网络分线器和交换机的区别 [网络知识之交换机各层间的区别]
集线器、交换机、路由器、网桥、网关之间的区别与联系

1、集线器(HUB)集线器就是将网线集中到一起的机器,也就是多台主机和设备的连接器。
集线器的主要功能是对接收到的信号进行同步整形放大,以扩大网络的传输距离,是中继器的一种形式,区别在于集线器能够提供多端口服务,也称为多口中继器。
集线器在OSI/RM中的物理层。
集线器的基本功能是信息分发,它把一个端口接收的所有信号向所有端口分发出去。
一些集线器在分发之前将弱信号重新生成,一些集线器整理信号的时序以提供所有端口间的同步数据通信。
集线器实际就是一种多端口的中继器。
集线器一般有4、8、16、24、32等数量的RJ45接口,通过这些接口,集线器便能为相应数量的电脑完成“中继”功能(将已经衰减得不完整的信号经过整理,重新产生出完整的信号再继续传送)。
由于它在网络中处于一种“中心”位置,因此集线器也叫做“HUB”。
集线器的工作原理很简单,比如有一个具备8个端口的集线器,共连接了8台电脑。
集线器处于网络的“中心”,通过集线器对信号进行转发,8台电脑之间可以互连互通。
具体通信过程是这样的:假如计算机1要将一条信息发送给计算机8,当计算机1的网卡将信息通过双绞线送到集线器上时,集线器并不会直接将信息送给计算机8,它会将信息进行“广播”——将信息同时发送给8个端口,当8个端口上的计算机接收到这条广播信息时,会对信息进行检查,如果发现该信息是发给自己的,则接收,否则不予理睬。
由于该信息是计算机1发给计算机8的,因此最终计算机8会接收该信息,而其它7台电脑看完信息后,会因为信息不是自己的而不接收该信息。
2、交换机(Switch)交换机是集线器的升级换代产品,外形上和集线器没什么分别,是一种在通信系统中自动完成信息交换功能的设备,用途和HUB一样也是连接组网之用,但是它具有比集线器更强大的功能。
交换机也叫交换式集线器,它通过对信息进行重新生成,并经过内部处理后转发至指定端口,具备自动寻址能力和交换作用,由于交换机根据所传递信息包的目的地址,将每一信息包独立地从源端口送至目的端口,避免了和其他端口发生碰撞。
交换机,集线器,中继器,路由器的区别

交换机、集线器、中继器、路由器的区别一、交换机交换机是一种计算机网络设备,用于将网络中的数据从一个接口转发到另一个接口。
交换机可以根据目标MAC地址来决定传输的路径,因此它能够实现数据的快速转发。
交换机通常用于局域网 (LAN) 中,用于连接多台计算机和其他网络设备。
交换机的主要特点有:•转发速度快:交换机可以在接收到数据时迅速判断目标地址,并将数据转发到相应的接口,从而实现高速的数据传输。
•多端口扩展性强:交换机通常拥有多个端口,可以连接多台设备,因此可以根据需要扩展网络的规模。
•分割广播域:交换机能够对每个接口形成一个独立的广播域,从而减少网络中的广播流量,提高网络的传输效率。
•支持二层协议:交换机工作在数据链路层,支持以太网等二层协议。
二、集线器集线器是一种用于局域网的数据通信设备,用于集中连接多个网络设备。
集线器采用广播方式发送数据,当接收到数据时,会将数据发送到所有连接的设备。
因此,集线器的数据传输效率相对较低,并且容易产生网络冲突。
集线器的主要特点有:•广播方式传输:集线器将接收到的数据通过广播方式发送到所有连接的设备上,所有设备都会接收到所有的数据。
•单一广播域:集线器无法将广播域进行分割,所有连接在集线器上的设备属于同一个广播域。
•无存储和转发机制:集线器只是简单地将接收到的数据复制到所有端口上,没有进行存储和转发的处理,因此无法支持多个设备同时进行数据传输。
三、中继器中继器是一种网络设备,用于将网络信号从一个设备传输到另一个设备。
中继器会将接收到的信号进行放大和重新发送,以延长信号传输的距离。
中继器通常用于扩展局域网的范围,但无法改变广播域。
