)|=|m +1|;③由数轴上表示m 和1-的两点之间距离是3,得|m +1|=3,故m +1=3或m +1=-3,解得m =2或m =-4,故有理数m 是2或-4,故答案为:①4;②|m +1|;③2或-4;(2) 解:246x x -++=的几何意义是数轴上表示x 的点到表示2与-4的点的距离之和为6, ∵4-(-2)=4+2=6,∴42x -≤≤,∴x 可取的整数有-4,-3,-2,-1,0,1,2, 故满足246x x -++=的所有整数x 的和为:(-4)+(-3)+(-2)+(-1)+0+1+2=-7,故答案为:-7;(3) 解:∵31510412y x z x z y -+-+-=-+---- ∴32145110-+-+-+++-+-=y y x x z z , ∵321-+-≥y y ,145x x -++≥,514-+-≥z z , ∴32145110-+-+-+++-+-≥y y x x z z ,∴23y ≤≤,41x -≤≤,15z ≤≤,∴241315x y z -+≤++≤++,即19x y z -≤++≤,故答案是:9.【点睛】本题考查了数轴上两点间距离的求法,绝对值的几何意义,理解和掌握绝对值的几何意义是解决本题的关键.9.阅读下面一段文字:在数轴上点A ,B 分别表示数a ,b .A ,B 两点间的距离可以用符号AB 表示,利用有理数减法和绝对值可以计算A ,B 两点之间的距离AB .例如:当a =2,b =5时,AB =5-2=3;当a =2,b =-5时,AB =52--=7;当a =-2,b =-5时,AB =52---()=3,综合上述过程,发现点A 、B 之间的距离AB =b a -(也可以表示为a b -).请你根据上述材料,探究回答下列问题:(1)表示数a 和-2的两点间距离是6,则a = ;(2)如果数轴上表示数a 的点位于-4和3之间,则43a a ++-= (3)代数式123a a a -+-+-的最小值是 .(4)如图,若点A ,B ,C ,D 在数轴上表示的有理数分别为a ,b ,c ,d ,则式子||||||a x x b x c x d -+++-++的最小值为 (用含有a ,b ,c ,d 的式子表示结果)【答案】(1)4和-8;(2)7;(3)2;(4)c d b a +--【解析】【分析】(1)根据题意可得:26a --= ,解出即可求解;(2)根据题意可得:43a -<< ,从而得到40,30a a +>-< ,进而得到4a +=a +4,3a -=3-a ,即可求解;(3)根据题意可得:当a =2时,代数式存在最小值,化简即可求解;(4)根据题意可得:原式表示x 对应点到,,,a b c d -- 对应的点的距离之和,从而得到当d x c -≤≤ 时,||||||a x x b x c x d -+++-++有最小值,即可求解.【详解】解:(1)根据题意得:26a --= ,∴26a --= 或26a --=- ,解得:4a = 或-8;(2)∵表示数a 的点位于-4和3之间,∴43a -<< ,∴40,30a a +>-< , ∴4a +=a +4,3a -=3-a , ∴43a a ++-= a +4+3-a =7;(3) 当a =2时,代数式存在最小值, ∴123a a a -+-+-=1+0+1=2.所以,最小值是2;(4)根据题意得:()()||||||||||||a x x b x c x d a x x b x c x d -+++-++=-+--+-+--,∴原式表示x 对应点到,,,a b c d -- 对应的点的距离之和,如图所示,∴当d x c -≤≤ 时,||||||a x x b x c x d -+++-++有最小值,∴原式x a b x c x x d =---+-++c d b a =+-- .【点睛】本题主要考查了绝对值得几何意义,数轴上两点间的距离,利用数形结合思想解答是解题的关键.10.先阅读,后探究相关的问题【阅读】|52|-表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;|52|+可以看做|5(2)|--,表示5与2-的差的绝对值,也可理解为5与2-两数在数轴上所对应的两点之间的距离.【探究】(1)如图,先在数轴上找出表示点2.5的相反数的点B ,再把点A 向左移动3个单位,得到点C ,则点B 和点C 表示的数分别为_____和_____,B ,C 两点间的距离是_____; (2)数轴上表示x 和2-的两点A 和B 之间的距离表示为_______;如果||3AB =,那么x 为______;(3)要使代数式|2||3|x x ++-取最小值时,则整数x 的值为_______.(4)当x 为______时,|4|x ++|2|x -=12.