弹性力学的基本原理
弹性力学知识点总结

弹性力学知识点总结弹性力学是固体力学的重要分支,主要研究弹性体在外界因素作用下产生的应力、应变和位移。
以下是对弹性力学主要知识点的总结。
一、基本假设1、连续性假设:假定物体是连续的,不存在空隙。
2、均匀性假设:物体内各点的物理性质相同。
3、各向同性假设:物体在各个方向上的物理性质相同。
4、完全弹性假设:当外力去除后,物体能完全恢复到原来的形状和尺寸,不存在残余变形。
5、小变形假设:变形量相对于物体的原始尺寸非常小,可以忽略高阶微量。
二、应力分析1、应力的定义:应力是单位面积上的内力。
2、应力分量:在直角坐标系下,有 9 个应力分量,分别为正应力(σx、σy、σz)和剪应力(τxy、τyx、τxz、τzx、τyz、τzy)。
3、平衡微分方程:根据物体的平衡条件,可以得到应力分量之间的关系。
三、应变分析1、应变的定义:应变是物体在受力后的变形程度。
2、应变分量:包括线应变(εx、εy、εz)和剪应变(γxy、γyx、γxz、γzx、γyz、γzy)。
3、几何方程:描述了应变分量与位移分量之间的关系。
四、位移与变形的关系位移是指物体内各点位置的变化。
通过位移可以导出应变,从而建立起位移与变形之间的联系。
五、物理方程物理方程也称为本构方程,它描述了应力与应变之间的关系。
对于各向同性的线弹性材料,物理方程可以表示为应力与应变之间的线性关系。
六、平面问题1、平面应力问题:薄板在平行于板面且沿板厚均匀分布的外力作用下,板面上无外力作用,此时应力分量只有σx、σy、τxy。
2、平面应变问题:长柱体在与长度方向垂直的平面内受到外力作用,且沿长度方向的位移为零,此时应变分量只有εx、εy、γxy。
七、极坐标下的弹性力学问题在一些具有轴对称的问题中,采用极坐标更为方便。
极坐标下的应力、应变和位移分量与直角坐标有所不同,需要相应的转换公式。
八、能量原理1、应变能:物体在变形过程中储存的能量。
2、虚功原理:外力在虚位移上所做的虚功等于内力在虚应变上所做的虚功。
弹性力学5PPT课件

叠加原理的适用范围
适用于线弹性范围内的小变形问题,对于非线性问题或大变形问题,叠加原理不再适用。
叠加原理的应用举例
利用叠加原理求解复杂载荷下的梁的弯曲问题,可以将复杂载荷分解为几个简单载荷, 分别求出每个简单载荷下的弯曲变形,然后叠加得到最终结果。
03
平面问题求解方法
平面应力问题与平面应变问题
平面应力问题
分析薄板在面内荷载作用 下的应力、变形和稳定性。
平面应变问题
研究长柱体或深埋在地下 的结构物,在垂直于轴线 或地面的荷载作用下,其 横截面内的应力和变形。
两者区别
平面应力问题中,垂直于 板面的应力分量可忽略不 计;而平面应变问题中, 该应力分量不可忽略。
功的互等定理与卡氏定理的应用举例
利用功的互等定理可以求解某些复杂结构的位移和应力问题;利用卡氏 定理可以求解某些特殊载荷作用下的应力问题。
虚功原理与最小势能原理
虚功原理的基本内容
在弹性力学中,外力在虚位移上所做的功等于内力在虚应变上所做的功。这里的虚位移和虚应变是指满足几何约束和平衡 条件的任意微小的位移和应变。
复变函数的引入
利用复变函数的性质,可将平面 弹性力学问题中的偏微分方程转 化为复变函数的解析函数问题。
保角变换
通过保角变换,可将复杂形状的 平面区域映射为简单形状的区域, 从而简化问题的求解。
边界条件的处理
在复变函数法中,边界条件的处 理是关键步骤之一,需要根据具 体问题选择合适的处理方法。
差分法和有限元法在平面问题中的应用
边界条件处理
