数字信号处理实验报告(西电)

合集下载

数字信号处理实验报告

数字信号处理实验报告

实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。

2、熟悉离散信号和系统的时域特性。

3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。

4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。

二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。

2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。

信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。

根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。

三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。

(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。

数字信号处理实验报告(西电)

数字信号处理实验报告(西电)

数字信号处理实验报告班级:****姓名:郭**学号:*****联系方式:*****西安电子科技大学电子工程学院绪论数字信号处理起源于十八世纪的数学,随着信息科学和计算机技术的迅速发展,数字信号处理的理论与应用得到迅速发展,形成一门极其重要的学科。

当今数字信号处理的理论和方法已经得到长足的发展,成为数字化时代的重要支撑,其在各个学科和技术领域中的应用具有悠久的历史,已经渗透到我们生活和工作的各个方面。

数字信号处理相对于模拟信号处理具有许多优点,比如灵活性好,数字信号处理系统的性能取决于系统参数,这些参数很容易修改,并且数字系统可以分时复用,用一套数字系统可以分是处理多路信号;高精度和高稳定性,数字系统的运算字符有足够高的精度,同时数字系统不会随使用环境的变化而变化,尤其使用了超大规模集成的DSP 芯片,简化了设备,更提高了系统稳定性和可靠性;便于开发和升级,由于软件可以方便传送,复制和升级,系统的性能可以得到不断地改善;功能强,数字信号处理不仅能够完成一维信号的处理,还可以试下安多维信号的处理;便于大规模集成,数字部件具有高度的规范性,对电路参数要求不严格,容易大规模集成和生产。

数字信号处理用途广泛,对其进行一系列学习与研究也是非常必要的。

本次通过对几个典型的数字信号实例分析来进一步学习和验证数字信号理论基础。

实验一主要是产生常见的信号序列和对数字信号进行简单处理,如三点滑动平均算法、调幅广播(AM )调制高频正弦信号和线性卷积。

实验二则是通过编程算法来了解DFT 的运算原理以及了解快速傅里叶变换FFT 的方法。

实验三是应用IRR 和FIR 滤波器对实际音频信号进行处理。

实验一●实验目的加深对序列基本知识的掌握理解●实验原理与方法1.几种常见的典型序列:0()1,00,0(){()()(),()sin()j n n n n u n x n Aex n a u n a x n A n σωωϕ+≥<====+单位阶跃序列:复指数序列:实指数序列:为实数 正弦序列:2.序列运算的应用:数字信号处理中经常需要将被加性噪声污染的信号中移除噪声,假定信号 s(n)被噪声d(n)所污染,得到了一个含噪声的信号()()()x n s n d n =+。

西电电院数字信号处理上机实验报告六

西电电院数字信号处理上机实验报告六

实验六、FIR数字滤波器设计及其网络结构班级: 学号: 姓名: 成绩:1实验目得(1)熟悉线性相位FIR数字滤波器得时域特点、频域特点与零极点分布;(2)掌握线性相位FIR数字滤波器得窗函数设计法与频率采样设计法;(3)了解IIR数字滤波器与FIR数字滤波器得优缺点及其适用场合。

2 实验内容(1)设计计算机程序,根据滤波器得主要技术指标设计线性相位FIR数字低通、高通、带通与带阻滤波器;(2)绘制滤波器得幅频特性与相频特性曲线,验证滤波器得设计结果就是否达到设计指标要求;(3)画出线性相位FIR数字滤波器得网络结构信号流图。