【答案】(1)B : 2.5-,C :3-,BC =0.5;(2)2x +,1或5-;(3)2,1,0,1,2,3--;(4)7-或5【解析】【分析】(1)根据相反数的定义,可得点B 所表示的数为-2.5,再由点A 向左移动3个单位,得到点C ,可得点C 所表示的数为-0.5,即可求解;(2)根据【阅读】可得|x +2|=3,即可求解;(3)|x +2|+|x -3取最小值,即数轴上表示数x 的点到表示-2,3的距离之和最小,可得到当-2≤x ≤3时,|x +2|+|x -3|的值最小,其最小值为|-2-3|=5,即可求解;(4)由(3)可知|x +4|+|x -2|的最小值为|-4-2|=6,从而得到x <-4或x >2时,|x +4|+|x -2|=12,即可求解.【详解】解:(1)∵点B 所表示的数与2.5互为相反数,∴点B 所表示的数为-2.5,又∵点A 向左移动3个单位,得到点C ,点A 所表示的数是2.5,∴点C 所表示的数为2.5-3=-0.5,∴BC =|-2.5+0.5|=2;(2)由题意可知,数轴上表示x 和-2的两点A 和B 之间的距离表示为|x +2|,当AB =3时, |x +2|=3,解得:x =1或-5;(3)|x +2|+|x -3取最小值,即数轴上表示数x 的点到表示-2,3的距离之和最小, ∴当-2≤x ≤3时,|x +2|+|x -3|的值最小,其最小值为|-2-3|=5,又∵x 为整数,∴整数x 为-2,-1,0,1,2,3;(4)由(3)可知|x +4|+|x -2|的最小值为|-4-2|=6,∵|x +4|+|x -2|=12,∴x<-4或x>2,∴-x-4+2-x=12或x+4+x-2=12,解得:x=-7或5.【点睛】本题主要考查了绝对值的几何意义,绝对值方程的应用,一元一次方程,数轴上的动点问题,熟练掌握绝对值的几何意义,利用数形结合思想解答是解题的关键.11.阅读下列内容:数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.数轴上表示数a的点与表示数b的点的距离记作|a﹣b|,如|3﹣5|表示数轴上表示数3的点与表示数5的点的距离,|3+5|=|3﹣(﹣5)|表示数轴上表示数3的点与表示数﹣5的点的距离,|a﹣3|表示数轴上表示数a的点与表示数3的点的距离.根据以上材料回答下列问题:(将结果直接填写在答题卡相应位置,不写过程)(1)若|x﹣1|=|x+1|,则x=,若|x﹣2|=|x+1|,则x=;(3)若|x﹣2|+|x+1|=3,则x的取值范围是;(2)若|x﹣2|+|x+1|=5,则x的值是;(4)若|x﹣2|﹣|x+1|=3,则x能取到的最大值是.【答案】(1)0,12;(2)大于等于﹣1且小于等于2;(3)-2或3;(4)﹣1.【解析】【分析】(1)根据绝对值表示的意义和中点计算方法得出答案;(2)|x-2|+|x+1|=3表示的意义,得到x的取值范围,进而得到最大值和最小值;(3)若|x-2|-|x+1|=3,所表示的意义,确定x的取值范围,进而求出最大值;(4)根据|x-2|+|x+1|的意义,求出|x-2|+|x+1|的最小值为3,从而确定取值范围.【详解】(1)|x-1|=|x+1|表示数轴上表示x的点到表示1和-1的距离相等,因此到1和-1距离相等的点表示的数为1(1)2+-=,|x-2|=|x+1|表示数轴上表示x的点到表示2和-1的距离相等,因此到2和-1距离相等的点表示的数为2(1)122 +-=,故答案为:0,12;(2)|x-2|+|x+1|=3表示的意义是数轴上表示x的点到表示2和-1两点的距离之和为3,∵2和-1两点的距离之和为3∴表示x 的点在2和-1之间∴-1≤x ≤2,(3)|x ﹣2|+|x +1|=5表示的意义是数轴上表示数x 的点与表示数2的点距离比它到表示-1的点的距离等于5,∵2和-1两点的距离之和为3∴在2的右边多出(5-3)÷2=1,即表示数x =2+1=3;或者在-1的左边多出(5-3)÷2=1,即表示数x =-1-1=-2;故答案为-2或3;(4)|x -2|-|x +1|=3表示的意义是数轴上表示数x 的点与表示数2的点距离比它到表示-1的点的距离大3,根据数轴直观可得,x ≤-1,x 的最大值为-1,故答案为:-1;.【点睛】考查数轴表示数的意义,理解绝对值的意义和两点距离的计算方法是正确解答的关键. 12.阅读材料,回答下列问题:观察题中每对数在数轴上的对应点间的距离:4与2-,3与5,2-与6-,4-与3.并计算两个数的差的绝对值,回答问题:(1)所得距离与这两个数的差的绝对值的数量关系是_______;(2)若数轴上的点A 表示的数为x ,点B 表示的数为1-,则A 与B 两点间的距离可以表示为_____;(3)结合数轴可得23x x -++______,此时x 的取值范围是______; (4)若关于x 的方程115x x x a -+++-=无解,则a 的取值范围是_______.