第9讲 全等三角形之特殊三角形

合集下载

初中数学竞赛专题:三角形

初中数学竞赛专题:三角形

初中数学竞赛专题:三角形§9. 1全等三角形1. 1. 1★已知等腰直角三角形A8C,8C是斜边.々的角平分线交AC于。

,过C作CE与a)垂直且交8。

延长线于邑求证:BD = 2CE.解析如图,延长CE、B4,设交于b・则NF3E = NAb,A8 = AC,得△AB£>gA4b,CF = 8O.乂BE 1.CF, BE 平分/FBC,故BE 平分CF, E为CF 中点、,所以2CE = FC = BD .9. 1. 2★在△ABC中,已知乙4 = 60。

,£、F、G分别为/W、AC、8C的中点,P、Q为AABC形外两点,使总_14从尸£ = ¥,°尸_14。

,0尸=卓,若6尸=1,求尸0的长.解析如图,连结EG、FG ,则EG//AC , FG//AB,故/PEG = 150。

= NQFG . 又QF = -AC = EG , PE 4AB = FG , 故APEG 9AGFQ , 所以2 2PG = GQ , AEGP + ZFGQ = ZFQG + ZFGQ = 30°, 乂ZEGF = 60°,所以NPG0 = 9O。

,于是PQ = 0PG = y/2 .10.1. 3★在梯形A8C0的底边AD上有一点心若八钻石、ABCEx △(7£)七的周长相等,求竺L AD 解析作平行四边形EC8A,则△AB石口\。

£»,若H与A不重合,则H在£4 (或延长线)上,但由三角形不等式易知,A,在E4上时,AABE的周长〉/XAZE的周长;A,在E4延长线上时,AABE的周长<AA f BE周长,均与题设矛盾,故A与H重合,A£〃8C ,同理ED//BC ,£ = =.= = AD 2AA f E11.1.4★★△ABC 内,44。

= 60。

,/4(78 = 40。

全等三角形的判定与性质

全等三角形的判定与性质

全等三角形的判定与性质在初中数学的学习中,全等三角形是一个非常重要的概念。

它不仅是解决几何问题的基础,也是培养我们逻辑思维和空间想象能力的重要工具。

今天,咱们就来好好聊聊全等三角形的判定与性质。

首先,咱们得明白啥是全等三角形。

简单来说,两个三角形的形状和大小完全相同,就叫做全等三角形。

全等三角形的对应边相等,对应角也相等。

这就好比两个一模一样的积木块,它们的边的长度和角的大小都是完全一样的。

那怎么判定两个三角形全等呢?这就有好几种方法啦。

第一种方法是“边边边”(SSS)。

如果两个三角形的三条边分别对应相等,那么这两个三角形就全等。

比如说,有两个三角形,一个三角形的三条边分别是 3 厘米、4 厘米、5 厘米,另一个三角形的三条边也分别是 3 厘米、4 厘米、5 厘米,那这两个三角形就是全等的。

第二种方法是“边角边”(SAS)。

如果两个三角形的两条边及其夹角分别对应相等,那么这两个三角形也全等。

打个比方,一个三角形的两条边分别是 6 厘米和 8 厘米,它们的夹角是 60 度;另一个三角形也有两条边分别是 6 厘米和 8 厘米,夹角同样是 60 度,那这两个三角形就全等。

第三种方法是“角边角”(ASA)。

当两个三角形的两个角及其夹边分别对应相等时,这两个三角形全等。

比如,一个三角形的两个角分别是 45 度和 60 度,它们的夹边是 7 厘米;另一个三角形的两个角也是 45 度和 60 度,夹边也是 7 厘米,那么这两个三角形就全等。

还有一种方法是“角角边”(AAS)。

如果两个三角形的两个角分别对应相等,其中一条对应角的对边也相等,那么这两个三角形全等。

举个例子,一个三角形有两个角分别是 30 度和 50 度,30 度角所对的边是 9 厘米;另一个三角形也有两个角是 30 度和 50 度,30 度角所对的边也是 9 厘米,这两个三角形就全等。

最后一种特殊的判定方法是“斜边、直角边”(HL)。

这个只适用于直角三角形,如果两个直角三角形的斜边和一条直角边分别对应相等,那么这两个直角三角形全等。

浙教版初中数学八年级上册《特殊三角形》全章复习与巩固 知识讲解(提高)

浙教版初中数学八年级上册《特殊三角形》全章复习与巩固 知识讲解(提高)