3实验步骤(1)设计相应得四种滤波器得MATLAB程序;(2)画出幅频相频特性曲线;(3)画出信号流图。

4 程序设计%% FIR低通f=[0、2,0、35];m=[1,0];Rp=1;Rs=40;dat1=(10^(Rp/20)-1)/(10^(Rp/20)+1);dat2=10^(-Rs/20);rip=[dat1,dat2];[M,f0,m0,w]=remezord(f,m,rip);M=M+2;hn=remez(M,f0,m0,w);w=0:0、001:pixn=[0:length(hn)-1];H=hn*exp(-j*xn'*w);figuresubplot(2,1,1)plot(w/pi,20*log10(abs(H)));gridon;xlabel('\omega/\pi'),ylabel('|H(e^j^w)|/dB')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi') %% FIR高通f=[0、7,0、9];m=[0,1];Rp=1;Rs=60;dat1=(10^(Rp/20)-1)/(10^(Rp/20)+1);dat2=10^(-Rs/20);rip=[dat2,dat1];[M,f0,m0,w]=remezord(f,m,rip);hn=remez(M,f0,m0,w);w=0:0、001:pixn=[0:length(hn)-1];H=hn*exp(-j*xn'*w);figuresubplot(2,1,1)plot(w/pi,20*log10(abs(H)));gridon;xlabel('\omega/\pi'),ylabel('|H(e^j^w)|/dB')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi') %% FIR带通f=[0、2,0、35,0、65,0、8];m=[0,1,0];Rp=1;Rs=60;dat1=(10^(Rp/20)-1)/(10^(Rp/20)+1);dat2=10^(-Rs/20);rip=[dat2,dat1,dat2];[M,f0,m0,w]=remezord(f,m,rip);M=M+3hn=remez(M,f0,m0,w);w=0:0、001:pixn=[0:length(hn)-1];H=hn*exp(-j*xn'*w);figuresubplot(2,1,1)plot(w/pi,20*log10(abs(H)));gridon;xlabel('\omega/\pi'),ylabel('|H(e^j^w)|/dB')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi') %% FIR带阻f=[0、2,0、35,0、65,0、8];m=[1,0,1];Rp=1;Rs=60;dat1=(10^(Rp/20)-1)/(10^(Rp/20)+1);dat2=10^(-Rs/20);rip=[dat1,dat2,dat1];[M,f0,m0,w]=remezord(f,m,rip);hn=remez(M,f0,m0,w);w=0:0、001:pixn=[0:length(hn)-1];H=hn*exp(-j*xn'*w);figuresubplot(2,1,1)plot(w/pi,20*log10(abs(H)));gridon;xlabel('\omega/\pi'),ylabel('|H(e^j^w)|/dB')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi') 5实验结果及分析(1)FIR低通滤波器自动得到得M值不满足要求,故我们将M加上2 在w=0、2π时,H=-0、5dB;w=0、35π时,H=-41dB。

西安电子科技大学数字信号处理上机报告

西安电子科技大学数字信号处理上机报告

数字信号处理大作业院系:电子工程学院学号:02115043姓名:邱道森实验一:信号、系统及系统响应一、实验目的(1) 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解。

(2) 熟悉时域离散系统的时域特性。

(3) 利用卷积方法观察分析系统的时域特性。

(4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。

二、实验原理采样是连续信号数字处理的第一个关键环节。

对连续信号()a x t 进行理想采样的过程可用(1.1)式表示:()()()ˆa a xt x t p t =⋅ 其中()t xa ˆ为()a x t 的理想采样,()p t 为周期冲激脉冲,即 ()()n p t t nT δ∞=-∞=-∑()t xa ˆ的傅里叶变换()j a X Ω为 ()()s 1ˆj j j a a m X ΩX ΩkΩT ∞=-∞=-∑进行傅里叶变换,()()()j ˆj e d Ωt a a n X Ωx t t nT t δ∞∞--∞=-∞⎡⎤=-⎢⎥⎣⎦∑⎰ ()()j e d Ωtan x t t nT t δ∞∞--∞=-∞=-∑⎰()j e ΩnTan x nT ∞-=-∞=∑式中的()a x nT 就是采样后得到的序列()x n , 即()()a x n x nT =()x n 的傅里叶变换为()()j j e enn X x n ωω∞-=-∞=∑比较可知()()j ˆj e aΩTX ΩX ωω==为了在数字计算机上观察分析各种序列的频域特性,通常对()j e X ω在[]0,2π上进行M 点采样来观察分析。

对长度为N 的有限长序列()x n ,有()()1j j 0eekk N nn X x n ωω--==∑其中2π,0,1,,1k k k M Mω==⋅⋅⋅-一个时域离散线性时不变系统的输入/输出关系为()()()()()m y n x n h n x m h n m ∞=-∞=*=-∑上述卷积运算也可以转到频域实现()()()j j j e e e Y X H ωωω= (1.9)三、实验内容及步骤(1) 认真复习采样理论、 离散信号与系统、 线性卷积、 序列的傅里叶变换及性质等有关内容, 阅读本实验原理与方法。