【答案】(1)相等;(2)|1|x +;(3)5,32x -≤≤;(4)6a <【解析】【分析】(1)根据数轴上两点之间的距离可得出结论;(2)根据数轴上两点之间的距离可得结果;(3)把x 的取值范围分成3x <-,32x -≤≤和2x >三类进行讨论,求出最小值及x 对应的取值范围即可;(4)把x 的取值范围分成1x <-,11x -≤<,15x ≤≤和5x >四类进行讨论,求出最小值,由于方程115x x x a -+++-=无解,则a 小于最小值即可得出答案.【详解】(1)由题可知,数轴上两点距离=两点表示的数的差的绝对值,故答案为:相等;(2)由(1)可知:(1)1AB x x =--=+, 故答案为:1x +;(3)①当3x <-时,20x -<,30x +<,23(2)(3)23215x x x x x x x ∴-++=---+=-+--=-->,②当32x -≤≤时,20x -<,30x +>,23(2)(3)235x x x x x x ∴-++=--++=-+++=,③当2x >时,20x ->,30x +>,23(2)(3)23215x x x x x x x ∴-++=-++=-++=+>,∴当32x -≤≤时,23x x -++有最小值为5,故答案为:5,32x -≤≤;(4)①当1x <-时,10x -<,10x +<,50x -<,115(1)(1)(5)358x x x x x x x ∴-+++-=---+--=-+>,②当11x -≤<时,10x -<,10x +>,50x -<,115(1)(1)(5)7x x x x x x x ∴-+++-=--++--=-+,61158x x x ∴<-+++-≤,③当15x ≤≤时,10x ->,10x +>,50x -<,115(1)(1)(5)5x x x x x x x ∴-+++-=-++--=+611510x x x ∴≤-+++-≤,④当5x >时,10x ->,10x +>,50x ->,115(1)(1)(5)3510x x x x x x x ∴-+++-=-+++-=->,115x x x ∴-+++-最小值为6, 方程115x x x a -+++-=无解,6a ∴<,故答案为:6a <.【点睛】本题考查数轴上两点的距离以及绝对值的意义,掌握分类讨论的思想方法求最值是解题的关键.13.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示1和4的两点之间的距离是_____________;数轴上表示a 与2的两点之间的距离可以表示为_____________;表示数a 和-2的两点之间的距离是3,那么=a _____________;一般地,数轴上表示数m 和数n 的两点之间的距离等于_______________.(2)同理31a a ++-表示数轴上有理数a 所对应的点到-3和1所对应的点的距离之和,请你找出所有符合条件的整数a ,使得314a a ++-=,这样的整数是_______________. (3)由以上探索猜想对于任何有理数a ,36a a -+-是否有最小值?如果有,直接写出最小值;如果没有,说明理由.(4)存在不存在数a ,使代数式324a a a ++-+-的值最小?如果存在,请写出数=a _____________,此时代数式324a a a ++-+-最小值是_______________.【答案】(1)3;2a ;-5或1;m n -;(2)-3,-2,-1,0,1;(3)存在,最小值为3;(4)存在,2,7【解析】【分析】(1)根据题意,结合数轴即可得到结果;(2)根据31a a ++-表示数轴上有理数a 所对应的点到-3和1所对应的点的距离之和即可求解;(3)根据两点间的距离的表示,数x 在3和6之间时,有最小值,然后求解即可;(4)分类讨论a 的范围,利用绝对值的代数意义化简,确定出最小值,以及此时a 的值即可.【详解】(1)数轴上表示1和4的两点之间的距离是3;数轴上表示a 与2的两点之间的距离可以表示为2a ;表示数a 和-2的两点之间的距离是3,则()223a a --=+= ,可得:a +2=3或a +2=-3,解得:=a -5或1;一般地,数轴上表示数m 和数n 的两点之间的距离等于m n -(2)因为31a a ++-表示数轴上有理数a 所对应的点到-3和1所对应的点的距离之和,314a a ++-=,所以数a 位于-3与1之间,所以符合条件的整数a 为-3,-2,-1,0,1;(3)当36a ≤≤时存在最小值,且最小值()()363a a =-+-= ;(4)存在数a ,使代数式324a a a ++-+-的值最小,①a ≤−3时,原式=−a −3+2−a +4−a =3−3a ,则a =−3;②−3≤a ≤2时,原式=a +3+2−a +4−a =9−a ,则a =2;③2≤a ≤4时,原式=a +3+a −2+4−a =a +5,则a =2;③a >4时,原式=a +3+a −2+a −4=3a −3>9,综上所述,当a =2时,原式有最小值7.【点睛】本题考查了一元一次方程的应用,数轴,以及绝对值,熟练掌握绝对值的代数意义是解本题的关键.14.