《特殊三角形》全章复习与巩固(提高)【学习目标】1.认识轴对称图形的基本特征;掌握判断轴对称图形的方法,并能正确画出简单的轴对称图形;2. 了解等腰三角形、等边三角形的有关概念,并掌握它们的性质以及判定方法;3.理解命题与逆命题、定理与逆定理的意义,并能判断命题的真假;4.了解尺规作图的常用工具;理解并掌握线段垂直平分线定理的逆定理、角平分线性质的第二个定理,并能够熟练地应用它们;5.理解直角三角形的概念及性质的广泛应用,掌握直角三角形斜边上中线性质,并能灵活应用. 领会直角三角形中常规辅助线的添加方法.6.掌握勾股定理及其勾股定理的逆定理的内容及应用,学会用勾股定理解决简单的几何问题,应用勾股定理的逆定理来判断直角三角形.7.理解并能熟练地用判定一般三角形全等的方法及判定直角三角形的特殊方法“斜边,直角边”(即“HL”)判定两个直角三角形全等;【知识网络】【要点梳理】要点一、图形的轴对称1.图形轴对称的定义及其性质如果把一个图形沿着一条直线折叠后,直线两侧的部分能够互相重合,那么这两个图形叫做轴对称图形.这条直线叫做对称轴.性质:对称轴垂直平分连结两个对称点的线段.图形的轴对称:一般的,由一个图形变为另一个图形,并使这两个图形沿某一条直线折叠后能够互相重合,这样的图形改变叫做图形的轴对称,这条直线叫做对称轴.成轴对称的两个图形是全等形.2.利用轴对称的性质求两点之间的最短距离已知点A,B(A,B)在直线的同侧,和直线a,在直线上求作一点C,使AC+BC的距离和最小.作法:1.作点A关于直线a的对称点A′;2.连接A′B,交直线a与点C;3.连接AC.点C就是所求作的点.下面给出证明:设P是直线a上任意一点,连结AP,A′P.由作图知,直线a垂直平分AA′,则AC=A′C,AP=A′P(线段垂直平分线上的点到线段两端的距离相等)....AP+BP=A′P+BP≥A′B,A′B=A ′C+BC=AC+BC,即AP十BP≥AC+BC,所以沿折线A-C-B的路线行走时路程最短.要点诠释:1.轴对称图形与图形的轴对称是两个不同的概念,轴对称图形是指一个图形的两个部分,也就是说,一条直线把一个图形(一个等腰三角形)分成两个部分,这两个部分之间的关系;而图形的轴对称是指两个图形之间的关系,比如两个全等的等腰直角三角形.2.对称轴的实质是一条直线,向两方无限延伸的.3.两点之间的最短距离要分情况讨论,看这两点是否在某一条直线的同侧还是异侧. 要点二、等腰三角形及等边三角形的性质与判定1.等腰三角形的定义及其对称性有相等两边的三角形叫做等腰三角形.三边相等的三角形叫做等边三角形.等腰三角形是轴对称图形,对称轴只有一条,就是顶角的平分线或是底边的高、中线.等边三角形也是轴对称图形,对称轴有三条,等边三角形是特殊的等腰三角形.2.等腰三角形的性质与判定定理性质1:等腰三角形的两个底角相等(简称“在同一三角形中,等边对等角”).推论:等边三角形的各个内角都等于60°;性质2:等腰三角形的顶角平分线、底边上的中线和高互相重合(简称“等腰三角形三线合一”).等腰三角形的判定定理:如果一个三角形有两个角相等,那么这个三角形是等腰三角(简称“在同一三角形中,等角对等边”).等边三角形的判定定理:三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.要点诠释:等腰三角形的性质与判定定理是三角形中边与角之间相互转化的重要依据,性质定理是由边的相等得出角的相等,判定定理是由角的相等得出边的相等..等腰三角形的性质定理和判定定理是互逆定理.要点三、尺规作图,命题、定理与逆命题、逆定理1.尺规作图的定义利用直尺(没有刻度)和圆规完成基本作图,称之为尺规作图.要点诠释:尺规作图时使用的直尺是不能用来进行测量长度的操作,它一般用来将两个点连在一起.圆规可以开至无限宽,但上面也不能有刻度.它只可以拉开成之前构造过的长度或一个任意的长度.2.命题与逆命题判断一件事件的句子叫命题.其判断为正确的命题叫做真命题;其判断为错误的命题叫做假命题.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.要点诠释:(1)对于命题的定义要正确理解,也即是通过这句话可以确定一件事是发生了还是没发生,如果这句话不能对于结果给予肯定或者否定的回答,那它就不是命题;(2)每一个命题都可以写成“如果…,那么…”的形式,“如果”后面为题设部分,“那么”后面为结论部分;(3)所有的命题都有逆命题.原命题正确,它的逆命题不一定是正确的.3.定理与逆定理如果一个命题是真命题(正确的命题),那就可以称它为定理.如果一个定理的逆命题也是真命题,那就称它为原定理的逆定理.要点诠释:一个命题是真命题,但是它的逆命题不一定是真命题的,所以不是每个定理都有逆定理.4.角平分线性质的第二个定理角的内部,到角两边的距离相等的点,在这个角平分线上.要点诠释:性质定理的前提条件是已经有角平分线了,即角被平分了;第二个性质定理则是在结论中确定角被平分,一定要注意着两者的区别,在使用这两个定理时不要混淆了.5.线段垂直平分线(也称中垂线)的性质定理的逆定理逆定理:到线段两端点距离相等的点,在线段的垂直平分线上.要点诠释:性质定理的前提条件是线段已经有了中垂线,从而可以得到线段相等;逆定理则是在结论中确定线段被垂直平分,一定要注意着两者的区别,前者在题设中说明,后者则在最终的结论中得到,所以在使用这两个定理时不要混淆了.要点四、直角三角形性质及判定直角三角形的性质性质定理1:直角三角形的两个锐角互余.性质定理2:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.判定定理:有两个角互余的三角形是直角三角形.要点诠释:这个定理的前提条件是“在直角三角形中”,是证明直角三角形中一边等于另一边(斜边)的一半的重要方法之一,通常用于证明边的倍数关系.性质定理2的逆命题也同样正确,在一个三角形中,如果一边的中线等于这边的一半,那么这个三角形是直角三角形.要点五、勾股定理及其逆定理1.勾股定理直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为a、b,斜边长为c,那么.要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系;(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.(3)理解勾股定理的一些变式:,,.2.勾股定理逆定理如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形.要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.要点六、判定直角三角形全等的一般方法和全等的特殊方法——斜边,直角边定理由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了。