阐述有限元法中边界条件的处理方法, 如固定边界、自由边界、对称边界等。
弹性力学 总结

弹性力学总结弹性力学概述弹性力学是研究物体在受力作用下的变形和恢复行为的物理学分支。
它主要研究物体在力的作用下如何发生形变,并在去除外力后如何回复到原来的状态。
弹性力学在工程、材料科学和地震学等领域都有广泛的应用。
弹性力学的基本原理弹性力学的基本原理主要包括胡克定律和变形的描述。
胡克定律胡克定律是弹性力学研究的基石之一,它描述了弹性物质的应力和应变之间的关系。
根据胡克定律,弹性物体在小应变范围内,应力与应变成正比。
公式表示为:σ = Eε其中,σ代表应力,E代表弹性模量,ε代表应变。
胡克定律适用于各向同性的线性弹性材料。
变形的描述弹性变形通常分为线弹性和非线性弹性两种情况。
线弹性是指应力与应变之间成线性关系的弹性变形,而非线性弹性则是指应力与应变之间存在非线性关系的弹性变形。
在弹性力学中,常用的变形描述方法有拉伸、压缩、剪切和扭转等。
这些变形可以通过位移场、应变场和应力场来描述。
弹性体的应力分析弹性体在受力作用下会发生应力分布。
根据应力的分布规律,可以得出一些重要结论。
平面应力和轴对称应力问题在平面应力问题中,物体受力平面上只有两个应力分量,另一个应力分量为零。
这种情况下,可以根据累积概率法或复数变量法求解。
轴对称应力问题是较为常见的一类问题,这类问题的特点是应力场只与径向位置有关。
通过解析方法或数值方法,可以得到轴对称弹性体的应力分布。
弹性体的本构关系弹性体的本构关系以描述应力和应变之间的关系。
弹性体的本构关系可以是线性的或非线性的。
常见的线性弹性体本构关系有:胡克弹性体、准胡克弹性体和线弹性体。
这些本构关系常用于弹性力学计算中,可以通过试验数据或材料参数得到。
非线性弹性体的本构关系较为复杂,常用的描述方法有牛顿-拉普森方程和本构方程等。
弹性力学应用弹性力学在各个领域都有广泛的应用。
以下是几个常见领域:工程领域在工程领域中,弹性力学主要用于材料的强度计算、结构的稳定性分析和振动问题的研究。
通过弹性力学的理论,工程师可以预测材料在受力下的变形和破坏情况,并设计出更加安全和可靠的结构。
弹性力学中的胡克定律

弹性力学中的胡克定律弹性力学是力学中的一个重要分支,研究材料在受力时的变形和恢复过程。
胡克定律(Hooke's law)是弹性力学的基本定律之一,被广泛应用于力学、工程、材料科学等领域。
本文将重点探讨弹性力学中的胡克定律,并讨论其应用和局限性。
一、胡克定律的基本原理胡克定律是由英国科学家罗伯特·胡克在17世纪末提出的。
它表明,在弹性变形的范围内,物体受力时产生的变形与受力大小成正比。
简单来说,胡克定律可以表示为:F = kx其中,F代表受力的大小,k表示弹性系数或刚度,x表示物体的变形。
胡克定律的基本原理可以通过实验验证。
例如,当我们用手指捏取一根弹簧,拉伸它时,可以观察到弹簧的长度发生了变化。
根据胡克定律,当我们施加的拉力越大,弹簧的伸长量也会越大,两者成正比关系。
二、胡克定律的应用胡克定律的应用非常广泛。
在工程领域中,胡克定律常用于计算弹性材料的变形和应力分布。
例如,结构工程师使用胡克定律来确定桥梁、建筑物等承重结构在受力时的变形情况,以确保其在正常使用条件下的安全性。
同时,在材料科学中,胡克定律也被用于确定弹性常数(如弹性模量、剪切模量等)的测量方法。
通过在实验条件下施加一定的力量,测量物体的变形,我们可以根据胡克定律得出与材料性质相关的弹性常数。
这对于材料研究和工程设计非常重要。
胡克定律也在其他领域有着重要的应用。