同学们都知道:()32--表示3与-2之差的绝对值,实际上也可理解为3与-2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示x 与2的两点之间的距离可以表示为___________.(2)如果25x ,则x =__________. (3)同理21x x ++-表示数轴上有理数x 所对应的点到-2和1所对应的点的距离之和,请你找出所有符合条件的整数x ,使得213x x ++-=,这样的整数是___________. (4)由以上探索猜想对于任意有理数x ,321x x x -+-+-是否有最小值?如果有,直接写出最小值;如果没有,说明理由.【答案】(1)2x -;(2)7或-3;(3)-2、-1、0、1;(4)有最小值,最小值为2【解析】【分析】(1)根据距离公式即可解答;(2)利用绝对值求解即可;(3)利用绝对值及数轴求解即可;(4)根据数轴及绝对值,即可解答.【详解】(1)数轴上表示x 与2的两点之间的距离可以表示为2x -,故答案为:2x -; (2)∵25x , ∴25x -=或25x -=-,解得:7x =或3x =-,故答案为:7或-3;(3) ∵21x x ++-表示数轴上有理数x 所对应的点到-2和1所对应的点的距离之和, 如图,当x 对应的数在2-与1之间(包含-2与1)213,AB BC x x ∴+=++-= 满足213x x ++-=∴这样的整数有-2、-1、0、1,故答案为:-2、-1、0、1;(4)有最小值,最小值为2,理由如下:如图,1,2,3AB x BC x BD x =-=-=-, 当321x x x -+-+-最小时,即,B C 重合时,则2x =, 所以321x x x -+-+-的值有最小值,最小值为1012++=.【点睛】本题考查整式的加减、数轴、绝对值,解答本题的关键是明确整式加减的计算方法,会去绝对值符号,利用数轴的特点解答.15.我们知道:如果点A 、B 在数轴上分别表示有理数a 、b ,那么在数轴上A 、B 两点之间的距离AB =|a -b |.所以式子|x -3|的几何意义是数轴上表示有理数x 的点与表示有理数3的点之间的距离.利用这个结论,请结合数轴解答下列问题:(1)数轴上表示0和3的两点之间的距离是 ;数轴上表示-1和-4的两点之间的距离是 ;数轴上表示1和-4的两点之间的距离是 .(2)数轴上表示x 和-1的两点之间的距离可以表示为|x -(-1)|,即:|x +1|.如果|x +1|=2,那么x = .(3)如果数轴上表示数x 的点位于2与-3之间,那么|x -2|+|x +3|的值为 . (4)当x 取 时,1x -=|x +3|;当x 取 时,|x -2|+|x +2|=6.(5)当x 取 时,|x +3|+|x -1|+|x -5|的值最小,最小值是【答案】(1)3,3,5;(2)-3或1;(3)5;(4)-1,-3,3;(5)1, 8【解析】【分析】(1)根据数轴的概念和性质以及两点间的距离即可解答;(2)根据绝对值的性质和方程的思想进行解;(3)利用绝对值的性质进行化简,即可求出答案;(4)根据绝对值的意义,进行分类讨论,由此可得到关于x 的方程,求出x 的值即可; (5)根据绝对值的意义,当x 为中间点时有最小值,依此即可求解.【详解】解:(1)根据题意,数轴上表示0和3的两点之间的距离是:303-=;数轴上表示-1和-4的两点之间的距离是:1(4)3---=;数轴上表示1和-4的两点之间的距离是:1(4)5--=;故答案为:3,3,5;(2)∵12x +=,∴12x +=±,∴3x =-或1x =;故答案为:3-或1;(3)由题意,则∵如果数轴上表示数x 的点位于2与-3之间,∴32x -<<,∴20x -<,30x +>, ∴23(2)35x x x x -++=--++=故答案为:5;(4)根据题意, ∵13x x -=+,∴x 的值在1和3-之间,∴10x ->,30x +<,∴1(3)x x -=-+,解得:1x =-; ∵226x x -++=,当2x <-时,20x -<,20x +<,原方程可化为:(2)(2)6x x ---+=,解得:3x =-;当22x -≤≤时,224x x -++=,不符合题意;当2x >时,20x ->,20x +>,原方程可化为:226x x -++=,解得:3x =;故答案为:1-,3-,3;(5)根据绝对值的意义和数轴的定义,当1x =时,|x +3|+|x -1|+|x -5|的值有最小值;∴原式4048=++=;故答案为:1,8;【点睛】考查数轴表示数的意义,理解绝对值的意义和两点距离的计算方法是正确解答的关键. 16.我们知道,在数轴上,a 表示数a 到原点的距离.进一步地,点A ,B 在数轴上分别表示有理数a ,b ,那么A ,B 两点之间的距离就表示为a b -;反过来,a b -也就表示A ,B 两点之间的距离.下面,我们将利用这两种语言的互化,再辅助以图形语言解决问题. 例.若52x +=,那么x 为: ①52x +=,即|(5)|2x --=.