有答案-直角三角形全等判定(基础)知识讲解

有答案-直角三角形全等判定(基础)知识讲解

有答案-直角三角形全等判定(基础)知识讲解本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March直角三角形全等判定要点一、判定直角三角形全等的一般方法由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS ”,“ASA ”或“SAS ”判定定理.要点二、判定直角三角形全等的特殊方法——斜边,直角边定理在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL ”).这个判定方法是直角三角形所独有的,一般三角形不具备.要点诠释:(1)“HL ”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS 、ASA 、AAS 、SSS 、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt ”.【典型例题】类型一、直角三角形全等的判定——“HL”1、 已知:如图,AB ⊥BD ,CD ⊥BD ,AD =BC .求证:(1)AB =CD :(2)AD ∥BC .【思路点拨】先由“HL ”证Rt △ABD ≌Rt △CDB ,再由内错角相等证两直线平行.【答案与解析】证明:(1)∵AB ⊥BD ,CD ⊥BD ,∴∠ABD =∠CDB =90°在Rt △ABD 和Rt △CDB 中,AD BC BD DB⎧⎨=⎩=∴Rt △ABD ≌Rt △CDB (HL )∴AB =CD (全等三角形对应边相等)(2)由∠ADB =∠CBD∴AD ∥BC .【总结升华】证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.【变式】已知:如图,AE ⊥AB ,BC ⊥AB ,AE =AB ,ED =AC .求证:ED ⊥AC .【答案】证明:∵AE ⊥AB ,BC ⊥AB ,∴∠DAE =∠CBA =90°在Rt △DAE 与Rt △CBA 中,ED AC AE AB ⎧⎨⎩==,∴Rt △DAE ≌Rt △CBA (HL )∴∠E =∠CAB∵∠CAB +∠EAF =90°,∴∠E+∠EAF=90°,即∠AFE=90°即ED ⊥AC .2、 判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;( )(2)一个锐角和斜边对应相等; ( )(3)两直角边对应相等; ( )(4)一条直角边和斜边对应相等. ( )【答案】(1)全等,“AAS ”;(2)全等,“AAS ”;(3)全等,“SAS ”;(4)全等,“HL ”.【解析】理解题意,画出图形,根据全等三角形的判定来判断.【变式】下列说法中,正确的画“√”;错误的画“×”,并举出反例画出图形.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.( )(2)有两边和其中一边上的高对应相等的两个三角形全等.( )(3)有两边和第三边上的高对应相等的两个三角形全等.( )【答案】(1)√;(2)×;在△ABC 和△DBC 中,AB =DB ,AE 和DF 是其中一边上的高,AE =DF(3)×. 在△ABC 和△ABD 中,AB =AB ,AD =AC ,AE 为第三边上的高,3、已知:如图,AC =BD ,AD ⊥AC ,BC ⊥BD .求证:AD =BC ;【答案与解析】证明:连接DC∵AD ⊥AC ,BC ⊥BD∴∠DAC =∠CBD =90°在Rt △ADC 与Rt △BCD 中,DC CD AC BD=⎧⎨⎩=∴Rt △ADC ≌Rt △BCD (HL )∴AD =BC .(全等三角形对应边相等)【变式】已知,如图,AC 、BD 相交于O ,AC =BD ,∠C =∠D =90° .求证:OC =OD.【答案】∵∠C =∠D =90°∴△ABD 、△ACB 为直角三角形在Rt △ABD 和Rt △BAC 中AB BA BD AC =⎧⎨=⎩∴Rt △ABD ≌Rt △BAC(HL)∴AD =BC在△AOD 和△BOC 中D C AOD BOC AD BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AOD ≌△BOC(AAS)∴OD =OC .4、如图,将等腰直角三角形ABC 的直角顶点置于直线l 上,且过A ,B 两点分别作直线l 的垂线,垂足分别为D ,E ,请你在图中找出一对全等三角形,并写出证明它们全等的过程.【答案与解析】解:全等三角形为:△ACD ≌△CBE.证明:由题意知∠CAD+∠ACD=90°,∠ACD+∠BCE=90°,∴∠CAD=∠BCE在△ACD 与△CBE 中,90ADC CEB CAD BCEAC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△CBE (AAS ).【总结升华】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【巩固练习】一、选择题1.下列说法正确的是 ( )A .一直角边对应相等的两个直角三角形全等B .斜边相等的两个直角三角形全等C .斜边相等的两个等腰直角三角形全等D .一边长相等的两等腰直角三角形全等2.如图,AB =AC ,AD ⊥ BC 于D ,E 、F 为AD 上的点,则图中共有( )对全等三角形.A .3B .4C .5D .63. 能使两个直角三角形全等的条件是( )A.斜边相等B.一锐角对应相等C.两锐角对应相等D.两直角边对应相等4. 在Rt △ABC 与Rt △'''A B C 中, ∠C = ∠'C = 90, A = ∠'B , AB =''A B , 那么下列结论中正确的是( ) A. AC = ''A C = ''B C C. AC = ''B C D. ∠A = ∠'A5. 直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是( )A .形状相同B .周长相等C .面积相等D .全等6. 在两个直角三角形中,若有一对角对应相等,一对边对应相等,则两个直角三角形( )A.一定全等B.一定不全等C.可能全等D.以上都不是二、填空题7.如图,BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是“______”.8. 已知,如图,∠A =∠D =90°,BE =CF ,AC =DE ,则△ABC ≌_______.9. 如图,BA ∥DC ,∠A =90°,AB =CE ,BC =ED ,则AC =_________.10. 如图,已知AB ⊥BD 于B ,ED ⊥BD 于D ,EC ⊥AC ,AC =EC ,若DE =2,AB =4,则DB =______.11.有两个长度相同的滑梯,即BC =EF ,左边滑梯的高度AC 与右边滑梯的水平方向的长度DF 相等,则∠ABC +∠DFE =________.12. 如图,已知AD 是△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且BF =AC ,FD =CD.则∠BAD =_______.三、解答题13. 如图,工人师傅要在墙壁的O 处用钻打孔,要使孔口从墙壁对面的B 点处打开,墙壁厚是35cm ,B点与O 点的铅直距离AB 长是20cm ,工人师傅在旁边墙上与AO 水平的线上截取OC =35cm ,画CD ⊥OC ,使CD =20cm ,连接OD ,然后沿着DO 的方向打孔,结果钻头正好从B 点处打出,这是什么道理呢请你说出理由.13.【解析】解:在Rt △AOB 与Rt △COD 中,(3590AOB COD AO CO A C ∠=∠⎧⎪==⎨⎪∠=∠=︒⎩对顶角相等) ∴Rt △AOB ≌Rt △COD (ASA ) ∴AB =CD =20cm14. 如图,已知AB ⊥BC 于B ,EF ⊥AC 于G ,DF ⊥BC 于D ,BC =DF. 求证:AC =EF.证明:由EF ⊥AC 于G ,DF ⊥BC 于D ,AC 和DF 相交,可得:∠F +∠FED =∠C +∠FED =90°即 ∠C =∠F (同角或等角的余角相等),在Rt △ABC 与Rt △EDF 中B EDF BC DF C F ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△EDF (ASA ),∴AC =EF (全等三角形的对应边相等).15. 如图,已知AB =AC ,AE =AF ,AE ⊥EC ,AF ⊥BF ,垂足分别是点E 、F.求证:∠1=∠ 2.证明:∵AE ⊥EC ,AF ⊥BF ,∴△AEC 、△AFB 为直角三角形在Rt △AEC 与Rt △AFB 中AB AC AE AF⎧⎨⎩==∴Rt △AEC ≌Rt △AFB (HL )∴∠EAC =∠FAB∴∠EAC -∠BAC =∠FAB -∠BAC ,即∠1=∠2.【答案与解析】一、选择题1. 【答案】C ; 【解析】等腰直角三角形确定了两个锐角是45°,可由AAS 定理证明全等.2. 【答案】D ;【解析】△ABD ≌△ACD ;△ABF ≌△ACF ;△ABE ≌△ACE ;△EBF ≌△ECF ;△EBD ≌△ECD ;△FBD ≌△FCD.3. 【答案】D ;4. 【答案】C ;【解析】注意看清对应顶点,A 对应'B ,B 对应'A .5. 【答案】C ;【解析】等底等高的两个三角形面积相等.6. 【答案】C ;【解析】如果这对角不是直角,那么全等,如果这对角是直角,那么不全等.二、填空题7. 【答案】HL ;8. 【答案】△DFE9. 【答案】CD ;【解析】通过HL 证Rt △ABC ≌Rt △CDE.10.【答案】6;【解析】DB =DC +CB =AB +ED =4+2=6;11.【答案】90°;【解析】通过HL 证Rt △ABC ≌Rt △DEF ,∠BCA =∠DFE.12.【答案】45°;【解析】证△ADC 与△BDF 全等,AD =BD ,△ABD 为等腰直角三角形.。