例如,生物力学研究中,胡克定律被用于分析骨骼和肌肉的弹性特性,探究人体运动机理。
此外,胡克定律还被广泛应用于弹性体力学、声学、光学等领域。
三、胡克定律的局限性虽然胡克定律具有重要的应用价值,但也存在一定的局限性。
首先,胡克定律只适用于小应变范围内。
当受力超过一定程度时,物体可能会出现非弹性变形,无法使用胡克定律进行准确预测。
其次,胡克定律对于不同材料的适用性有一定限制。
不同的材料具有不同的弹性行为,某些材料可能不符合胡克定律的假设条件。
因此,在实际应用中,我们需要根据具体的材料性质和受力情况来选择合适的力学模型。
弹性力学理论

弹性力学理论弹性力学理论是研究物体在受力作用下的变形和应力分布规律的科学理论。
它是应用力学的基础学科,对于工程领域的设计和分析至关重要。
本文将从理论概述、基本原理、应力分析、变形分析和应用等方面对弹性力学进行论述。
一、理论概述弹性力学理论是力学中的重要分支,它研究的是物体在受力作用下的弹性变形和应力分布规律。
从宏观上来看,弹性力学理论可以用于解释物体的形变和变形后的恢复情况。
从微观角度来看,弹性力学理论涉及到原子和分子之间的相互作用力,以及它们之间的位移和应力的关系。
二、基本原理弹性力学理论建立在几个基本原理之上。
首先是虚功原理,它表明物体在受力作用下的形变能量等于外力对物体所做的功。
其次是共轭原理,说明应力与应变之间存在一一对应的关系。
弹性力学还依赖于线性弹性假设,即假设物体的应力与应变之间是线性关系。
三、应力分析弹性力学理论对于应力分析提供了有力的工具。
应力是物体内部的力分布,它可以通过弹性模量、泊松比等参数进行描述。
弹性力学理论可以计算各个部位的应力大小和分布情况,从而评估物体在受力下是否会发生破坏。
在工程实践中,应力分析是设计结构和材料的重要环节。
四、变形分析除了应力分析,变形分析也是弹性力学理论的重要内容。
变形是物体在受力作用下发生的形状改变,它可以通过应变进行描述。
弹性力学理论可以计算物体在受力下的变形情况,包括线性弹性变形和非线性变形等。
通过对变形进行分析,可以判断物体是否满足设计要求,以及设计参数的合理性。
五、应用弹性力学理论在工程领域有广泛的应用。
在结构设计中,弹性力学理论可以用于计算各个部位的应力和变形情况,从而预测结构的安全性和可靠性。
在材料工程中,弹性力学理论可以评估材料的弹性性能和变形行为,为材料选择和优化提供指导。
此外,弹性力学理论还被应用于地质勘探、地震学和生物力学等领域。
结论弹性力学理论作为应用力学的基础学科,对于工程领域的设计和分析具有重要意义。
通过理论概述、基本原理、应力分析、变形分析和应用等方面的论述,对弹性力学进行了全面介绍。
弹性力学原理

弹性力学原理引言:弹性力学原理是工程力学的一个重要分支,研究材料在外力作用下的弹性变形和应力分布规律。
本文将探讨弹性力学原理的基本概念、公式和应用,以及一些实际工程中常见的弹性力学问题。
1. 弹性力学基本概念1.1 应力和应变弹性力学研究的核心概念是应力和应变。
应力是单位面积上的内力,表示材料受力状态的强度和方向。
应变是单位长度上的变形量,表示材料受到外力作用后的形变程度。
1.2 弹性恢复弹性力学的基本原则是材料在外力作用下会发生弹性变形,即承受外力后会产生形变,但在作用力消失后会完全恢复到原来的状态。
这个特性使得弹性材料非常适合许多工程应用。
2. 弹性力学公式2.1 长度变化和应力关系弹性力学公式中最基本的是胡克定律,它描述了材料在拉伸等均匀变形情况下的应力和应变之间的关系。
胡克定律可以用公式表示为σ = Eε,其中σ是应力,E是弹性模量,ε是应变。