中继器的主要特点有:•信号放大和重新发送:中继器会将接收到的信号进行放大和重新发送,以保证信号能够在较长距离内传输。
•无广播域分割能力:中继器不具备分割广播域的能力,连接在中继器上的设备仍然在同一广播域内。
•单一物理网段:中继器将不同物理网段之间进行连接,从而扩展了网络的覆盖范围。
集线器,路由器,交换机之间的区别

集线器、路由器、交换机之间的区别在计算机网络中,集线器、路由器和交换机是用于连接多台计算机设备的重要网络设备,它们在网络中具有不同的功能和作用。
本文将介绍集线器、路由器和交换机之间的区别。
集线器集线器(Hub)是一种简单的设备,用于将多台计算机连接在一起。
它的主要功能是将所有的网络连接设备集中到一个位置,通过广播方式将数据包发送给所有连接的设备。
集线器不具备管理数据流的能力,所有传输的数据包都会被发送给所有的设备,这会导致网络拥塞和性能下降。
由于其简单性和成本低廉,集线器在过去被广泛使用,但随着技术的发展,它已经被更先进的设备取代。
路由器路由器(Router)是一种用于连接多个网络的设备,它具有智能化的功能,能够根据网络地址转发数据包。
路由器可以根据目标地址来决定数据包的最佳路径,并将数据包传送到正确的目的地。
路由器还可以连接不同的网络协议,并处理来自不同网络的数据传输。
由于其智能化的路由功能,路由器可以有效地控制数据传输,提高网络的传输效率和安全性。
路由器通常用于连接互联网、局域网和广域网等不同规模和类型的网络。
交换机交换机(Switch)是一种用于构建局域网(LAN)的设备。
它可以在局域网中传输数据包,并根据MAC地址来确定数据包的目的地。
交换机通过建立一个MAC地址表来管理局域网内不同设备的通信。
它会根据目标MAC地址将数据包直接传输到目标设备,而不是像集线器一样将所有数据包广播给所有设备。
这样可以提高数据传输的效率,并减少网络拥塞。
交换机通常用于在局域网内连接多台计算机、服务器和其他网络设备。
区别比较•功能区别:集线器是一种简单的设备,只负责将数据包广播给所有连接的设备;路由器和交换机都具有智能化的功能,能够根据目标地址或MAC地址转发数据包。
•数据传输方式:集线器将所有数据包广播给所有设备,容易导致网络拥塞和性能下降;路由器和交换机根据目标地址或MAC地址将数据包精确传送到目标设备,提高了数据传输的效率。
集线器与交换机的区别

集线器与交换机的区别在计算机网络中,集线器和交换机是两种常见的网络设备。
它们在局域网的搭建和数据传输中起到了重要的作用。
尽管它们在外观上可能相似,但在功能和工作原理上有着显著的区别。
本文将重点介绍集线器和交换机之间的区别。
1. 功能集线器是一种被动设备,它的主要功能是将传入的数据包在所有连接的设备之间广播。
当一个设备接收到数据包时,它会检查目标MAC地址,如果与自身的MAC地址匹配,就会接收该数据包;否则,该设备会忽略该数据包。
交换机是一种智能设备,它能够分析数据包的目标MAC地址,并根据该地址决定将数据包转发到哪个连接的设备。
交换机通过建立一个转发表来学习设备的MAC地址,并使用该表来决定数据包的转发路径。
这意味着数据包只会被发送到目标设备,而不是广播到所有设备。
2. 数据传输在集线器中,当一个设备发送数据到网络上时,数据包将在所有连接的设备之间广播。
这种广播方式容易导致网络拥塞和冲突,并且会浪费带宽。
而且,在同一时间内,只有一个设备能够发送数据,其他设备必须等待。
交换机使用一种称为存储转发的方式来处理数据传输。
当一个数据包到达交换机时,它将被存储到内存中,并被分析和处理。
交换机会检查数据包的目标MAC地址,并根据转发表决定将数据包发送到哪个连接。
这种方式避免了网络冲突,并提高了带宽利用率。
3. 组网规模集线器通常被用于小型局域网,由于它的广播特性,当局域网中的设备数量增加时,网络性能会明显下降。