三角形全等的判定(共23张PPT)

三角形全等的判定(共23张PPT)

2.两个直角三角形中,有一条直角边和一锐角对应相等,这两个直角
三角形全等吗?为什么?
3.两个直角三角形中,两直角边对应相等,这两个直角三角形全等 吗?为什么?
请你动手画一画
任∠意C'=画9出0°一,个RBt'C△'=ABBCC,,∠AC'B='9=0°AB.再. 画一个Rt△A'B'C',使得A
按照下面的步骤画Rt△A´B´C´: ⑴ 作∠MC´N=90°; ⑵ 在射线C´M上取段B´C´=BC;
求证:BD平分EF
B
F
A
E
G
C
D
变式训练2
如图,AB=CD, BF⊥AC,DE⊥AC,AE=CF
想想:BD平分EF吗?
(简写成“边角边”或“SAS”)
旧知回顾:我们学过的判定三角形全等的方法
(简写为“斜边、直角边”或“HL”)
证明:∵ AE⊥BC,DF⊥BC
如图,AB=CD, BF⊥AC,DE⊥AC,AE=CF
∴ Rt△ABC' ≌Rt△A'B'C' (HL)
(课本42)例:如图:AC⊥BC,BD⊥AD,AC=BD.
求证:BC=AD.
D
证明: ∵AC⊥BC,BD⊥AD,
∴∠C=∠D=90°
在Rt△ABC和Rt△BAD中, A
AB=BA AC=BD
∴Rt△ABC≌ Rt △BAD (HL)
∴BC=AD (全等三角形对应边相等)
⑶ 以B´为圆心,AB为半径画弧,交 射线C´N于点A´;
⑷ 连接A´B´.
B
NC
AA
∟ ∟
M
B
B
C

初中数学《全等三角形》教案优秀6篇

初中数学《全等三角形》教案优秀6篇
课前准备全等三角形纸片、三角板、
教学过程
一、创设情境,导入新课
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边。
(2)到目前为止,可
2.两角和其中一角的对边。
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
2、把下列各式化成最简二次根式:
六、作业
教材P、187习题11、4;A组1;B组1、
七、板书设计
数学全等三角形教案篇四
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
1、被开方数的因数是整数,因式是整式、
2、被开方数中不含能开得尽方的'因数或因式、
例1?指出下列根式中的最简二次根式,并说明为什么、
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、
例2?把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、