西安电子科大数字信号处理课后实验答案

西安电子科大数字信号处理课后实验答案

一系统响应及稳定性的实验报告一. 实验目的:(1)掌握 求系统响应的方法。

(2)掌握时域离散系统的时域特性。

(3)分析、观察及检验系统的稳定性。

二. 实验原理与方法:1.在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。

已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应。

在计算机上可用filter 函数求差分方程的解, conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。

2.系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。

3.系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。

或者系统的单位脉冲响应满足绝对可和的条件。

系统的稳定性由其差分方程的系数决定。

实际中检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出是否都是有界输出,或者检查系统的单位脉冲响应满足绝对可和的条件。

可行的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳定的[19]。

系统的稳态输出是指当∞→n 时,系统的输出。

如果系统稳定,信号加入系统后,系统输出的开始一段称为暂态效应,随n 的加大,幅度趋于稳定,达到稳态输出。

三.实验内容及步骤:1.编制程序,包括产生输入信号、单位脉冲响应序列的子程序,用filter 函数或conv 函数求解系统输出响应的主程序。

程序中要有绘制信号波形的功能。

2.给定一个低通滤波器的差分方程为)1(9.0)1(05.0)(05.0)(-+-+=n y n x n x n y a) 分别求出系统对)()(81n R n x =和)()(2n u n x =的响应序列,并画出其波形。

b) 求出系统的单位冲响应,画出其波形。

3.给定系统的单位脉冲响应为)()(101n R n h =)3()2(5.2)1(5.2)()(2-+-+-+=n n n n n h δδδδ 用线性卷积法分别求系统h 1(n)和h 2(n)对)()(81n R n x =的输出响应,并画出波形。

2017年西电电院数字信号处理上机实验报告五

2017年西电电院数字信号处理上机实验报告五

实验五、IIR数字滤波器设计及其网络结构班级:学号:姓名:成绩:1实验目的(1)熟悉数字滤波的基本概念、数字滤波器的主要技术指标及其物理意义;(2)掌握巴特沃斯和切比雪夫模拟低通滤波器的设计方法和IIR数字低通滤波器的脉冲响应不变设计法、双线性变换法设计方法。

(3)了解模拟和数字滤波器的频率变换、IIR数字滤波器的直接(优化)设计方法;2 实验内容(1)设计计算机程序,根据滤波器的主要技术指标设计IIR数字巴特沃斯和切比雪夫低通、高通、带通和带阻滤波器;(2)绘制滤波器的幅频特性和相频特性曲线,验证滤波器的设计结果是否达到设计指标要求;(3)画出数字滤波器的直接型、级联型、并联型网络结构信号流图。