交换机适用于中型到大型规模的局域网,特别是在需要高性能和高带宽的环境下。
它能够根据目标MAC地址进行数据转发,有效地减少网络拥塞和冲突,提高网络吞吐量。
4. 安全性由于集线器的广播性质,它不具备任何安全措施,并不能对传输的数据进行过滤。
这意味着连接到集线器的设备会接收到来自网络上所有其他设备的数据包。
交换机通过监测和分析数据包的目标MAC地址来增强网络安全性。
它只会将数据包发送到目标设备,这种单播方式可以有效地保护数据的安全性。
集线器交换机路由器三者区别和联系

集线器、交换机、路由器:三者的区别和联系引言在计算机网络领域,集线器(Hub)、交换机(Switch)和路由器(Router)是常见的网络设备。
它们在网络中扮演着不同的角色,并且在功能和工作原理上存在一些区别。
本文将深入探讨集线器、交换机和路由器之间的区别和联系。
集线器(Hub)集线器是最基础的网络设备之一,它主要用于将网络中多个设备连接起来。
当一个设备向集线器发送数据时,集线器会将数据包复制到所有其他连接的设备上。
这种广播方式可能会导致网络拥堵和冲突。
由于集线器缺乏智能处理能力,它只是简单地将数据从一个端口传输到另一个端口,没有选择性地过滤数据。
集线器在现代网络中已经不常使用了,通常被交换机取代。
交换机(Switch)交换机是一个智能的网络设备,它可以根据设备的MAC地址进行数据包的转发。
当一个设备向交换机发送数据时,交换机会根据目标MAC地址将数据包仅仅发送到目标设备所在的端口,而不是广播到所有连接的设备上。
这种点对点的通信方式可以提高网络的效率和安全性。
交换机能够构建局域网(LAN)并实现内部的数据流转,但无法连接不同的网络。
路由器(Router)路由器是用于连接多个网络的设备,并根据网络之间的逻辑地址(如IP地址)进行数据包的转发。
路由器不仅仅根据MAC地址,还根据网络的逻辑拓扑和路由表等信息进行数据的转发。
当一个设备向路由器发送数据时,路由器会根据目标IP地址在路由表中查找下一跳地址,并将数据包转发到正确的网络。
路由器能够实现不同网络之间的通信和互联,它是构建广域网(WAN)和互联网的关键设备。
区别和联系•功能:集线器负责物理层的数据传输,交换机负责链路层的数据转发,路由器负责网络层的数据转发。
•数据转发:集线器广播所有数据包,交换机根据MAC地址转发数据包,路由器根据IP地址转发数据包。
•范围:集线器仅在局域网内传输数据,交换机可以构建局域网,路由器用于连接不同局域网或广域网。
•安全性:集线器没有安全性措施,交换机在链路层提供一定的安全性,路由器在网络层提供更高级别的安全性。
集线器、交换机、路由器三者区别(很形象)

集线器、交换机、路由器三者区别(很形象)集线器、交换机、路由器是计算机网络中常用的网络设备,它们各自承担着不同的网络功能。
本文将以形象生动的方式介绍集线器、交换机和路由器的区别。
首先,我们可以把集线器比喻成一个电线的分配箱。
就像家里的电线箱一样,集线器的作用是将网络中的数据信号传输到各个终端设备。
它接收到的信号,会被无差别地传输给网络中的所有设备,不进行任何处理。
就好比你家的电线箱只是分发电力,而并不关注哪个家电需要使用多少电力一样。
接下来,我们再来看看交换机。
把交换机形象地比喻成一个交通枢纽,不同的交通线路在此交汇。
交换机的作用是根据MAC地址(网卡的物理地址)来指导数据的传输。
它会根据每个设备的MAC地址将数据封装,然后按照目的地进行有序转发。
就像我们家里的路由图一样,我们知道每个地方对应的交通线路,然后根据目的地来选择合适的道路进行行车。
最后,我们来看看路由器。
路由器可以形象地比喻成一个邮局的分拣员。
当你寄出一封信时,你只需要知道收信人的地址,然后把信交给邮局。
而邮局会根据地址将信件转发到目的地。
同样,路由器的作用就是根据IP地址找到要发送到的目标地址,并选择最佳路径将数据传输出去。