文字语言:数轴上什么数到5-的距离等于2.②图形语言:③答案:x 为7-和3-.请你模仿上题的①②③,完成下列各题:(1)若|4||2|x x +=-,求x 的值.①文字语言:②图形语言:③答案:(2)32x x --=时,求x 的值:①文字语言:②图形语言:③答案:(3)134x x -+->,求x 的取值范围:①文字语言:②图形语言:③答案:(4)求|1||2||3||4||5|x x x x x -+-+-+-+-的最小值.①文字语言:②图形语言:③答案:【答案】(1)①文字语言:数轴上什么数到4-的距离等于它到2的距离②图形语言:画图见解析③答案:1x =-.(2)①文字语言:数轴上什么数到3的距离减去它到0的距离等于2.②图形语言:画图见解析. ③答案:12x = (3)①文字语言:数轴上什么数到1的距离加上它到3的距离大于4.②图形语言:画图见解析③答案:4x >或0x <.(4)①文字语言:数轴上什么数到1,2,3,4,5五个数的距离之和最小,最小值是多少. ②图形语言:画图见解析.③答案:当3x =时,最小值为6.【解析】【分析】(1)根据数轴上两点之间的距离公式求解即可;(2)根据数轴上两点之间的距离公式求解即可;(3)根据数轴上什么数到1距离加上它到3的距离大于4,观察数轴求解即可;(4)根据绝对值的几何意义,数轴上什么数到1,2,3,4,5五个数的距离之和最小,最小值是多少求解.【详解】(1)文字语言:数轴上什么数到4-的距离等于它到2的距离图形语言:答案:1x =-.(2)文字语言:数轴上什么数到3的距离减去它到0的距离等于2.图形语言:答案:12x = (3)文字语言:数轴上什么数到1的距离加上它到3的距离大于4.图形语言:答案:4x >或0x <.(4)文字语言:数轴上什么数到1,2,3,4,5五个数的距离之和最小,最小值是多少 图形语言:答案:当3x =时,最小值为210126++++=.【点睛】本题考查了绝对值的性质,解题的关键是利用数形结合求解.17.【问题提出】1232021a a a a -+-+-+⋅⋅⋅+-的最小值是多少?【阅读理解】 为了解决这个问题,我们先从最简单的情况入手.a 的几何意义是a 这个数在数轴上对应的点到原点的距离,那么1a -可以看作a 这个数在数轴上对应的点到1的距离;12-+-a a 就可以看作a 这个数在数轴上对应的点到1和2两个点的距离之和.下面我们结合数轴研究12-+-a a 的最小值.我们先看a 表示的点可能的3种情况,如图所示:。
七年级上学期《有理数》绝对值提高专项练习题

七年级上学期《有理数》绝对值提高专项练习题一、选择题1.B2.D3.C4.A5.C6.A7.B二、填空题1.2,-3,-22.1.5,-1.5,23.3.1,-1,0,1,24.5,35.-7,5,0.866.a<b,3,2b-a,a-2b7.a<b,a,b,b-a,a-b8.a≥09.(1) = (2)。
(3)10.-211.a<b<c<d,|a|<|b|<-|c|<-|d|有理数》绝对值专项练一、选择题(每题4分,共28分)1.下列各式中,等号不成立的是()A。
│-4│=4 B。
-│4│=-│-4│ C。
│-4│=│4│ D。
-│-4│=42.下列说法错误的是()A。
一个正数的绝对值一定是正数 B。
任何数的绝对值都是正数C。
一个负数的绝对值一定是正数 D。
任何数的绝对值都不是负数3.绝对值大于-3而不大于3的整数的个数有()A。
3个 B。
4个 C。
5个 D。
6个4.若a,b是有理数,那么下列结论一定正确的是()A。
若ab,则│a│>│b│C。
若a=b,则│a│=│b│ D。
若a≠b,则│a│≠│b│5.若│a│=4,│b│=9,则│a+b│的值是()A。
13 B。
5 C。
13或5 D。
以上都不是6.数轴上表示-的点到原点的距离是()A。
-2.2 B。
-2 C。
-1 D。
27.-5的倒数的绝对值是()A。
5 B。
1/5 C。
-1 D。
-5二、填空题(每题2分,共20分)1.-2的绝对值是2,-3的绝对值是3,2的绝对值是2.2.│-│=1.5,-│-1.5│=1.5,│-(-2)│=2.3.绝对值是+3.1的数是3.1,绝对值小于2的整数是1,-1,0,1.4.若│x│=5,则x=5或x=-5,若│x-3│=0,则x=3.5.若│x│=│-7│,则x=-7或x=7,若│x-7│=2,则x=5或x=9,│3.14-│=0.xxxxxxx。
6.a<b,│a│=3,│b│=2b-a,│a-b│=2b-2a,│b-a│=2a-2b。
七年级数学上--绝对值练习及提高习题

七年级数学上 --有理数--绝对值练习一令狐采学一、填空题:1、││=,│-│= 。
2、+│+5│= ,+│-5│=,-│+5│=,-│-5│=。
3、│0│= ,+│-0│= ,-│0│= 。
4、绝对值是6 ,符号是“-”的数是,符号是“+”的数是。
5、-0.02的绝对值的相反数是 ,相反数的绝对值是。
6、绝对值小于3.1的所有非负整数为。