3实验步骤(1)设计相应的八种滤波器的MATLAB程序;(2)画出幅频相频特性曲线;(3)画出信号流图。

4程序设计%% 巴特沃斯低通wp=0.2;ws=0.35;rp=1;rs=10;[N,wc]=buttord(wp,ws,rp,rs);[B,A]=butter(N,wc);w=0:0.001:pi;[H,w]=freqz(B,A,w);H1=20*log10(abs(H))subplot(2,1,1)plot(w/pi,H1),grid on;xlabel('\omega/\pi'),ylabel('|H(e^i^\omega)|')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi')%% 巴特沃斯高通wp=0.8;ws=0.6;rp=1;rs=10;[N,wc]=buttord(wp,ws,rp,rs);[B,A]=butter(N,wc,'high');w=0:0.001:pi;[H,w]=freqz(B,A,w);H1=20*log10(abs(H));subplot(2,1,1)plot(w/pi,H1),grid on;xlabel('\omega/\pi'),ylabel('|H(e^i^\omega)|')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi') %% 巴特沃斯带通wpl=0.4;wpu=0.6;wsl=0.2;wsu=0.8wp=[wpl,wpu];ws=[wsl,wsu];rp=1;rs=20;[N,wc]=buttord(wp,ws,rp,rs);[B,A]=butter(N,wc);w=0:0.001:pi;[H,w]=freqz(B,A,w);H1=20*log10(abs(H));subplot(2,1,1)plot(w/pi,H1),grid on;xlabel('\omega/\pi'),ylabel('|H(e^i^\omega)|') subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi') %% 巴特沃斯带阻wpl=0.2;wpu=0.8;wsl=0.4;wsu=0.6wp=[wpl,wpu];ws=[wsl,wsu];rp=1;rs=20;[N,wc]=buttord(wp,ws,rp,rs);[B,A]=butter(N,wc,'stop');w=0:0.001:pi;[H,w]=freqz(B,A,w);H1=20*log10(abs(H));subplot(2,1,1)plot(w/pi,H1),grid on;xlabel('\omega/\pi'),ylabel('|H(e^i^\omega)|')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi') %% 切比雪夫低通wp=0.2;ws=0.5;rp=1;rs=40;[N,wpo]=cheb1ord(wp,ws,rp,rs);[B,A]=cheby1(N,rp,wpo);w=0:0.001:pi;[H,w]=freqz(B,A,w);H1=20*log10(abs(H));subplot(2,1,1)plot(w/pi,H1),grid on;xlabel('\omega/\pi'),ylabel('|H(e^i^\omega)|')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi')%% 切比雪夫高通wp=0.7;ws=0.5;rp=1;rs=40;[N,wpo]=cheb1ord(wp,ws,rp,rs);[B,A]=cheby1(N,rp,wpo,'high');w=0:0.001:pi;[H,w]=freqz(B,A,w);H1=20*log10(abs(H));subplot(2,1,1)plot(w/pi,H1),grid on;xlabel('\omega/\pi'),ylabel('|H(e^i^\omega)|')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi')%% 切比雪夫带通wpl=0.4;wpu=0.6;wsl=0.2;wsu=0.8wp=[wpl,wpu];ws=[wsl,wsu];rp=1;rs=20;[N,wpo]=cheb1ord(wp,ws,rp,rs);[B,A]=cheby1(N,rp,wpo);w=0:0.001:pi;[H,w]=freqz(B,A,w);H1=20*log10(abs(H));subplot(2,1,1)plot(w/pi,H1),grid on;xlabel('\omega/\pi'),ylabel('|H(e^i^\omega)|')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi')%% 切比雪夫带阻wpl=0.2;wpu=0.8;wsl=0.4;wsu=0.6wp=[wpl,wpu];ws=[wsl,wsu];rp=1;rs=20;[N,wpo]=cheb1ord(wp,ws,rp,rs);[B,A]=cheby1(N,rp,wpo,'stop');w=0:0.001:pi;[H,w]=freqz(B,A,w);H1=20*log10(abs(H));subplot(2,1,1)plot(w/pi,H1),grid on;xlabel('\omega/\pi'),ylabel('|H(e^i^\omega)|')subplot(2,1,2)plot(w/pi,angle(H)/pi);xlabel('\omega/\pi'),ylabel('\phi(\omega)/\pi')5实验结果及分析(1)巴特沃斯低通W=0.5πi时,H=-0.75dB,w=0.35π时,H=-10dB,满足要求。

数字信号处理(西电上机实验)

数字信号处理(西电上机实验)

数字信号处理实验报告实验一:信号、系统及系统响应一、实验目的:(1) 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解。

(2) 熟悉时域离散系统的时域特性。

(3) 利用卷积方法观察分析系统的时域特性。

(4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。

二、实验原理与方法:(1) 时域采样。

(2) LTI系统的输入输出关系。

三、实验内容、步骤(1) 认真复习采样理论、离散信号与系统、线性卷积、序列的傅里叶变换及性质等有关内容,阅读本实验原理与方法。

(2) 编制实验用主程序及相应子程序。

①信号产生子程序,用于产生实验中要用到的下列信号序列:a. xa(t)=A*e^-at *sin(Ω0t)u(t)A=444.128;a=50*sqrt(2)*pi;b. 单位脉冲序列:xb(n)=δ(n)c. 矩形序列:xc(n)=RN(n), N=10②系统单位脉冲响应序列产生子程序。

本实验要用到两种FIR系统。

a. ha(n)=R10(n);b. hb(n)=δ(n)+2.5δ(n-1)+2.5δ(n-2)+δ(n-3)③有限长序列线性卷积子程序用于完成两个给定长度的序列的卷积。