简而言之,集线器相当于一个简单的分配箱,仅负责将信号传输给所有设备。
交换机相当于一个交通枢纽,根据设备的MAC地址进行有序转发。
而路由器相当于一个邮局的分拣员,根据设备的IP地址选择最佳路径进行数据传输。
从功能上来说,集线器是最简单、最低级的设备,没有任何智能处理能力。
交换机稍微复杂一些,可以根据MAC地址进行中转和转发。
而路由器是最复杂的设备,它不仅具备中转和转发的能力,还能根据路由表来选择最佳路径进行数据传输。
另外,集线器和交换机都是在同一个局域网内进行通讯,而路由器则可以在不同的局域网之间进行通讯。
总结起来,集线器相当于一个分配箱,交换机像一个交通枢纽,而路由器则是一个邮局的分拣员。
它们各自承担着不同的网络功能,在计算机网络中发挥着重要的作用。
集线器、交换机、路由器的区别与联系

集线器、交换机、路由器的区别与联系在计算机网络中,集线器、交换机和路由器都是常见的网络设备,它们各自承担着不同的网络功能。
本文将详细介绍集线器、交换机和路由器的区别与联系。
一、集线器集线器是一种基础的网络设备,也被称为中继器。
它的主要功能是将来自多个网络设备的数据包进行广播,将数据包从一个端口复制到所有其他端口。
集线器工作在OSI模型的物理层,只关注传输层以下的数据帧。
1. 工作原理当集线器接收到一个数据帧时,它会将该数据帧复制到所有其他端口上,而不管这些端口最终是否是数据包的目标。
这种广播方式会导致网络中的冲突增加,容易引发碰撞,从而限制了网络的带宽和性能。
2. 特点集线器只是简单地将所有连接到它的设备组成一个网络,设备之间的通信是透明的。
它没有记忆和学习功能,不会区分不同设备的MAC地址,也没有网络分割的能力。
二、交换机交换机相对于集线器来说更加智能和高级。
它工作在OSI模型的数据链路层,能够学习和记忆网络设备的MAC地址,并根据MAC地址来转发数据包。
1. 工作原理交换机通过学习设备的MAC地址来构建一个转发表,使得数据包可以直接被转发到目标设备,而不会广播到整个网络。
这种点对点的通信方式有效地降低了网络的拥塞和数据冲突。
2. 特点交换机具有广播隔离的能力,可以将网络划分为不同的虚拟局域网(VLAN),实现不同子网之间的隔离。
它适合于局域网内部的通信,可以提供更快速的数据传输速率。
三、路由器路由器是一种工作在网络层(OSI模型的第三层)的设备,主要用于不同网络之间的数据转发和路由选择。
1. 工作原理路由器通过连接不同网络的接口,根据目标IP地址来查找最佳路径,并将数据包从源网络转发到目标网络。
它可以根据路由表中的信息,选择合适的路径,实现网络之间的互联。
2. 特点路由器具有分割和隔离网络的能力,可以将不同物理网络划分为多个逻辑网络,并控制不同逻辑网络之间的通信。
它实现了不同网络之间的通信和互联,可以提供安全性和灵活性。
路由器交换机集线器三者的区别和特点

路由器、交换机和集线器的区别和特点背景介绍在计算机网络中,路由器、交换机和集线器是常见的网络设备。
它们在网络中扮演着不同的角色,具有各自的特点和应用场景。
本文将介绍路由器、交换机和集线器的区别和特点。
路由器定义路由器是一种网络设备,用于在不同网络之间转发数据包。
它根据网络层(网络协议栈的第三层)的IP地址来决定如何转发数据。
特点1.路由功能:路由器能够根据目的IP地址选择最佳路径将数据包转发到目标网络,实现不同网段之间的通信。
2.广域网连接:路由器通常用于连接广域网,如互联网。
它能够将内部局域网的数据传输到其他网络中。
3.网络策略设置:路由器支持网络策略的设置,可以根据管理员配置的规则对网络流量进行控制和优化。
4.网络安全:路由器可以实施访问控制列表(ACL)、网络地址转换(NAT)等功能来提供网络安全保障。
交换机定义交换机是一种网络设备,用于在局域网中转发和分发数据。
它在数据链路层(网络协议栈的第二层)上工作。