2.2 弯曲弹性力学在弯曲问题中,弹性力学公式需要考虑横截面的形状和材料的性质。
弯曲弹性力学在结构设计中起着重要的作用,可以用公式M = EIθ 表示,其中M是弯矩,E是弹性模量,I是截面惯性矩,θ是单位长度的转角。
3. 弹性力学应用3.1 结构设计弹性力学原理在结构设计中有广泛的应用,可以通过计算应力和应变来确定材料的安全强度和结构的合理性。
例如,根据桥梁的设计要求和材料的性质,可以计算出合适的截面尺寸和材料类型,以确保桥梁在负荷下不会发生过度的弯曲或破坏。
3.2 材料研究弹性力学原理在材料研究中也起着重要的作用。
通过测量材料的应变和应力,可以获得材料的弹性性质和力学特性。
这些信息可以用于开发新的材料或改进现有材料的性能。
3.3 软件模拟随着计算机技术的发展,弹性力学原理被应用于软件模拟和计算机辅助设计。
通过建立弹性力学模型,可以在计算机上模拟各种力学行为,并进行虚拟测试和分析。
这些技术在工程设计和产品开发中起到了关键作用。
结论:弹性力学原理是工程力学领域中的核心内容,研究材料在外力作用下的弹性变形和应力分布规律。
弹性力学的概念

经典弹性力学建立
17世纪末到18世纪初,R·胡克、C·惠更斯 、L·欧拉和J·伯努利等人建立了经典的弹性 力学理论,奠定了弹性力学的基础。
弹性力学应用领域
工程领域
材料科学
弹性力学广泛应用于各种工程领域,如建 筑、桥梁、道路、隧道、航空航天等,用 于分析和设计各种结构物。
弹性力学对于研究材料的力学性能和变形 行为具有重要意义,为材料科学的发展提 供了理论基础。
组分、结构等因素变化。
智能材料
03
如压电材料、形状记忆合金等,其力学行为与电场、磁场、温
度等外部条件密切相关,对弹性力学提出新的挑战。
复杂环境下弹性力学问题
极端环境
如高温、低温、高压、 真空等极端环境下,材 料的弹性力学行为可能 发生变化,需要研究相 应的理论和实验方法。
多场耦合
在力、热、电、磁等多 场耦合作用下,材料的 弹性力学响应更加复杂 ,需要建立多场耦合的 弹性力学模型。
泊松比
又称横向变形系数,是反映材料在受到纵向压缩或拉伸时,横向应变与纵向应变 比值的物理量。泊松比越大,说明材料在受到纵向力时横向收缩或膨胀越明显。
应力集中与应力分布
应力集中
在物体内部,由于形状、尺寸或材料性质等原因,某些部位 的应力可能显著高于其他部位,这种现象称为应力集中。应 力集中容易导致物体在局部范围内发生破坏。
地震学
生物力学
弹性力学在地震学中也有重要应用,用于 研究地震波在地球内部的传播规律和地震 引起的地面振动等问题。
生物力学是研究生物体运动和变形的学科, 弹性力学为其提供了基本的理论和方法。
02
弹性力学基本概念
CHAPTER
应力与应变概念
应力
物体内部单位面积上所承受的力,表示物体内部某一点的受力状态。应力分为 正应力和切应力,正应力与截面垂直,切应力与截面平行。
弹性力学的基本原理

弹性力学的基本原理弹性力学是研究物体在受力后能够恢复原状的力学分支。
它的基本原理可以总结如下:背景介绍弹性力学是力学学科的一个重要分支,研究物体受力后能够恢复原状的性质和行为。
弹性力学的研究对象可以是实物材料,如金属、塑料等,也可以是抽象的理想模型。
本文主要内容本文将讨论弹性力学的基本原理,包括以下几个方面:1. 倍力定律:弹性力学的基本原理之一是倍力定律。
倍力定律指出,在弹性变形范围内,物体受力与其变形之间存在着线性关系。
换句话说,物体受力越大,变形也越大,且两者之间成正比。
2. 弹性恢复:另一个基本原理是弹性恢复。
当外力作用于物体时,物体会变形,但在外力消失后,物体会努力恢复到原来的形状和尺寸。