可以直接调用MATLAB语言中的卷积函数conv。

conv用于两个有限长度序列的卷积,它假定两个序列都从n=0 开始。

调用格式如下:y=conv (x, h)四、实验内容调通并运行实验程序,完成下述实验内容:①分析采样序列的特性。

a. 取采样频率fs=1 kHz, 即T=1 ms。

b. 改变采样频率,fs=300 Hz,观察|X(ejω)|的变化,并做记录(打印曲线);进一步降低采样频率,fs=200 Hz,观察频谱混叠是否明显存在,说明原因,并记录(打印)这时的|X(ejω)|曲线。

②时域离散信号、系统和系统响应分析。

a. 观察信号xb(n)和系统hb(n)的时域和频域特性;利用线性卷积求信号xb(n)通过系统hb(n)的响应y(n),比较所求响应y(n)和hb(n)的时域及频域特性,注意它们之间有无差别,绘图说明,并用所学理论解释所得结果。

数字信号处理实验报告

数字信号处理实验报告

一、实验目的1. 理解数字信号处理的基本概念和原理。

2. 掌握离散时间信号的基本运算和变换方法。

3. 熟悉数字滤波器的设计和实现。

4. 培养实验操作能力和数据分析能力。

二、实验原理数字信号处理(Digital Signal Processing,DSP)是利用计算机对信号进行采样、量化、处理和分析的一种技术。

本实验主要涉及以下内容:1. 离散时间信号:离散时间信号是指时间上离散的信号,通常用序列表示。

2. 离散时间系统的时域分析:分析离散时间系统的时域特性,如稳定性、因果性、线性等。

3. 离散时间信号的变换:包括离散时间傅里叶变换(DTFT)、离散傅里叶变换(DFT)和快速傅里叶变换(FFT)等。

4. 数字滤波器:设计、实现和分析数字滤波器,如低通、高通、带通、带阻滤波器等。

三、实验内容1. 离散时间信号的时域运算(1)实验目的:掌握离散时间信号的时域运算方法。

(2)实验步骤:a. 使用MATLAB生成两个离散时间信号;b. 进行时域运算,如加、减、乘、除等;c. 绘制运算结果的时域波形图。

2. 离散时间信号的变换(1)实验目的:掌握离散时间信号的变换方法。

(2)实验步骤:a. 使用MATLAB生成一个离散时间信号;b. 进行DTFT、DFT和FFT变换;c. 绘制变换结果的频域波形图。

3. 数字滤波器的设计和实现(1)实验目的:掌握数字滤波器的设计和实现方法。

(2)实验步骤:a. 设计一个低通滤波器,如巴特沃斯滤波器、切比雪夫滤波器等;b. 使用MATLAB实现滤波器;c. 使用MATLAB对滤波器进行时域和频域分析。

4. 数字滤波器的应用(1)实验目的:掌握数字滤波器的应用。

(2)实验步骤:a. 采集一段语音信号;b. 使用数字滤波器对语音信号进行降噪处理;c. 比较降噪前后的语音信号,分析滤波器的效果。

四、实验结果与分析1. 离散时间信号的时域运算实验结果显示,通过MATLAB可以方便地进行离散时间信号的时域运算,并绘制出运算结果的时域波形图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字信号处理实验报告班级:****姓名:郭**学号:*****联系方式:*****西安电子科技大学电子工程学院绪论数字信号处理起源于十八世纪的数学,随着信息科学和计算机技术的迅速发展,数字信号处理的理论与应用得到迅速发展,形成一门极其重要的学科。

当今数字信号处理的理论和方法已经得到长足的发展,成为数字化时代的重要支撑,其在各个学科和技术领域中的应用具有悠久的历史,已经渗透到我们生活和工作的各个方面。

数字信号处理相对于模拟信号处理具有许多优点,比如灵活性好,数字信号处理系统的性能取决于系统参数,这些参数很容易修改,并且数字系统可以分时复用,用一套数字系统可以分是处理多路信号;高精度和高稳定性,数字系统的运算字符有足够高的精度,同时数字系统不会随使用环境的变化而变化,尤其使用了超大规模集成的DSP 芯片,简化了设备,更提高了系统稳定性和可靠性;便于开发和升级,由于软件可以方便传送,复制和升级,系统的性能可以得到不断地改善;功能强,数字信号处理不仅能够完成一维信号的处理,还可以试下安多维信号的处理;便于大规模集成,数字部件具有高度的规范性,对电路参数要求不严格,容易大规模集成和生产。