7、绝对值大于小于的整数为。
8、计算的结果是。
9、当x=时,式子的值为零。
10、若a,b互为相反数,m的绝对值为2,则=。
11、已知,且为整数,则的值为。
12、若,则的值是。
13、若与互为相反数,则的值是。
14、若,,且,求的值是。
15、如图,化简:=。
16、已知,则=。
17、如图,则=。
18、已知,且,,则的值为。
19、若,,且,则=。
20、若,求的值为。
21、绝对值不大于2005的所有整数的和是,积是。
22、若,则的值为。
23、如果,,,那么m,n,-m,-n的大小关系是。
24、已知,,,且,那么=.25、已知,,那么_________.26、非零整数、满足,所有这样的整数组共有______组.二、选择题27.a表示一个有理数,那么.( )A.∣a∣是正数B.-a是负数C.-∣a∣是负数D.∣a∣不是负数28.绝对值等于它的相反数的数一定是( )A.正数B. 负C.非正数D. 非负数29.一个数的绝对值是最小的正整数,那么这个数是( )A.-1B.1C.0D.+1或-130.设m,n是有理数,要使∣m∣+∣n∣=0,则m,n的关系应该是( )A. 互为相反数B. 相等C. 符号相反D. 都为零31、设a为有理数,则的值是()A. 正数B. 负数C. 非正数D. 非负数32、若一个数的绝对值是正数,则这个数是()A. 不等于0的有理数B. 正数C. 任何有理数D. 非负数33、若,,则等于()A. 8B.C. 8和2D. 和34、如果,且,那么的值是()A. 正数B. 负数C. 正数或负数D. 035、已知,,则m与n的差是()A. B. C. D.36、下列等式成立的是()A. B. C. D.37、如果,则m,n的关系()A. 互为相反数B. 且C. 相等且都不小于0D. m 是n的绝对值38、已知,,且,则的值等于()A. 5或-5B. 1或-1C. 5或-1D. -5或-39、使成立的条件是()A. B. C.D.40、是非零有理数,且,那么的所有可能值为( )A.0 B. 1或 C.2或 D.0或三、解答题:41.化简:(1)1+∣-∣=(2)∣-3.2∣-∣+2.3∣=(3)-(-│-2│)=(4)-│-(+3.3│)=(5)-│+(-6)│ =(6)-(-|-2|)=(7)||=(8)|=(9)-(|-4.2|×|+)=(10)|-2|-|+1|+|0|=42.(1)若|a+2|+|b-1|=0,则a= b=;(2)若|a|=3,|b|=2,且a+b<0,则a-b=______________.七年级数学上 --有理数--绝对值练习一一、选择题1、如果m>0, n<0, m<|n|,那么m,n,-m, -n的大小关系()A.-n>m>-m>nB.m>n>-m>-nC.-n>m>n>-mD.n>m>-n>-m2、绝对值等于其相反数的数一定是()A.负数 B.正数 C.负数或零 D.正数或零3、下列说法中正确的是()A.一定是负数B.只有两个数相等时它们的绝对值才相等C.若则与互为相反数D.若一个数小于它的绝对值,则这个数是负数4、给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有〖〗A.0个B.1个C.2个D.3个5、如果,则的取值范围是〖〗 A.>OB.≥O C.≤OD.<O6、绝对值不大于11.1的整数有〖〗A.11个B.12个C.22个D.23个7、绝对值最小的有理数的倒数是()A、1 B、-1C、0D、不存在8、在有理数中,绝对值等于它本身的数有()A、1个B、2个C、3个D、无数多个9、下列数中,互为相反数的是()A、│-│和-B、│-│和-C、│-│和D、│-│和10、下列说法错误的是()A、一个正数的绝对值一定是正数B、一个负数的绝对值一定是正数C、任何数的绝对值都不是负数D、任何数的绝对值一定是正数11、│a│= -a,a一定是()A、正数 B、负数 C、非正数 D、非负数12、下列说法正确的是()A、两个有理数不相等,那么这两个数的绝对值也一定不相等B、任何一个数的相反数与这个数一定不相等C、两个有理数的绝对值相等,那么这两个有理数不相等D、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数。
七年级数学上册绝对值专项练习题
七年级数学上册绝对值专项练习题1.绝对值为4的数是()A.±4B.4C.﹣4D.2答案:A解析:绝对值为4的数有两个,即±4.2.当|a|=5,|b|=7,且|a+b|=a+b,则a﹣b的值为()A.﹣12B.﹣2或﹣12C.2D.﹣2答案:B解析:由题意得,a+b的绝对值为a+b,即a+b的值非负,所以a和b符号相同。
又因为|a|=5,|b|=7,所以a和b的值只能是±5和±7,且符号相同。
又因为a+b的值非负,所以a和b 的值只能是±5和±7中绝对值较大的那个数,即a和b的值分别为±5和±7.所以a﹣b的值为﹣2或﹣12.3.下面说法正确的是()A.绝对值最小的数是0B.绝对值相等的两个数相等C.﹣a一定是负数 D.有理数的绝对值一定是正数答案:B解析:A、C、D说法都是错误的。