特点1.转发速度快:交换机使用硬件交换方式,可以通过读取数据帧的目标MAC地址来快速转发数据,具有较高的转发速度。
2.端口多:交换机一般具有多个端口,可以同时连接多台计算机或其他设备。
3.支持全双工通信:交换机支持全双工通信,可以同时进行发送和接收数据,提高网络性能。
4.隔离广播域:交换机能够隔离广播域,即广播数据包只会在同一交换机的端口之间传输,减少网络拥堵。
集线器定义集线器是一种网络设备,用于将多个计算机连接在一起形成局域网。
它在物理层(网络协议栈的第一层)上工作。
特点1.物理层扩展:集线器可以通过物理层的方式来扩展局域网,将多个计算机连接在一起。
2.广播数据传输:集线器会将收到的数据包广播到所有连接的端口上,无论数据包的目标地址是哪台计算机。
3.共享带宽:集线器上的所有设备共享同一带宽,当多个设备同时发送数据时,会导致网络拥堵。
4.碰撞域:当多个设备同时发送数据时,可能会发生碰撞,影响网络性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
网络分线器和交换机的区别 [网络知识之交换机各层间的区别]网络知识之交换机各层间的区别二层交换技术是发展比较成熟,二层交换机属数据链路层设备,可以识别数据包中的MAC地址信息,根据MAC地址进行转发,并将这些MAC地址与对应的端口记录在自己内部的一个地址表中具体的工作流程如下:(1)当交换机从某个端口收到一个数据包,它先读取包头中的源MAC地址,这样它就知道源MAC地址的机器是连在哪个端口上的;(2)再去读取包头中的目的MAC地址,并在地址表中查找相应的端口;(3)如表中有与这目的MAC地址对应的端口,把数据包直接复制到这端口上;(4)如表中找不到相应的端口则把数据包广播到所有端口上,当目的机器对源机器回应时,交换机又可以学习一目的MAC地址与哪个端口对应,在下次传送数据时就不再需要对所有端口进行广播了。
不断的循环这个过程,对于全网的MAC地址信息都可以学习到,二层交换机就是这样建立和维护它自己的地址表。
从二层交换机的工作原理可以推知以下三点:(1)由于交换机对多数端口的数据进行同时交换,这就要求具有很宽的交换总线带宽,如果二层交换机有N个端口,每个端口的带宽是M,交换机总线带宽超过N×M,那么这交换机就可以实现线速交换;(2)学习端口连接的机器的MAC地址,写入地址表,地址表的大小(一般两种表示方式:一为BEFFER RAM,一为MAC表项数值),地址表大小影响交换机的接入容量;(3)还有一个就是二层交换机一般都含有专门用于处理数据包转发的ASIC (Application specific Integrated Circuit)芯片,因此转发速度可以做到非常快。
由于各个厂家采用ASIC不同,直接影响产品性能。
以上三点也是评判二三层交换机性能优劣的主要技术参数,这一点请大家在考虑设备选型时注意比较。
(二)路由技术路由器工作在OSI模型的第三层---网络层操作,其工作模式与二层交换相似,但路由器工作在第三层,这个区别决定了路由和交换在传递包时使用不同的控制信息,实现功能的方式就不同。
工作原理是在路由器的内部也有一个表,这个表所标示的是如果要去某一个地方,下一步应该向那里走,如果能从路由表中找到数据包下一步往那里走,把链路层信息加上转发出去;如果不能知道下一步走向那里,则将此包丢弃,然后返回一个信息交给源地址。
路由技术实质上来说不过两种功能:决定最优路由和转发数据包。
路由表中写入各种信息,由路由算法计算出到达目的地址的最佳路径,然后由相对简单直接的转发机制发送数据包。
接受数据的下一台路由器依照相同的工作方式继续转发,依次类推,直到数据包到达目的路由器。
而路由表的维护,也有两种不同的方式。