数字信号处理用途广泛,对其进行一系列学习与研究也是非常必要的。

本次通过对几个典型的数字信号实例分析来进一步学习和验证数字信号理论基础。

实验一主要是产生常见的信号序列和对数字信号进行简单处理,如三点滑动平均算法、调幅广播(AM )调制高频正弦信号和线性卷积。

实验二则是通过编程算法来了解DFT 的运算原理以及了解快速傅里叶变换FFT 的方法。

实验三是应用IRR 和FIR 滤波器对实际音频信号进行处理。

实验一●实验目的加深对序列基本知识的掌握理解●实验原理与方法1.几种常见的典型序列:0()1,00,0(){()()(),()sin()j n n n n u n x n Aex n a u n a x n A n σωωϕ+≥<====+单位阶跃序列:复指数序列:实指数序列:为实数 正弦序列:2.序列运算的应用:数字信号处理中经常需要将被加性噪声污染的信号中移除噪声,假定信号 s(n)被噪声d(n)所污染,得到了一个含噪声的信号()()()x n s n d n =+。

我们的目的是对 x(n)进行运算,产生一个合理逼近 s(n)的信号 y(n),从而实现去噪的目的。

通常做法是对时刻 n 的样本附近的一些 样本进行求平均,产生输出信号,这是一种简单有效的办法,例如三点滑动平均算法的表达式如下:1()[(1)()(1)]3y n x n x n x n =-+++。

3.复杂信号的产生:调幅广播(AM )是一种重要广播形式,使用的是振幅调制信号,其产生可用低频调制信号(如声音信号)来调制高频正弦信号(如载 波信号),不妨假设低频调制信号和高频正弦信号均为正弦信号形式,具体如下: ()cos(),()cos()L L H H x n n x n n ωω==,振幅调制信号为:()[1()]()L H y n A mx n x n =+4.线性卷积:()()()()()m y n x m h n m x n h n ∞=-∞=∑-=* ●实验内容及步骤1.序列的产生:根据所学的知识产生单位阶跃序列,复指数序列,实指数序列,正弦序列,随机信号序列。

其中由于matlab 无法显示复数域图像,因此在复指数序列验证过程中以及后续实验中会有一些并不影响实验结果的小问题。

2.序列运算:设计一个混有白噪声的正弦信号,并通过三点滑动平均算法实现去噪,并通过时域图对比原正弦信号与去噪后获得的结果,观察去噪效果。

(1) 产生正弦序列s(n)和噪声序列d(n)(2) 产生含噪声信号x(n)(3) 产生移位信号x(n −1)和x(n +1)(4) 进行序列运算y(n)=13[x(n −1)+x(n)+x(n +1)]。

并验证原始信号。

3.复杂信号的产生:调幅广播(AM )是一种重要广播形式,使用的是振幅调制信号,其产生可用低频调制信号(如声音信号)来调制高频正弦信号(如载 波信号),不妨假设低频调制信号和高频正弦信号均为正弦信号形式,具体如下: ()cos(),()cos()L L H H x n n x n n ωω==,振幅调制信号为:()[1()]()L H y n A mx n x n =+4.线性卷积:()()()()()m y n x m h n m x n h n ∞=-∞=∑-=* 其中x(n)={1,2,3,4,5},n=-2,-1,0,1,2h(n)={6,2,3,6,4,2},n=-3,-2,-1,0,1,2利用如上卷积公式可以计算出长度L=6+5-1=10的序列y (n ), 其中y (0)=50也可以直接利用matlab 自带的卷积公式conv 直接运算。