B说法正确,因为绝对值相等的两个数要么相等,要么互为相反数。
4.下列式子中,正确的是()A。
B.﹣|﹣5|=5 C.|﹣5|=5 D。
答案:A、B、C解析:A、B、C都正确。
D不正确,因为绝对值只能是非负数。
5.已知整数a1,a2,a3,a4…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|…依此类推,则a2017的值为()A.﹣1009B.﹣1008C.﹣2017D.﹣2016答案:B解析:a1=0,a2=﹣1,a3=﹣3,a4=﹣6,a5=﹣10,a6=﹣15…可得an=﹣n(n﹣1)/2,所以a2017=﹣2017×2016/2=﹣1008×2017.6.下列说法正确的个数是()①|a|一定是正数;②﹣a一定是负数;③﹣(﹣a)一定是正数;④一定是分数.A.1个B.2个C.3个D.4个答案:A解析:只有①正确,其他都是错误的。
②中a可能是0,③中a可能是0或正数,④中a可能是整数或0.所以正确的只有一个。
七年级上册数学绝对值专项训练
人教版七年级上册数学绝对值专项训练一、绝对值的概念1. 定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a|。
2. 性质:-绝对值具有非负性,即|a|≥0。
-互为相反数的两个数的绝对值相等,即若a 与b 互为相反数,则|a| = |b|。
二、典型例题1. 求一个数的绝对值-例1:求|-5|的值。
解:|-5| = 5。
-例2:求|0|的值。
解:|0| = 0。
-例3:求|3.5|的值。
解:|3.5| = 3.5。
2. 已知一个数的绝对值求这个数-例4:已知|a| = 4,求a 的值。
解:因为|a| = 4,所以 a = 4 或 a = -4。
-例5:已知|b| = -2,求b 的值。
解:因为绝对值具有非负性,所以不存在一个数的绝对值为负数,此题无解。
3. 绝对值的化简-例6:化简|2 - 5|。
解:|2 - 5| = |-3| = 3。
-例7:化简|x - 3|(x<3)。
解:因为x<3,所以x - 3<0,那么|x - 3| = 3 - x。
4. 绝对值的运算-例8:计算|3| + |-2|。
解:|3| + |-2| = 3 + 2 = 5。
-例9:计算|5 - 3| - |2 - 4|。
解:|5 - 3| - |2 - 4| = |2| - |-2| = 2 - 2 = 0。
三、专项练习1. 填空题- |-8| = ____。
-若|x| = 6,则x = ____。
-绝对值等于3 的数是____。
- |0 - 5| = ____。
2. 选择题-下列说法正确的是()。
A. 绝对值等于它本身的数只有0B. 绝对值等于它本身的数是正数C. 绝对值等于它本身的数是非负数D. 绝对值等于它本身的数是负数-若|a| = -a,则a 一定是()。
A. 正数B. 负数C. 非正数D. 非负数3. 解答题-已知|a - 2| + |b + 3| = 0,求a、b 的值。
-化简|x - 1| + |x - 3|(1<x<3)。
七年级数学上绝对值专项练题
七年级数学上绝对值专项练题一、绝对值专项练习题。
1. 求下列各数的绝对值:- 5- -3- 0- -(2)/(3)解析:- 根据绝对值的定义,正数的绝对值是它本身,所以|5| = 5。
- 负数的绝对值是它的相反数,所以| - 3|=3。
- 0的绝对值是0,即|0| = 0。
- |-(2)/(3)|=(2)/(3)。
2. 已知| a| = 3,求a的值。
解析:- 因为| a| = 3,根据绝对值的定义,绝对值等于3的数有两个,一个是3,另一个是-3,所以a = 3或a=-3。
3. 比较大小:| - 5|与4。
解析:- 先求出| - 5| = 5。
- 因为5>4,所以| - 5|>4。
4. 计算:| - 2|+|3|。
解析:- 先分别求出绝对值,| - 2| = 2,|3| = 3。
- 然后计算2 + 3=5。
5. 计算:| - 4|-| - 2|。
解析:- 先求绝对值,| - 4| = 4,| - 2| = 2。
- 再计算4-2 = 2。
6. 若| x - 1| = 0,求x的值。
解析:- 因为| x - 1| = 0,根据绝对值的性质,只有0的绝对值是0,所以x - 1 = 0,解得x = 1。
7. 已知| a|=| - 2|,求a的值。
解析:- 先求出| - 2| = 2。
- 因为| a| = 2,所以a = 2或a=-2。
8. 计算:| - 3|×| - 2|。
解析:- 先求绝对值,| - 3| = 3,| - 2| = 2。
- 然后计算3×2 = 6。
9. 计算:(| - 6|)/(|2|)。
解析:- 先求绝对值,| - 6| = 6,|2| = 2。