这种恢复性质是弹性力学的核心特征。
3. 施加力和变形的关系:弹性力学研究物体受力后的变形情况。
在弹性力学中,施加力的方式和大小与物体的变形密切相关。
不同的力学作用方式将导致不同类型的变形,如拉伸、压缩、弯曲等。
4. 弹性模量:弹性力学的另一个关键概念是弹性模量。
弹性模量是衡量物体对外力的抵抗程度的指标。
不同材料具有不同的弹性模量,例如金属具有较高的弹性模量,而橡胶具有较低的弹性模量。
结论弹性力学的基本原理包括倍力定律、弹性恢复、施加力和变形的关系以及弹性模量等重要概念。
理解这些原理可以帮助我们更好地理解物体的弹性行为和性质。
请注意,本文的内容仅为简要介绍弹性力学的基本原理,详细的数学理论和推导过程超出了本文的范围。
参考文献:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弹性力学的基本原理
弹性力学是研究物体在受力下发生形变并恢复原状的力学学科。
它基于一系列基本原理,旨在描述和解释物体弹性行为的特性。
本文将围绕弹性力学的基本原理展开论述,以便更全面地理解这一学科。
杨氏模量
在弹性力学中,杨氏模量(Young's modulus)是描述物体刚度的重要参数。
它定义了应力和应变之间的关系,即弹性形变的比率。
杨氏模量由弹性学常数表示,在许多实际情况中,可以通过在物体上施加外力并测量其引起的形变来确定。
修形变模量
修形变模量(Shear modulus)是另一个描述材料弹性特性的参数。
它衡量了材料抵抗垂直于应力方向的剪切应变的能力。
修形变模量通常在弹性固体力学和构造工程设计中起着重要的作用,用于计算材料的弯曲和扭转刚度。
泊松比
泊松比(Poisson's ratio)是描述材料压缩形变和纵向拉伸形变之间关系的参数。
它是材料体积减少与相应的横向面积增加之间的比率。
泊松比通常为正值,但某些物质,如橡胶,也可以具有负值。
泊松比的概念在设计工程中非常重要,因为它影响材料的膨胀和收缩。
胡克定律
胡克定律(Hooke's law)是弹性力学中最基本的原理之一。
它表明,当物体在弹性限度范围内受到外力时,其应变与应力成正比。
胡克定
律的数学表达式为F = kx,其中F是物体所受外力,k是弹性系数,x
是物体的形变量。
通过胡克定律,可以计算出材料的刚度和弹性常数。
超弹性
当物体受到超过其弹性极限的外力时,它将发生塑性变形,不再恢
复原状。
然而,有些材料具有超弹性(superelasticity)的特性,即能够在超过其弹性极限的范围内发生可逆变形。
超弹性现象常见于一些合
金和弹簧材料中,并且具有重要的实际应用,如弹簧、形状记忆合金等。
应力集中与疲劳
在实际工程应用中,物体经常会受到集中载荷或者循环载荷的作用。
这会导致应力集中和疲劳破坏的风险。
应力集中是指应力在物体内部
发生非均匀分布的现象,常常会导致局部变形和断裂。
疲劳破坏是由
于物体在循环载荷下反复发生应力集中,导致材料疲劳寿命减少并最
终发生断裂。
在实际工程设计中,需要考虑应力集中和疲劳等因素,
以确保结构的安全性和可靠性。
结语
弹性力学的基本原理为我们理解和解释物体弹性行为提供了有力的
工具。
通过研究杨氏模量、修形变模量、泊松比和胡克定律等等基本
参数和原理,我们能够更好地预测和设计材料在受力下的变形和恢复
特性。
同时,应力集中和疲劳等问题也需要在工程设计中予以充分考虑。
弹性力学的研究为我们提供了改进和优化材料性能以及设计更安全可靠结构的指导。
通过不断深入学习和研究,我们可以进一步拓展弹性力学在科学和工程领域的应用。