●实验结果分析及结论总结1.序列的产生:f_sig1 = 1e3; % 信号频率f_sig2 = 1.2e3; % 信号频率T = 10e-3; % 信号时长fs = 5e3; % 采样率N = fs*T;% fs1=1e3;% N1=fs1*T;%% tn2=[-N1/2:N1/2-1]/fs;tn=[-N/2:N/2-1]/fs;tn1=[0:N-1]/fs;fn=[-N/2:N/2-1]/N*fs;sig1 =[zeros(1,N/2),1,ones(1,N/2-1)];%单位阶跃序列sig2 = sin(2*pi*f_sig1*tn);%正弦序例sig3=exp(2*pi*f_sig1*tn1);%指数序列figure(1); stem(tn, sig1, '*');title("单位阶跃序列"); figure(2); stem(tn, sig2, '*');title("正弦序例");figure(3); stem(tn1, sig3, '*');title("指数序列");x=0:200;y=exp(-0.01*x+1i*0.2*x);%复指数序列figure(4);stem(x,y);title("复指数序列");r=randi([12,214],1,N);%随机信号序列figure(5);stem(tn,r);title("随机信号序列");图1.1 单位阶跃序列图1.2 正弦序列图1.3 实指数序列图1.4 复指数序列图1.5 随机信号序列2.序列运算:f_sig1 = 1e3; % 信号频率T = 3e-3; % 信号时长fs = 6e3; % 采样率N = fs*T;n=0:N-1;d=2*(rand(1,N)-0.5);%建立加性噪声向量s=sin((pi/6)*n);%建立原始离散信号x=s+d;%建立被噪声影响后的信号figure(1);plot(n,d,'r-',n,s,'g--',n,x,'b-.');title('除噪声前信号'); %绘制加性噪声曲线xlabel('Time index n');ylabel('Amplitude');legend('d[n]','s[n]','x[n]'); %添加图标d添加标注x1=[0 0 x];x2=[0 x 0];x3=[x 0 0];y=(x1+x2+x3)/3; %三点滑动平均算法figure(2);plot(n,y(2:N+1),'r-',n,s,'g--');title('除噪声后信号'); %绘制滤出噪声后的信号legend('y[n]','s[n]');xlabel('Time index n');ylabel('Amplitude');图1.6 除噪声前信号图1.7 除噪声后信号3.复杂信号的产生:f_sig1 = 0.8;f_sig2 = 1323;% 信号频率R=30;n=1:R-1;A=2;m=0.5;x_l=cos(2*pi*f_sig1*n); %建立调制信号x_h=cos(2*pi*f_sig2*n); %建立高频载波信号y(n)=A*(1+m.*x_l).*x_h; %建立调幅信号stem(n,y(n)) %绘制调幅曲线title('调幅广播');图1.8 调幅广播4.序列线性卷积:N=5;M=6;L=M+N-1;x=[1,2,3,4,5];h=[6,2,3,6,4,2]; %建立卷积序列y=conv(x,h); %进行线性卷积运算nx=-N+3:-N+7;nh=-M+3:-M+8;ny=6-(M+N):L-1-(M+N-6); subplot(131);stem(nx,x);xlabel('n');ylabel('x(n)');grid on;title('x(n)');subplot(132);stem(nh,h);xlabel('n');ylabel('h(n)');grid on;title('h(n)');subplot(133);stem(ny,y);xlabel('n');ylabel('y(n)');grid on;title('y(n)=x(n)*h(n)');图1.9 线性卷积●思考题1)可以通过什么参数控制序列的增长率与衰减率?哪个参数可以控制序列的幅值?图1.10 σ+jω0=-0.1+0.3j,A=1时复指数序列图像图1.11 σ+jω0=-0.1+0.3j,A=2时复指数序列图像图1.12 σ+jω0=0.5-0.2j ,A=2时复指数序列图像通过MATLAB 绘制图形结果得出:对于复指数序列x(n)=Ae (σ+jω0)n ,A 可以控制序列的幅值,0j σω+控制序列的增长率与衰减率。

2) 复指数序列的实部和虚部分别是什么?通过MATLAB 绘制图形结果得出: 当0σ>时,复指数序列0()()j n x n Ae σω+=的实部和虚部分别是按指数规律增长的正弦振荡序列;当0σ<时,复指数序列0()()j n x n Ae σω+=的实部和虚部分别是按指数规律衰减的正弦振荡序列;当0σ=时,复指数序列0()()j n x n Ae σω+=即为虚指数序列,其实部和虚部分别是按照等幅的正弦振荡序列。

相关文档
最新文档