三角形及其全等 初三人教版数学讲义 一对一

三角形及其全等 初三人教版数学讲义 一对一
学员编号: 学员姓名: 授课类型
星级 教学目标
教学重难点
授课日期及时段
三角形及其全等
年 级:初三 辅导科目:数学
课 时 数: 学科教师:
T—基础梳理
C—难点梳理

★★
1、三角形的相关概念及边角性质; 2、全等三角形的概念,性质及判定.
1、三角形的相关概念及边角性质;
2、全等三角形的概念,性质及判定.
小结
基础梳理
C—难点梳理
二、全等三角形
1、三角形全等的判定 三角形全等的判定定理: (1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”) (2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”) (3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。 直角三角形全等的判定: 对于特殊的直角三角形,判定它们全等时,还有 HL 定理(斜边、直角边定理):有斜边和一条直角边对 应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)
AD=DB,AE=EC,可得 DE∥BC,∠ADE=∠ABF=30°,所以 AF= 1 AB=4,由勾股定理可得 BF=4 3 .故选 D. 2
3
9、(2015 湖南常德,15,3 分)如图,在△ABC 中, B 40 ,三角形 ABC 的外角 DAC和ACF 的平分线 交于点 E,则 AEC 70 度.
长是( D )
A.5
B.7
C.8
D.10
8、(2016 辽宁葫芦岛第 9 题)如图,在△ABC 中,点 D,E 分别是边 AB,AC 的中点,AF⊥BC,垂足为点 F,∠ ADE=30°,DF=4,则 BF 的长为( )