一种是路由信息的更新,将部分或者全部的路由信息公布出去,路由器通过互相学习路由信息,就掌握了全网的拓扑结构,这一类的路由协议称为距离矢量路由协议;另一种是路由器将自己的链路状态信息进行广播,通过互相学习掌握全网的路由信息,进而计算出最佳的转发路径,这类路由协议称为链路状态路由协议。
由于路由器需要做大量的路径计算工作,一般处理器的工作能力直接决定其性能的优劣。
当然这一判断还是对中低端路由器而言,因为高端路由器往往采用分布式处理系统体系设计。
(三)三层交换技术近年来的对三层技术的宣传,耳朵都能起茧子,到处都在喊三层技术,有人说这是个非常新的技术,也有人说,三层交换嘛,不就是路由器和二层交换机的堆叠,也没有什么新的玩意,事实果真如此吗?下面先来通过一个简单的网络来看看三层交换机的工作过程。
组网比较简单使用IP的设备A------------------------三层交换机------------------------使用IP的设备B比如A要给B发送数据,已知目的IP,那么A就用子网掩码取得网络地址,判断目的IP是否与自己在同一网段。
如果在同一网段,但不知道转发数据所需的MAC地址,A就发送一个ARP请求,B返回其MAC地址,A用此MAC封装数据包并发送给交换机,交换机起用二层交换模块,查找MAC地址表,将数据包转发到相应的端口。
如果目的IP地址显示不是同一网段的,那么A要实现和B的通讯,在流缓存条目中没有对应MAC地址条目,就将第一个正常数据包发送向一个缺省网关,这个缺省网关一般在操作系统中已经设好,对应第三层路由模块,所以可见对于不是同一子网的数据,最先在MAC表中放的是缺省网关的MAC地址;然后就由三层模块接收到此数据包,查询路由表以确定到达B的路由,将构造一个新的帧头,其中以缺省网关的MAC地址为源MAC地址,以主机B的MAC地址为目的MAC地址。
通过一定的识别触发机制,确立主机A与B的MAC地址及转发端口的对应关系,并记录进流缓存条目表,以后的A到B的数据,就直接交由二层交换模块完成。
这就通常所说的一次路由多次转发。
以上就是三层交换机工作过程的简单概括,可以看出三层交换的特点:由硬件结合实现数据的高速转发。
这就不是简单的二层交换机和路由器的叠加,三层路由模块直接叠加在二层交换的高速背板总线上,突破了传统路由器的接口速率限制,速率可达几十Gbit/s。
算上背板带宽,这些是三层交换机性能的两个重要参数。
简洁的路由软件使路由过程简化。
大部分的数据转发,除了必要的路由选择交由路由软件处理,都是又二层模块高速转发,路由软件大多都是经过处理的高效优化软件,并不是简单照搬路由器中的软件。
结论二层交换机用于小型的局域网络。
这个就不用多言了,在小型局域网中,广播包影响不大,二层交换机的快速交换功能、多个接入端口和低谦价格为小型网络用户提供了很完善的解决方案。
路由器的优点在于接口类型丰富,支持的三层功能强大,路由能力强大,适合用于大型的网络间的路由,它的优势在于选择最佳路由,负荷分担,链路备份及和其他网络进行路由信息的交换等等路由器所具有功能。
三层交换机的最重要的功能是加快大型局域网络内部的数据的快速转发,加入路由功能也是为这个目的服务的。
如果把大型网络按照部门,地域等等因素划分成一个个小局域网,这将导致大量的网际互访,单纯的使用二层交换机不能实现网际互访;如单纯的使用路由器,由于接口数量有限和路由转发速度慢,将限制网络的速度和网络规模,采用具有路由功能的快速转发的三层交换机就成为首选。
一般来说,在内网数据流量大,要求快速转发响应的网络中,如全部由三层交换机来做这个工作,会造成三层交换机负担过重,响应速度受影响,将网间的路由交由路由器去完成,充分发挥不同设备的优点,不失为一种好的组网策略,当然,前提是客户的腰包很鼓,不然就退而求其次,让三层交换机也兼为网际互连。
第四层交换的一个简单定义是:它是一种功能,它决定传输不仅仅依据MAC 地址(第二层网桥)或源/目标IP地址(第三层路由),而且依据TCP/UDP(第四层) 应用端口号。