- 再计算(6)/(2)=3。
10. 若| a| = 5,| b| = 3,且a < b,求a、b的值。
解析:- 因为| a| = 5,所以a = 5或a=-5;因为| b| = 3,所以b = 3或b=-3。
七年级数学上--绝对值练习及提高习题之欧阳德创编
七年级数学上 --有理数--绝对值练习一时间:2021.03.07 创作:欧阳德一、填空题:1、││=,│-│= 。
2、+│+5│= ,+│-5│=,-│+5│=,-│-5│=。
3、│0│= ,+│-0│= ,-│0│= 。
4、绝对值是6 ,符号是“-”的数是,符号是“+”的数是。
5、-0.02的绝对值的相反数是,相反数的绝对值是。
6、绝对值小于3.1的所有非负整数为。
7、绝对值大于小于的整数为。
8、计算的结果是。
9、当x=时,式子的值为零。
10、若a,b互为相反数,m的绝对值为2,则=。
11、已知,且为整数,则的值为。
12、若,则的值是。
13、若与互为相反数,则的值是。
14、若,,且,求的值是。
15、如图,化简:=。
16、已知,则=。
17、如图,则=。
18、已知,且,,则的值为。
19、若,,且,则=。
20、若,求的值为。
21、绝对值不大于2005的所有整数的和是,积是。
22、若,则的值为。
23、如果,,,那么m,n,-m,-n的大小关系是。
24、已知,,,且,那么=.25、已知,,那么_________.26、非零整数、满足,所有这样的整数组共有______组.二、选择题27.a表示一个有理数,那么.( )A.∣a∣是正数B.-a是负数C.-∣a∣是负数D.∣a∣不是负数28.绝对值等于它的相反数的数一定是( )A.正数B. 负C.非正数D. 非负数29.一个数的绝对值是最小的正整数,那么这个数是( )A.-1B.1C.0D.+1或-1 30.设m,n是有理数,要使∣m∣+∣n∣=0,则m,n 的关系应该是( )A. 互为相反数B. 相等C. 符号相反D. 都为零31、设a为有理数,则的值是()A. 正数B. 负数C. 非正数D. 非负数32、若一个数的绝对值是正数,则这个数是()A. 不等于0的有理数B. 正数C. 任何有理数D. 非负数33、若,,则等于()A. 8B.C. 8和2D. 和34、如果,且,那么的值是()A. 正数B. 负数C. 正数或负数D. 035、已知,,则m与n的差是()A. B. C. D.36、下列等式成立的是()A. B. C. D.37、如果,则m,n的关系()A. 互为相反数B. 且C. 相等且都不小于0D. m是n的绝对值38、已知,,且,则的值等于()A. 5或-5B. 1或-1C. 5或-1D. -5或-39、使成立的条件是()A. B.C. D.40、是非零有理数,且,那么的所有可能值为( )A.0 B. 1或 C.2或 D.0或三、解答题:41.化简:(1)1+∣-∣=(2)∣-3.2∣-∣+2.3∣=(3)-(-│-2│)=(4)-│-(+3.3│)=(5)-│+(-6)│ =(6)-(-|-2|)=(7)||=(8)|=(9)-(|-4.2|×|+)=(10)|-2|-|+1|+|0|=42.(1)若|a+2|+|b-1|=0,则a= b=;(2)若|a|=3,|b|=2,且a+b<0,则a-b=______________.七年级数学上 --有理数--绝对值练习一一、选择题1、如果m>0, n<0, m<|n|,那么m,n,-m, -n的大小关系()A.-n>m>-m>nB.m>n>-m>-nC.-n>m>n>-mD.n>m>-n>-m2、绝对值等于其相反数的数一定是()A.负数 B.正数 C.负数或零 D.正数或零3、下列说法中正确的是()A.一定是负数 B.只有两个数相等时它们的绝对值才相等C.若则与互为相反数 D.若一个数小于它的绝对值,则这个数是负数4、给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有〖〗A.0个B.1个C.2个D.3个5、如果,则的取值范围是〖〗 A.>OB.≥OC.≤OD.<O6、绝对值不大于11.1的整数有〖〗A.11个B.12个C.22个D.23个7、绝对值最小的有理数的倒数是()A、1B、-1C、0D、不存在8、在有理数中,绝对值等于它本身的数有()A、1个B、2个C、3个D、无数多个9、下列数中,互为相反数的是()A、│-│和-B、│-│和-C、│-│和D、│-│和10、下列说法错误的是()A、一个正数的绝对值一定是正数B、一个负数的绝对值一定是正数C、任何数的绝对值都不是负数D、任何数的绝对值一定是正数11、│a│= -a,a一定是()A、正数 B、负数C、非正数D、非负数12、下列说法正确的是()A、两个有理数不相等,那么这两个数的绝对值也一定不相等B、任何一个数的相反数与这个数一定不相等C、两个有理数的绝对值相等,那么这两个有理数不相等D、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数。