北师大版数学七年级下册 第9讲 全等三角形--提高班

北师大版数学七年级下册 第9讲 全等三角形--提高班

第9讲全等三角形知识点1 全等三角形的判定与性质全等三角形的判定方法:(1) 边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等.(2) 角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等.(3) 边边边定理(SSS):三边对应相等的两个三角形全等.(4) 角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等.(5) 斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.【典例】1.如图,已知AB=AC,EC=FB,BE与CF交于点D,则对于下列结论:①△BCE≌△CBF;②△ABE≌△ACF;③△BDF≌△CDE;④D在∠BAC的平分线上.其中正确的是()A.①②③B.②③④C.①③④D.①②③④【答案】D.【解析】解:∵AB=AC,∴∠ECB=∠FBC,在△BCE与△CBF中,∴△BCE≌△CBF(SAS),故①正确,如图,连接AD;∵AB=AC,EC=FB,∴AE=AF在△ABE与△ACF中,,∴△ABE≌△ACF(SAS)故②正确;∴∠ABC=∠ACB;∵AB=AC,AE=AF,∴BF=CE;在△CDE与△BDF中,,∴△CDE≌△BDF(AAS),故③正确,;∴DC=DB;在△ADC与△ADB中,,∴△ADC≌△ADB(SAS),∴∠CAD=∠BAD∴D在∠BAC的平分线上故④正确;综上所述,①②③④均正确,故选:D【方法总结】这道题中,证明△ABE≌△ACF,就可以得到∠ABC=∠ACB;再证明△CDE≌△BDF、△ADC ≌△ADB,得到∠CAD=∠BAD,即可解决问题. 该题主要考查了全等三角形的判定及其性质的应用问题;应牢固掌握全等三角形的判定及其性质定理,这是灵活运用解题的基础.2.如图,已知D为△ABC边BC的中点,DE⊥DF,则BE+CF()A.大于EFB.小于EFC.等于EFD.与EF的大小关系无法确定【答案】A.【解析】解:延长ED到G使DG=ED,连接CG,FG,∵BD=CD,∠BDE=∠CDG,ED=DG∴△BED≌△CGD(SAS),∴CG=BE,∵FD=FD,∠FDE=∠FDG,DG=ED,∴Rt△FDE≌Rt△FDG,∴EF=FG在△FCG中,CF+CG>FG,∴BE+CF>EF.故选:A【方法总结】求证BE,CF,EF之间的关系,应利用全等,把它们整理到一个三角形中进行讨论.本题考查了全等三角形的判定及性质;出现中线问题暂时无法解决时,可延长成原来的2倍,利用SAS来构造全等三角形,这是一种很重要的解题方法,注意掌握.(在下节课中,我们会重点讲解这种方法)3. 如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s 的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.【答案】【解析】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP和△BPQ中,∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC与线段PQ垂直.(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,即,解得;②若△ACP≌△BQP,则AC=BQ,AP=BP,即,解得;综上所述,存在或使得△ACP与△BPQ全等.【方法总结】本题主要考查了全等三角形的判定与性质,两边及其夹角分别对应相等的两个三角形全等.在解题时注意分类讨论思想的运用,对于(1),可以利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;对于(2),由△ACP与△BPQ全等,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.【随堂练习】1.(2018•恩施州)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE于O.求证:AD与BE互相平分.【解答】证明:如图,连接BD,AE,∵FB=CE,∴BC=EF,又∵AB∥ED,AC∥FD,∴∠ABC=∠DEF,∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE,又∵AB∥DE,∴四边形ABDE是平行四边形,∴AD与BE互相平分.2.(2018•温州)如图,在四边形ABCD中,E是AB的中点,AD∥EC,∠AED=∠B.(1)求证:△AED≌△EBC.(2)当AB=6时,求CD的长.【解答】(1)证明:∵AD∥EC,∴∠A=∠BEC,∵E是AB中点,∴AE=EB,∵∠AED=∠B,∴△AED≌△EBC.(2)解:∵△AED≌△EBC,∴AD=EC,∵AD∥EC,∴四边形AECD是平行四边形,∴CD=AE,∵AB=6,∴CD=AB=3.3.(2018•通辽)如图,△ABC中,D是BC边上一点,E是AD的中点,过点A 作BC的平行线交BE的延长线于F,且AF=CD,连接CF.(1)求证:△AEF≌△DEB;(2)若AB=AC,试判断四边形ADCF的形状,并证明你的结论.【解答】证明:(1)∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,∠EAF=∠EDB,∴△AEF≌△DEB(AAS);(2)连接DF,∵AF∥CD,AF=CD,∴四边形ADCF是平行四边形,∵△AEF≌△DEB,∴BE=FE,∵AE=DE,∴四边形ABDF是平行四边形,∴DF=AB,∵AB=AC,∴DF=AC,∴四边形ADCF是矩形.知识点2 角平分线与全等三角形角平分线的两个性质:⑴角平分线上的点到角的两边的距离相等;⑵到角的两边距离相等的点在角的平分线上.角平分线是对称的模型,一般情况下,有下列三种作辅助线的方式:1.由角平分线上的一点向角的两边作垂线,2.过角平分线上的一点作角平分线的垂线,从而形成等腰三角形,,这种对称的图形应用得也较为普遍,3.OA OB【典例】1.在△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠AED+∠AFD=180°,求证:DE=DF.【解析】证明:如图,过点D作DM⊥AB于M,作DN⊥AC于N,∵AD是∠BAC的平分线,∴DM=DN,∵∠AED+∠AFD=180°,∠DFN+∠AFD=180°(平角定义),∴∠AED=∠DFN,在△DEM和△DFN中,,∴△DEM≌△DFN(AAS),∴DE=DF.【方法总结】本题考查了全等三角形的判定与性质,角平分线上的点到角的两边距离相等的性质,熟练掌握三角形全等的判定方法并作辅助线构造出全等三角形是解题的关键.对于这道题,过点D作DM⊥AB于M,作DN⊥AC于N,根据角平分线上的点到角的两边距离相等可得DM=DN,再求出∠AED=∠DFN,然后利用“角角边”证明△DEM和△DFN 全等,根据全等三角形对应边相等可得DE=DF.