第四层交换功能就象是虚IP,指向物理服务器。
它传输的业务服从的协议多种多样,有HTTP、FTP、NFS、Telnet或其他协议。
这些业务在物理服务器基础上,需要复杂的载量平衡算法。
在IP世界,业务类型由终端TCP或UDP端口地址来决定,在第四层交换中的应用区间则由源端和终端IP地址、TCP 和UDP端口共同决定。
在第四层交换中为每个供搜寻使用的服务器组设立虚IP地址(VIP),每组服务器支持某种应用。
在域名服务器(DNS)中存储的每个应用服务器地址是VIP,而不是真实的服务器地址。
当某用户申请应用时,一个带有目标服务器组的VIP连接请求(例如一个TCP SYN包)发给服务器交换机。
服务器交换机在组中选取最好的服务器,将终端地址中的VIP用实际服务器的IP取代,并将连接请求传给服务器。
这样,同一区间所有的包由服务器交换机进行映射,在用户和同一服务器间进行传输。
第四层交换的原理OSI模型的第四层是传输层。
传输层负责端对端通信,即在网络源和目标系统之间协调通信。
在IP协议栈中这是TCP(一种传输协议)和UDP(用户数据包协议)所在的协议层。
在第四层中,TCP和UDP标题包含端口号(portnumber),它们可以唯一区分每个数据包包含哪些应用协议(例如HTTP、FTP等)。
端点系统利用这种信息来区分包中的数据,尤其是端口号使一个接收端计算机系统能够确定它所收到的IP包类型,并把它交给合适的高层软件。
端口号和设备IP地址的组合通常称作“插口(socket)”。
1和255之间的端口号被保留,他们称为“熟知”端口,也就是说,在所有主机TCP/IP协议栈实现中,这些端口号是相同的。
除了“熟知”端口外,标准UNIX服务分配在256到1024端口范围,定制的应用一般在1024以上分配端口号. 分配端口号的最近清单可以在RFc1700”Assigned Numbers”上找到。
TCP/UDP端口号提供的附加信息可以为网络交换机所利用,这是第4层交换的基础。
“熟知”端口号举例:应用协议端口号FTP 20(数据)21(控制)TELNET 23SMTP 25HTTP 80NNTP 119NNMP 16162(SNMP traps)TCP/UDP端口号提供的附加信息可以为网络交换机所利用,这是第四层交换的基础。
具有第四层功能的交换机能够起到与服务器相连接的“虚拟IP”(VIP)前端的作用。
每台服务器和支持单一或通用应用的服务器组都配置一个VIP地址。
这个VIP地址被发送出去并在域名系统上注册。
在发出一个服务请求时,第四层交换机通过判定TCP开始,来识别一次会话的开始。
然后它利用复杂的算法来确定处理这个请求的最佳服务器。
一旦做出这种决定,交换机就将会话与一个具体的IP地址联系在一起,并用该服务器真正的IP地址来代替服务器上的VIP地址。
每台第四层交换机都保存一个与被选择的服务器相配的源IP地址以及源TCP 端口相关联的连接表。
然后第四层交换机向这台服务器转发连接请求。
所有后续包在客户机与服务器之间重新影射和转发,直到交换机发现会话为止。
在使用第四层交换的情况下,接入可以与真正的服务器连接在一起来满足用户制定的规则,诸如使每台服务器上有相等数量的接入或根据不同服务器的容量来分配传输流。
如何选用合适的第四层交换a.速度为了在企业网中行之有效,第四层交换必须提供与第三层线速路由器可比拟的性能。
也就是说,第四层交换必须在所有端口以全介质速度操作,即使在多个千兆以太网连接上亦如此。
千兆以太网速度等于以每秒488000 个数据包的最大速度路由(假定最坏的情形,即所有包为以及网定义的最小尺寸,长64字节)。
b.服务器容量平衡算法依据所希望的容量平衡间隔尺寸,第四层交换机将应用分配给服务器的算法有很多种,有简单的检测环路最近的连接、检测环路时延或检测服务器本身的闭环反馈。
在所有的预测中,闭环反馈提供反映服务器现有业务量的最精确的检测。