【随堂练习】1.(2018春•沙坪坝区校级期中)如图直线EF∥GH,点A、点B分别在EF、GH上,连接AB,∠FAB的角平分线AD交GH于D,过点D作DC⊥AB交AB延长线于点C,若∠CAD=36°,求∠BDC的度数.【解答】解:∵∠FAB的角平分线AD,∠CAD=36°,∴∠DAF=∠CAD=36°,∵DC⊥AB,∴∠ACD=90°,∴∠ADC=90°﹣36°=54°,∵EF∥GH,∴∠ADB=∠DAF=36°,∴∠BDC=∠ADC﹣∠ADB=54°﹣36°=18°.2.(2017春•景泰县期末)如图,在Rt△ABC中,∠C=90°,∠A=∠ABC,BD 平分∠ABC,DE⊥AB,CD=4cm,求AB的长.【解答】解:∵∠C=90°,∠A=∠ABC,∴∠A=30°,∠ABC=60°,∵BD平分∠ABC,∴∠DBE=30°,∴∠A=∠DBE,∴BD=AD,∵DE⊥AB,CD=4cm,∴DE=CD=4cm,∴AE=BE=DE=4,∴AB=8,故答案为:8.综合运用1.如图,在四边形ABCD中,AD∥BC,若∠DAB的角平分线AE交CD于E,连接BE,且BE边平分∠ABC,则以下命题不正确的个数是①BC+AD=AB;②E为CD中点;③∠AEB=90°;④S△ABE=S四边形ABCD;()A.0个B.1个C.2个D.3个【答案】A.【解析】解:∵AD∥BC,∴∠ABC+∠BAD=180°,∵AE、BE分别是∠BAD与∠ABC的平分线,∴∠BAE=∠BAD,∠ABE=∠ABC,∴∠BAE+∠ABE=(∠BAD+∠ABC)=90°,∴∠AEB=180°﹣(∠BAE+∠ABE)=180°﹣90°=90°,故③小题正确;延长AE交BC延长线于F,∵∠AEB=90°,∴BE⊥AF,∵BE平分∠ABC,∴∠ABE=∠FBE,在△ABE与△FBE中,,∴△ABE≌△FBE(ASA),∴AB=BF,AE=FE,∵AD∥BC,∴∠EAD=∠F,在△ADE与△FCE中,,∴△ADE≌△FCE(ASA),∴AD=CF,∴AB=BC+CF=BC+AD,故①小题正确;∵△ADE≌△FCE,∴CE=DE,即点E为CD的中点,故②小题正确;∵△ADE≌△FCE,∴S△ADE=S△FCE,∴S四边形ABCD=S△ABF,∵S△ABE=S△ABF,∴S△ABE=S四边形ABCD,故④小题正确;综上所述,不正确的有0个.故选:A2. 如图,在△ABC中AD是∠A的外角平分线,P是AD上一动点且不与点A,D重合,记PB+PC=a,AB+AC=b,则a,b的大小关系是()A.a>bB.a=bC.a<bD.不能确定【答案】A.【解析】解:如图,在BA的延长线上取一点E,使AE=AC,连接EP.由AD是∠BAC的外角平分线,可知∠CAP=∠EAP,在△ACP和△AEP中,∴△ACP≌△AEP(SAS)∴PC=PE,在△BPE中,PB+PE>BE,而BE=AB+AE=AB+AC,故PB+PE>AB+AC,所以PB+PC>AB+AC,∵PB+PC=a,AB+AC=b,∴a>b.故选:A3. 如图,五边形ABCDE中,∠ABC=∠AED=90°,AB=CD=AE=BC+DE=2,则这个五边形ABCDE的面积是【答案】4【解析】解:延长DE至F,使EF=BC,连AC,AD,AF,∵AB=CD=AE=BC+DE,∠ABC=∠AED=90°,∴CD=EF+DE=DF,在△ABC与△AEF中,,∴△ABC≌△AEF(SAS),∴AC=AF,在△ACD与△AFD中,,∴△ACD≌△AFD(SSS),∴五边形ABCDE的面积是:S=2S△ADF=2וDF•AE=2××2×2=4.故答案为4.4. 如图1,在锐角△ABC中,∠ABC=45°,高线AD、BE相交于点F.(1)判断BF与AC的数量关系并说明理由;(2)如图2,将△ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DE∥AM时,判断NE与AC的数量关系并说明理由.【解析】解:(1)BF=AC,理由是:如图1,∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEF=90°,∵∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵∠AFE=∠BFD,∴∠DAC=∠EBC,在△ADC和△BDF中,∵,∴△ADC≌△BDF(AAS),∴BF=AC;(2)NE=AC,理由是:如图2,由折叠得:MD=DC,∵DE∥AM,∴AE=EC,∵BE⊥AC,∴AB=BC,∴∠ABE=∠CBE,由(1)得:△ADC≌△BDF,∵△ADC≌△ADM,∴△BDF≌△ADM,∴∠DBF=∠MAD,∵∠DBA=∠BAD=45°,∴∠DBA﹣∠DBF=∠BAD﹣∠MAD,即∠ABE=∠BAN,∵∠ANE=∠ABE+∠BAN=2∠ABE,∠NAE=2∠NAD=2∠CBE,∴∠ANE=∠NAE=45°,∴AE=EN,∴EN=AC.5.如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕.(1)试判断B′E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.【解析】解:(1)由于AB′是AB的折叠后形成的,∠AB′E=∠B=∠D=90°,∴B′E∥DC;(2)∵折叠,∴△ABE≌△AB′E,∴∠AEB′=∠AEB,即∠AEB=∠BEB′,∵B′E∥DC,∴∠BEB′=∠C=130°,∴∠AEB=∠BEB′=65°.6.【探究】如图①,在△ABC中,O是BC边中点,连结AO并延长,使DO=AO,连结CD.求证:AB∥CD.【应用】如图②,在四边形ABCD中,AB∥CD,O是BC的中点,连结AO并延长交DC 的延长线于点E,若AE平分∠BAD,求证:AD=CD+AB.【解析】解:【探究】如图①,∵O是BC边中点,∴BO=CO.在△AOB与△DOC中,,∴△AOB≌△DOC(SAS).∴∠BAO=∠D.∴AB∥CD.【应用】如图②,∵O是BC边中点,∴BO=CO.∵AB∥CD,∴∠BAO=∠E.在△AOB与△EOC中,.∴△AOB≌△EOC(AAS).∴EC=AB.∵AE平分∠BAD,∴∠BAO=∠DAE.∴∠E=∠DAE.∴AD=DE.∵DE=DC+CE,∴AD=CD+AB.7.在△ABC中,AD是△ABC的角平分线.(1)如图1,过C作CE∥AD交BA延长线于点E,若F为CE的中点,连接AF,求证:AF⊥AD;(2)如图2,M为BC的中点,过M作MN∥AD交AC于点N,交BA的延长线于E,若AB=8,AC=14,求NC的长.21【解析】解:(1)证明:∵AD为△ABC的角平分线,∴∠1=∠2.∵CE∥AD,∴∠1=∠E,∠2=∠3.∴∠E=∠3.∴AC=AE.∵F为EC的中点,∴AF⊥EC,∵AD∥EC,∴∠AFE=∠FAD=90°.∴AF⊥AD.(2)解:延长BA与MN延长线交于点E,过B作BF∥AC交NM延长线于点F,∴∠3=∠C,∠F=∠4∵M为BC的中点∴BM=CM.在△BFM和△CNM中,23,∴△BFM ≌△CNM (AAS ),∴BF=CN ,∵MN ∥AD ,∴∠1=∠E ,∠2=∠4=∠5.∴∠E=∠5=∠F .∴AE=AN ,BE=BF .设CN=x ,则BF=x ,AE=AN=AC ﹣CN=14﹣x ,BE=AB+AE=8+14﹣x .∴8+14﹣x=x .解得 x=11.∴CN=11.8. 如图,点B 在线段AC 上,点E 在线段BD 上,∠ABD=∠DBC ,AB=DB ,EB=CB ,M,N分别是AE,CD的中点.试探索BM和BN的关系,并证明你的结论.【解析】解:BM=BN,BM⊥BN.理由如下:在△ABE和△DBC中,∴△ABE≌△DBC(SAS),∴∠BAE=∠BDC,∴AE=CD,∵M、N分别是AE、CD的中点,∴AM=DN,在△ABM和△DBN中,,∴△BAM≌△BDN(SAS),∴BM=BN,∠ABM=∠DBN,∵∠ABD=∠DBC,∠ABD+∠DBC=180°∴∠ABD=∠ABM+∠MBE=90°,∴∠MBE+∠DBN=90°,即:BM⊥BN,∴BM=BN,BM⊥BN.9.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD 与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?【解析】解:(1)①∵t=1s,∴BP=CQ=3×1=3cm,∵AB=10cm,点D为AB的中点,25∴BD=5cm.又∵PC=BC﹣BP,BC=8cm,∴PC=8﹣3=5cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,在△BPD和△CQP中,∴△BPD≌△CQP(SAS).②∵v P≠v Q,∴BP≠CQ,若△BPD≌△CPQ,∠B=∠C,则BP=PC=4cm,CQ=BD=5cm,∴点P,点Q运动的时间s,∴cm/s;(2)设经过x秒后点P与点Q第一次相遇,由题意,得x=3x+2×10,解得.∴点P共运动了×3=80cm.△ABC周长为:10+10+8=28cm,若是运动了三圈即为:28×3=84cm,∵84﹣80=4cm<AB的长度,∴点P、点Q在AB边上相遇,∴经过s点P与点Q第一次在边AB上相遇.10.如图,在△ABC中,AB=AC,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,求证:BE=CF.【解析】证明:∵AB=AC,AD为∠BAC的平分线∴BD=CD,∵DE⊥AB,DF⊥AC∴DE=DF,在Rt△BDE和Rt△CDF中,∴Rt△BDE≌Rt△CDF,∴BE=CF.27。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第9讲 全等三角形
—搞定特殊三角形系列
【知识点精讲】
一、证明题的三种分析法: (1)综合法:已知-推-结论
从已知条件出发,根据定义、性质、判定等推出各种可能的结论,直接推出所要证明的结论. (2)分析法:结论-反推-已知
从结论出发,看需要什么条件才能得出结论,逐步向已知条件靠拢. (3)分析-综合法:已知—中间—条件结论 在思考过程中,往往需要综合使用上述两法.
从结论出发,想一想要什么条件,层层递推,遇到障碍时,再从条件出发,顺推几步,看可以得什么结论,即从两边凑,直至沟通“已知”和“结论”. 二、常见的辅助线:
1、在△ABC 中,若AD 是中线,常采用的方法是:
(1)延长AD 到E ,使DE=AD ,连结BE(或过B 作BE ∥AC ,交AD 的延长线于E).倍长中线法 (2)取AC 的中点E ,连结DE(或过D 作DE ∥BA 交AC 于E).
(3)延长BA 至E ,使AE=AB ,连结CE (或过C 作CE ∥AD 交BA 的延长线于E ). 2、 在△ABC 中,若AD 是∠BAC 的角平分线,常采用的方法是: (1)延长BA 到E ,使AE=AC ,(或过C 作CE ∥AD ,交BA 的延长线于E). (2)在较长的AB 上截取AE=AC ,连结DE .截长补短法 (3)过C 作CE ∥AB ,交AD 的延长线于E. (4)过D 作DE ∥AB ,交AC 于E .
3、若△ABC 为特殊三角形,可利用特殊三角形的性质: (1)若为等腰三角形,考虑作顶角平分线. (2)若为直角三角形,考虑作斜边中线.
(3)若为一个角是0
30角的直角三角形,考虑斜边中线及0
30角所对边之间关系,也可作出中线.
【典例分析】 专题一:等腰三角形
【例1】如图:已知设△ABC 是等腰三角形,D 、E 分别是腰AB 及AC 延长线上的点,且BD=CE ,连接DE 交
BC 于G 点.求证:DG=EG .
即时练习:
1.如图,已知△ABC 是等腰三角形,AB=AC ,DE=DF ,求证:BE=CF .
【例2】如图:已知D 是△ABC 的边BC 上一点,且CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线.试说明AC=2AE .
A
B
C
D
E
G
A
B
C
D
E
F
即时练习:
1、如图:已知等腰直角三角形ABC 中,∠BAC =90°,∠ABD=∠DBC,CE ⊥BD 的延长线于E 点,求证:BA=2CE.
专题二:直角三角形
【例3】如图,已知在Rt △ABC 中,∠A =90°,CE 是角平分线,和高AD 相交于F ,作FG ∥BC 交AB 于G ,
求证:AE =BG .
专题三:等腰直角三角形
【例4】如图:已知在△ABC 中,AC=BC ,AC ⊥BC ,D 为BC 的中点,CF ⊥AD 于E ,BF ∥AC ,试说明DG=FG .
A
D
F
B
C
E
G C
D
即时练习:
1如图,已知等腰直角三角形ABC 中,∠ACB =90°,AD 为腰CB 上的中线,CE ⊥AD 交AB 于E .求证:(1)∠CDA =∠EDB ;(2)AD=CE+DE .
1
2
A
B C
D
E
专题四:等边三角形
【例5】如图,已知点C 是AB 上一点,ΔACM 、ΔCBN 都是等边三角形. (1) 说明:△DCE 是等边三角形
(2) 将ΔACM 绕点C 按逆时针旋0
180,使A 点落在CB 上,请对照原题图在右图画出符合要求的图形; (3) 在(2)所得到的图形中,结论“AN=BM ”是否成立?若成立,请说明理由;若不成立,也请说明理由. (4) 在(2)所得到的图形中,设AM 的延长线与BN 相交于点D ,请你判断ΔABD 的形状,并说明你的理由.
A B
C
【例6】如图:已知等边△ABC 中,AD ⊥BC 于D ,DE ⊥AC 于E .
求证:AE =3CE .
即时练习:
1.如图:已知△ABC 为等边三角形,延长BC 到D ,延长BA 到E ,AE=BD ,连结EC 、ED ,试说明CE=DE .
【课后训练】
1.如图:已知在△ABC 中,已知∠FBC=∠ECB =∠A ,求证:BE=CF .
F
E
D
C
B
A
A
B
C
D
E
2.如图,已知△ABC中,AC=BC,∠C=900,将一块三角板的直角顶点放在斜边AB的中点P处,将三角板绕P点旋转,三角形的两直角边分别交AC、CB于D、E两点,如图所示:
(1)问PD与PE有何大小关系?并以图②为例加以说明.
(2)在旋转过程中,还会存在与图①②不同的情形吗?若存在,请在图③中画出,并加以说明.
E
①②③。

相关文档
最新文档